JPH03228845A - Production of matrix for optical fiber preform - Google Patents

Production of matrix for optical fiber preform

Info

Publication number
JPH03228845A
JPH03228845A JP2336990A JP2336990A JPH03228845A JP H03228845 A JPH03228845 A JP H03228845A JP 2336990 A JP2336990 A JP 2336990A JP 2336990 A JP2336990 A JP 2336990A JP H03228845 A JPH03228845 A JP H03228845A
Authority
JP
Japan
Prior art keywords
glass
optical fiber
burner
fiber preform
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2336990A
Other languages
Japanese (ja)
Other versions
JP2612949B2 (en
Inventor
Kiyoshi Yokogawa
清 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2336990A priority Critical patent/JP2612949B2/en
Publication of JPH03228845A publication Critical patent/JPH03228845A/en
Application granted granted Critical
Publication of JP2612949B2 publication Critical patent/JP2612949B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Abstract

PURPOSE:To uniformize the unevennesses on the surface of porous glass matrix and to obtain the matrix for a large-sized optical fiber preform with good productivity by arranging a plurality of pieces of burners in the equiintervals at the same design dimension and successively transferring and dispersing the starting position of reciprocating movement in the case of producing the matrix for the optical fiber preform by an externally fitting method. CONSTITUTION:In a method for producing the matrix for an optical fiber preform by introducing a gaseous glass raw material 6 into an oxyhydrogen flame burner 2 and blowing glass fine particles produced by flame hydrolysis thereof on the outer circumference of a glass rod 1 for a core being rotated and relatively reciprocating and moving the burner 2 or the glass rod 1 parallel to the axial direction and thereby laminating the glass fine particles one layer by one layer on the glass rod 1 for the core to form the porous glass matrix 8 and then heating and dehydrating this matrix 8 to transparently vitrifying it, the following means is adopted. In other words, at least three pieces of burners 2... having the same dimension are arranged oppositely to the glass rod 1 for the core in the specified euqiintervals in a range over the whole length thereof. The glass fine particles are deposited while successively transferring and dispersing the starting position of the reciprocating movement in at least three points.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバプリフォーム母材の製造方法、特に
は光ファイバーの構造特性を低下させることなく、大型
の光ファイバプリフォーム母材を高速て生産することの
できる光ファイバプリフォーム母材の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an optical fiber preform base material, and particularly a method for manufacturing a large optical fiber preform base material at high speed without deteriorating the structural characteristics of the optical fiber. The present invention relates to a method for manufacturing an optical fiber preform base material that can be produced.

(従来の技術) 光ファイバプリフォームの製造については開発の初期に
おいてはコア(芯)用ガラスにガラス管を被覆するとい
う方法(特公昭41−11071号公報参照)で行なわ
れていたが、近年における特性、精度の著しい向上とプ
リフォームサイズの大型化に伴なって気体ガラス原料を
酸水素火炎バーナーに導入し、その火炎加水分解で生成
したガラス微粒子を回転しているコア用ガラス棒の外周
に吹きつけ、該バーナーまたはコア用ガラス棒のいずれ
か方(以下説明を簡単にするためにバーナー移動で説明
する)を軸方向に平行に往復運動させることによって該
ガラス微粒子をコア用ガラス棒上に一層づつ積層させて
多孔質ガラス母材を形成させ、ついでこれを加熱し脱水
、透明ガラス化して光ファイバプリフォームとする方法
(特開昭49−84258号公報参照)に移行してきて
い′る。
(Prior art) In the early stages of development, optical fiber preforms were manufactured by coating a glass tube with core glass (see Japanese Patent Publication No. 11071/1971), but in recent years With the remarkable improvement in properties and precision and the increase in preform size, gaseous glass raw materials are introduced into an oxyhydrogen flame burner, and the glass particles generated by flame hydrolysis are rotated around the outer periphery of the glass rod for the core. The glass fine particles are sprayed onto the core glass rod by reciprocating either the burner or the core glass rod (to simplify the explanation below, it will be explained by moving the burner) parallel to the axial direction. There has been a transition to a method of laminating layers one by one to form a porous glass base material, which is then heated, dehydrated, and made into transparent glass to produce an optical fiber preform (see Japanese Patent Application Laid-Open No. 49-84258). .

しかして、この種の光ファイバプリフォームの製造方法
については垂直方向に連続して堆積する方法(特開昭5
5−118638号公報参照)、多孔質ガラス母材に複
数本のバーナーから組成の異なるガラス形成原料を供給
すると共に8棒をバーナーに対して相対的に往復運動さ
せ、1回の移動ごとにガラス形成原料の組成を変えるこ
とによって、半径方向に所望の屈折率分布を有するプリ
フォームを得るという方法も提案されているしく特開昭
57−183330号公報参照)、8棒を回転させると
共に長手方向に運動させ、ガラス粒子の生成に振動運動
を与える方法(特開昭56−120528号、特開昭5
8−9835号公報参照)、製造しようとするコア用ガ
ラス棒の長さしとほぼ等しい長さの横幅をもつ薄型の酸
水素火炎バーナー、または多数の酸水素火炎バーナーを
横に一列に並べてバーナー列を作り、移動を行なわない
でガラス微粒子をコア用ガラス棒に吹きつける方法(特
開昭53−70449号公報参照)、さらに光フアイバ
母材ではないが複数のバーナーに供給されるガス量を調
整するか、バナー面とガラス微粒子の堆積面との距離を
調整し、あるいは耐熱性基体の回転数を調整してガラス
微粒子の堆積密度を半径方向に沿って変化させて多孔質
ガラス母材のひび割れを防止する方法(特開昭64−9
821号公報参照)も知られている。
However, regarding the manufacturing method of this type of optical fiber preform, there is a method of continuous deposition in the vertical direction (Japanese Patent Application Laid-Open No.
5-118638)), glass-forming raw materials with different compositions are supplied to the porous glass base material from multiple burners, and eight rods are reciprocated relative to the burners, and each time the glass is A method has also been proposed in which a preform having a desired refractive index distribution in the radial direction is obtained by changing the composition of the forming raw material. A method of applying vibrational motion to the generation of glass particles (JP-A-56-120528, JP-A-5
8-9835), a thin oxyhydrogen flame burner with a width approximately equal to the length of the core glass rod to be manufactured, or a burner in which multiple oxyhydrogen flame burners are arranged horizontally in a row. A method of blowing glass fine particles onto a core glass rod without forming a row and moving them (see Japanese Patent Application Laid-open No. 70449/1989), and a method that controls the amount of gas supplied to multiple burners, although it is not an optical fiber base material. The deposition density of glass particles can be changed along the radial direction by adjusting the distance between the banner surface and the surface on which glass particles are deposited, or by adjusting the rotation speed of the heat-resistant substrate. Method for preventing cracks (Unexamined Japanese Patent Publication No. 64-9
821) is also known.

(発明が解決しようとする課題) しかし、これら従来の公知の方法で光ファイバプリフォ
ーム母材を製造しようとすると、特開昭49−8425
8号公報に開示されている方法ではバーナーが一本であ
るためにガラス微粒子の堆積速度が遅いし、長尺、大径
のものを製造する場合には熱量が不足し、堆積シリカ層
が機械的強度の小さいものとなるのでひび割れが発生す
るという不利があり、特開昭56−120528号、特
開昭57−183330号、特開昭58−9835号公
報などに開示されている方法にはコア層、クラッド層が
一工程で得られるという利点があるものの、コア層、ク
ラッド層とも密度の低いものとなるので大型化するとき
の取扱いが困難となるし設備が大型化し、コアの屈折率
分布が不明のま\これに厚いクラッド層が付着されるの
で製品が目標値と外れたものになるという欠点があり、
さらに特開昭53−70449号公報に開示されている
方法ではバーナーのスリットから噴出するガスがコア用
ガラス棒の全長上で同一の条件にするということが保証
できないので、各バーナーおよびバーナー間で堆積ムラ
が生じ、現実的には得られるプリフォーム母材の堆積厚
さの精度がわるくなり、特開昭64−9821号公報に
開示されている方法では堆積速度が早く、大型のものが
作れるという利点はあるものの、長さ方向に一定の振幅
で往復するのでこれにはバーナーの停止点と移動部が常
に同一位置でくり返されるために堆積ムラが生じ、得ら
れる堆積体は表面に凹凸をもつものとなるし、芯材とし
てのアルミニウムが金属不純物としてシリカ層にドープ
されるという欠点があるので光フアイバ母材の製造用に
は利用できない。
(Problems to be Solved by the Invention) However, when trying to manufacture an optical fiber preform base material using these conventional known methods,
In the method disclosed in Publication No. 8, since there is only one burner, the deposition rate of glass fine particles is slow, and when manufacturing long and large diameter items, there is insufficient heat, and the deposited silica layer is damaged by the machine. However, the methods disclosed in JP-A-56-120528, JP-A-57-183330, JP-A-58-9835, etc. Although it has the advantage that the core layer and cladding layer can be obtained in one process, both the core layer and cladding layer have low density, making it difficult to handle when increasing the size, requiring larger equipment, and increasing the refractive index of the core. The distribution is unknown and a thick cladding layer is deposited on this, which has the disadvantage that the product deviates from the target value.
Furthermore, with the method disclosed in JP-A-53-70449, it cannot be guaranteed that the gas ejected from the slits of the burners will be under the same conditions over the entire length of the core glass rod. Uneven deposition occurs, and in reality, the accuracy of the deposited thickness of the obtained preform base material deteriorates, but the method disclosed in JP-A No. 64-9821 has a fast deposition rate and can make large-sized products. Although this has the advantage of reciprocating with a constant amplitude in the length direction, the stop point of the burner and the moving part are always repeated at the same position, resulting in uneven deposition, and the resulting deposit has an uneven surface. It cannot be used for manufacturing optical fiber base materials because aluminum as a core material is doped into the silica layer as a metal impurity.

(課題を解決するための手段) 本発明はこのような不利を解決した光ファイバプリフォ
ーム母材の製造方法に関するものであり、これは気体状
ガラス原料を酸水素火炎バーナーに導入し、その火炎加
水分解によって生成したガラス微粒子を回転しているコ
ア用ガラス棒の外周に吹ぎつけ、該バーナーまたはガラ
ス棒を軸方向に平行に相対的に往復運動させることによ
って該ガラス微粒子をコア用ガラス棒上に一層づつ積層
させて多孔質ガラス母材を形成させ、ついでこれを加熱
し、脱水、透明ガラス化して光ファイバプリフォーム母
材を製造する方法において、該コア用ガラス棒に対向し
てその全長にわたり少なくとも3個以上の同一寸法のバ
ーナーを一定等間隔で配置し、これを1体としたバーナ
ー列としその往復運動の開始位置を3点以上順次穆動分
散させながらガラス微粒子を堆積させることを特徴とす
るものである。
(Means for Solving the Problems) The present invention relates to a method for manufacturing an optical fiber preform base material that solves the above-mentioned disadvantages. Glass fine particles generated by hydrolysis are blown onto the outer periphery of a rotating core glass rod, and the burner or the glass rod is relatively reciprocated in parallel with the axial direction to blow the glass fine particles into the core glass rod. In the method of manufacturing an optical fiber preform base material by laminating layers one layer at a time to form a porous glass base material, which is then heated, dehydrated, and made into transparent glass, the core glass rod is At least three or more burners of the same size are arranged at regular intervals along the entire length, and glass particles are deposited while sequentially dispersing three or more starting positions of the reciprocating movement of the burner row as a single burner row. It is characterized by:

すなわち、本発明者らは光ファイバの構造特性を低下さ
せることなく、大型の光ファイバプリフォーム母材を高
速で生産する方法について種々検討した結果、従来公知
の多数個のバーナーを使用する場合には各バーナーおよ
びバーナー間でガラス微粒子の堆積ムラが生じ、これを
緩和するためにバーナーを移動させると停止点と移動点
でガラス微粒子の堆積ムラが生じ、得られる多孔質ガラ
ス母材は表面が凹凸をもつものになるので、本発明にし
たがってここに使用する複数個のバーナーを同一般計寸
法のものに特定すると共にこのバナー間隔を等間隔とし
、しかもこのバーナーの往復運動の開始位置を同じ位置
に止めないようにできるだけ異なる場所に分散するよう
に順次移動させると、移動距離が特定されていることか
ら各バーナー停止位置も順次移動されるし、バーナー寸
法、堆積条件が一定のものとされているので、各バーナ
ー間におけるガラス微粒子の堆積ムラが最小とされ、こ
のバーナー間隔が一定とされているのでバーナー移動部
の堆積ムラも少なくなり、さらには往復運動の開始位置
を順次移動ずれば停止点が毎回変るので停止点と移動点
との間における堆積ムラが平均化されるので、結果にお
いて多孔質ガラス母材を表面に凹凸のないものとするこ
とができ、したがってこれを透明ガラス化すれば均質な
光ファイバプリフォーム母材を容易に得ることができる
ことを見出して本発明を完成させた。
That is, the present inventors have studied various methods for producing large optical fiber preform base materials at high speed without deteriorating the structural characteristics of optical fibers. In this case, uneven deposition of glass particles occurs between each burner and between the burners, and when the burner is moved to alleviate this, uneven accumulation of glass particles occurs at the stop point and the moving point, and the resulting porous glass base material has a rough surface. Therefore, in accordance with the present invention, the plurality of burners used here are specified to have the same general size, and the intervals between the banners are set at equal intervals, and the starting positions of the reciprocating movement of the burners are set at the same distance. By sequentially moving the burners so that they are dispersed to different locations as much as possible without stopping in one position, each burner stop position is also moved sequentially because the moving distance is specified, and the burner dimensions and deposition conditions are kept constant. Therefore, uneven deposition of glass particles between each burner is minimized, and since the burner interval is constant, uneven accumulation of glass particles on the burner moving part is also reduced, and furthermore, if the start position of the reciprocating movement is shifted sequentially Since the stopping point changes each time, the unevenness of deposition between the stopping point and the moving point is averaged out, so the porous glass base material can be made without any unevenness on the surface, and therefore it can be made into transparent glass. The present invention was completed by discovering that a homogeneous optical fiber preform base material can be easily obtained by doing so.

以下にこれをさらに詳述する。This will be explained in further detail below.

(作用) 本発明による光ファイバプリフォーム母材の製造は気体
状ガラス原料を酸水素火炎で加水分解して生成させたガ
ラス微粒子をコア用ガラス棒上に堆積させて多孔質ガラ
ス母材を作る際に同一般計寸法のバーナーの複数個を等
間隔で配置し、その往復運動の開始位置を順次移動分散
させるというものである。
(Function) In the production of the optical fiber preform base material according to the present invention, a porous glass base material is created by depositing glass fine particles produced by hydrolyzing a gaseous glass raw material with an oxyhydrogen flame on a glass rod for a core. In this case, a plurality of burners having the same general dimensions are arranged at equal intervals, and the starting positions of their reciprocating movements are sequentially moved and dispersed.

本発明における光ファイバプリフォーム母材の製造は基
本的には公知の方法で行なわれる。したがって、これは
四塩化けい素などのような気体状ガラス原料を酸水素火
炎バーナーに導入し、ここでの火炎加水分解で発生した
ガラス微粒子をバーナー列の移動または、回転しており
かつその軸方向に平行に相対的に往復運動しているコア
用ガラス棒に吹きつけてこのガラス微粒子をコア用ガラ
ス棒の上に一層づつ堆積して多孔質ガラス母材を作り、
ついでこの多孔質ガラス母材を高温に加熱して脱気、透
明ガラス化するという方法で行なわれる。
The production of the optical fiber preform base material in the present invention is basically carried out by a known method. Therefore, this method involves introducing a gaseous glass raw material such as silicon tetrachloride into an oxyhydrogen flame burner, and transferring the glass particles generated by flame hydrolysis here to the moving or rotating burner row and its axis. A porous glass base material is created by blowing the glass particles onto a core glass rod that is relatively reciprocating in parallel to the direction, and depositing the glass particles layer by layer on the core glass rod.
This porous glass base material is then heated to a high temperature to degas it and turn it into transparent glass.

ここに使用されるコア用ガラス棒は目的とする光ファイ
バプリフォーム母材のコア部となるものであることから
公知のVAD法、OVD法、MCVD法などで作られた
グレーデツトインテックス型またはシングルモード型な
どのプロファイルをもち、一定のクラッド層が存在し、
ガラス化後の屈折率、寸法などの構造パラメーターが測
定確認されたものが望ましい。コア用ガラス棒の全長は
外径変動が5%以下となるように仕上げたのち表面を洗
浄し、ファイヤーポリッシュしたものとすることが好ま
しい。
The core glass rod used here is a graded intex type or a graded intex type made by the known VAD method, OVD method, MCVD method, etc., since it becomes the core part of the target optical fiber preform base material. It has a profile such as a single mode type, and has a certain cladding layer.
It is desirable that structural parameters such as refractive index and dimensions after vitrification have been measured and confirmed. It is preferable that the entire length of the glass rod for the core is finished so that the outer diameter variation is 5% or less, and then the surface is cleaned and fire polished.

このコア用ガラス棒に対するガラス微粒子の堆積は堆積
速度を高めるためには原料ガスをできるだけ多く送る必
要があり、そのためにはガスの濃度を高めるか、大量送
付のためにバーナーを太くするか、バーナーの数を多く
すればよいが、−木のバーナーでは限界があるので、本
発明では少なくとも3本以上のバーナーとする方法がと
られている。これらのバーナー2・・・は第1図に示さ
れているようにコア用ガラス棒1に対向して直列に並置
され、これらはバーナー台3に固定されてコア用ガラス
棒に平行にバーナー列またはコア用ガラス棒のどちらか
一方を往復運動するようにされている。このバーナー2
・・・には基本ガスとしては水素ガス送入バイブ4、酸
素ガス送入バイブ5、キャリアーガス(例えば酸素ガス
)に同伴された四塩化けい素送入バイブロからのガスが
送入され、これが火炎7を形成し、この火炎加水分解で
発生したガラス微粒子がコア用ガラス棒1の上に堆積し
て多孔質ガラス母材8が形成されるのであるが、多孔質
ガラス母材8の表面を凹凸の少ないものとするというこ
とから、ここに使用されるバーナー2・・・はすべて同
一のディメンションで設計された例えば石英製の同心円
状多重管バーナーとし、各バーナーによる堆積条件を同
一のものとすることから、これらのバーナーはそれぞれ
独立にガス条件がコントロールできる制御機構Cを備え
たものが望ましい。これらのバーナー2・・・はそのバ
ーナー出口とガラス微粒子堆積面との距離がいずれのバ
ーナーも同一となるように設置することが好ましいが、
この各バーナー間の間隙は隣接する火炎同志の干渉効果
を低減させるということから火炎7の堆積体表面での炎
の拡がりの1.5倍〜2.5倍の範囲で等間隔となるよ
うにすればよい。炎の拡りは衝突面の径、ガスの線速、
距離に依存し、堆積の進行に伴なって拡大していくが、
堆積効率は太い径のほうがよいので、バーナー間隔は太
い堆積径を基準として決めるのがよい。また、図には多
孔質ガラス母材8の両側終端部が加熱バーナー9の火炎
lOで加熱されていることが示されているが、これは終
端部ではガラス微粒子が密度の小さいものとなるし、こ
の部位には応力集中が起り易く、したがってこの部分で
びび割れなどが発生し易いことからこの部分を常時加熱
して密度を高くしておけばよい。
In order to increase the deposition rate of the glass particles on the core glass rod, it is necessary to send as much raw material gas as possible.To do this, it is necessary to increase the concentration of the gas, make the burner thicker to send a large amount, or The number of burners may be increased, but since there is a limit to the number of burners made of wood, the present invention adopts a method of using at least three burners. As shown in FIG. 1, these burners 2 are arranged in series facing the core glass rod 1, and these burners are fixed to a burner stand 3 and arranged in a burner row parallel to the core glass rod. Alternatively, either one of the glass rods for the core is reciprocated. This burner 2
As basic gases, gases are fed from a hydrogen gas feed vibrator 4, an oxygen gas feed vibrator 5, and a silicon tetrachloride feed vibro accompanied by a carrier gas (for example, oxygen gas). A flame 7 is formed, and glass particles generated by this flame hydrolysis are deposited on the core glass rod 1 to form a porous glass base material 8. In order to minimize unevenness, the burners 2 used here are all concentric multi-tube burners made of quartz, for example, designed with the same dimensions, and the deposition conditions for each burner are the same. Therefore, it is desirable that each of these burners is equipped with a control mechanism C that can independently control the gas conditions. These burners 2... are preferably installed so that the distance between the burner outlet and the glass particle deposition surface is the same for all burners,
The gaps between each burner are designed to be equally spaced within a range of 1.5 to 2.5 times the spread of the flame 7 on the surface of the stack, in order to reduce the interference effect between adjacent flames. do it. The spread of flame depends on the diameter of the collision surface, the linear velocity of the gas,
It depends on the distance and expands as the deposition progresses, but
Since the deposition efficiency is better with a larger diameter, the burner interval is preferably determined based on the larger deposition diameter. The figure also shows that both end portions of the porous glass base material 8 are heated by the flame lO of the heating burner 9, but this is because the glass particles have a low density at the end portions. Since stress concentration tends to occur in this area, and therefore cracks are likely to occur in this area, it is advisable to constantly heat this area to increase the density.

このような装置でコア用ガラス棒を回転させ、全バーナ
ーに着火し、バーナー列とガラス棒を相対的に往復運動
させて、気体状ガラス原料の火炎加水分解で発生したガ
ラス微粒子をコア用ガラス棒に堆積させて多孔質ガラス
母材を作ると、各バ1 一ナーが同一寸法のものとされ、かつ堆積条件を合せて
いるのでコア用ガラス棒に堆積されるガラス微粒子の量
は各部位において略々同量となるが、往復運動時には当
然−時停止して逆方向に運動が開始されるので停止位置
においては移動部にくらべてどうしても堆積量が変り、
これは長時間同じ位置で繰り返されると可成り大きな差
となってきて結果において目的とする多孔質ガラス母材
が第2図(a)のような凹凸をもつものになる。
With such a device, the glass rod for the core is rotated, all the burners are ignited, and the burner row and the glass rod are reciprocated relative to each other, so that the glass fine particles generated by the flame hydrolysis of the gaseous glass raw material are removed from the glass for the core. When depositing on a core glass rod to make a porous glass base material, each bar is of the same size and the deposition conditions are matched, so the amount of glass fine particles deposited on the core glass rod can be adjusted at each location. However, during reciprocating movement, it naturally stops at - and starts moving in the opposite direction, so the amount of accumulation at the stop position inevitably changes compared to the moving part.
When this is repeated at the same position for a long time, the difference becomes quite large, and the result is that the target porous glass base material has irregularities as shown in FIG. 2(a).

本発明はこのような不利を解決するためにこの往復運動
の開始位置を3点以上に順次移動させるものであり、こ
れによれば例えば第2図(b)に示したようにバーナー
群の往復運動の開始位置がずれると、第2図(a)で示
した変形が軽減される。
In order to solve this disadvantage, the present invention sequentially moves the start position of this reciprocating movement to three or more points. According to this, for example, as shown in FIG. 2(b), the reciprocating movement of the burner group When the starting position of the movement is shifted, the deformation shown in FIG. 2(a) is reduced.

停止点のずれをさらに多くすると第1図のようになり、
バーナーの停止による堆積厚さの変動部分が順次ずれ込
み、これをくり返していればこの堆積量の変化が全体的
に分散平均化されて目的とする多孔質ガラス母材は表面
に凹凸のないものになるという有利性が与えられる。
If the deviation of the stopping point is further increased, the result will be as shown in Figure 1,
The part where the deposited thickness fluctuates due to the stoppage of the burner gradually shifts, and if this process is repeated, the changes in the deposited amount will be distributed and averaged out as a whole, and the target porous glass base material will have a smooth surface. It gives you the advantage of becoming.

 2 この発明では移動開始点を全体に分散させることが目的
とされるので、2点のバーナー間距離内では開始点の多
いほうが好ましい。本発明の移動開始点は第1図のよう
に一方向の場合が基準とされるが、第2図(b)、(e
)に示したように往復、ジクザグ移動、またはランダム
移動が可能である。
2. Since the purpose of this invention is to disperse the movement starting points over the entire area, it is preferable that there are many starting points within the distance between two burners. The movement starting point of the present invention is based on a case in one direction as shown in Fig. 1, but Fig. 2(b) and (e
), round trip, zigzag movement, or random movement is possible.

また1回毎ではなく、数回を単位に開始点を移動したり
、径の増大につれて変えるなど、目的、条件によフてこ
れらを組合せてもよいが、いずれの場合も定常部の層の
数が実質的に常に一定となるように移動スケジュールを
定めることが重要である(第2図、b、c図)。移動開
始点は順次ずらせるが、隣接バーナー位置までずれた点
を1ユニツトとし、少なくとも1〜3ユニット間でくり
返すことが望ましい。ユニットが大きくなると、表面の
平滑性は良好となるが、全長の両端テーパ一部がユニッ
ト数に比例して長くなり、無駄となる(第3図)。付着
量は重量検出装置などで連続的に計測し、目標重量近く
では停止線の位置を幅広くとり、層の数に過不足がなく
、かつ目標重量が得られるようなスケジュールで進める
ことがよい。
In addition, these may be combined depending on the purpose and conditions, such as moving the starting point several times rather than every time, or changing it as the diameter increases, but in either case, the It is important to schedule the movement so that the number remains essentially constant (Fig. 2, b, c). The starting point of movement is sequentially shifted, but it is desirable that the point shifted to the adjacent burner position is one unit, and the movement is repeated for at least 1 to 3 units. As the unit becomes larger, the surface smoothness becomes better, but the tapered portions at both ends of the entire length become longer in proportion to the number of units, which becomes wasteful (Fig. 3). It is recommended that the amount of adhesion be continuously measured using a weight detection device, etc., and that the stop line be placed at a wide range near the target weight, and that the schedule should be such that there is no excess or deficiency in the number of layers, and the target weight is obtained.

このようにバーナーの往復移動距離か大きいと両端のテ
ーパ一部が増加し、定常部は減少するので、これは隣接
バーナー間隔の3倍を越えない範囲とすることがよく、
さらにこのバーナーの往復運動の開始位置の間隔はバー
ナー間隔、コア用ガラス棒の径、堆積体の径、バーナー
の口径、炎の太さなどにより変るが、これが大きいと効
果が少なく、小さいと時間的に厚さ方向での堆積量、密
度などが異なり、変形を促進するので、バーナー間隔の
172〜3mmの範囲とすることがよい。
In this way, if the reciprocating distance of the burner is large, the taper part at both ends will increase and the steady part will decrease, so it is best to keep this within a range that does not exceed three times the distance between adjacent burners.
Furthermore, the interval between the start positions of the reciprocating movement of the burners varies depending on the burner interval, the diameter of the core glass rod, the diameter of the deposit, the burner diameter, the thickness of the flame, etc., but if it is large, the effect will be small, and if it is small, it will take a long time. Since the deposited amount, density, etc. in the thickness direction vary and promote deformation, it is preferable to set the burner interval in the range of 172 to 3 mm.

なお、このようにして得られた多孔質ガラス母材におけ
るガラス微粒子は密度が低くずぎるどガラス母材にひび
割れが発生して取り扱い難いものとなるので堆積径が大
きいものは平均堆積密度も大きく設定し、少なくとも0
.3〜1.5g/cm3のものとすることが好ましいか
、この多孔質ガラス母材におけるガラス微粒子の堆積重
量および密度を調節するためには水素量、酸素量、気体
状ガラス原料の量比などのガス条件、バーナー出口の線
速、バーナー出口と堆積面の距離、コア用ガラス棒の回
転数、バーナー火炎の移動速度などの1つまたは2つ以
上をコントロールすればよい。
Note that the glass fine particles in the porous glass base material obtained in this way have a low density, and cracks occur in the glass base material, making it difficult to handle. Therefore, if the diameter of the glass particles is large, the average deposition density is set to be large. and at least 0
.. 3 to 1.5 g/cm3, and in order to adjust the deposited weight and density of glass particles in this porous glass matrix, the amount of hydrogen, the amount of oxygen, the amount ratio of gaseous glass raw materials, etc. It is sufficient to control one or more of the following gas conditions, the linear velocity of the burner outlet, the distance between the burner outlet and the deposition surface, the rotational speed of the core glass rod, and the moving speed of the burner flame.

バーナー移動を行なうとバーナ〜やバーナー台、配管な
どが移動の振動を受け、異物を発生し、堆積体表面に付
着し、気泡発生の原因となるので、移動はガラス棒で行
なうことが好ましい。
When the burner is moved, the burner, burner stand, piping, etc. are subjected to vibrations due to the movement, generating foreign matter that adheres to the surface of the deposit and causes the generation of bubbles, so it is preferable to use a glass rod to move the burner.

また、これは横型だけでなく、タテ型で行なうことも可
能であり、軸移動で行なうと開口部が少なく、外部から
の異物を遮断できる。
Further, this can be done not only horizontally but also vertically, and when it is done by moving the shaft, there are fewer openings and foreign matter can be blocked from the outside.

この反応装置は排気口、給気口、バーナー差し込み口お
よび主回転伝達部の一部を除いて密閉にしておくことが
よく、これによればゴミの付着、バーナー炎のゆれが防
止され、排ガスの管理ができるので、気泡のない多孔質
ガラス母材を容易に得ることができるという有利性が与
えられる。
It is best to keep this reactor sealed with the exception of the exhaust port, air supply port, burner insertion port, and part of the main rotation transmission part.This prevents dust from adhering to the burner flame and fluctuating the burner flame, and prevents the exhaust gas from can be controlled, giving the advantage that a porous glass base material free of bubbles can be easily obtained.

なお、このようにして得られた多孔質ガラス母材はつい
で公知の方法で透明ガラス化して光ファイバプリフォー
ム母材とされるのであるが、この透明ガラス化は電気炉
中において必要に応じ添加される塩素ガス、5OCI2
.5iC14、フッ素ガスなどを含むヘリウム、アルゴ
ン、窒素ガスなどの不活性ガス雰囲気中で1,000℃
以上に加熱して脱水、透明ガラス化すればよく、このよ
うにして得られた光ファイバプリフォーム母材はガラス
旋盤または電気炉で延伸加工し、プリフォームアナライ
ザによってプロファイル検定およびデイメンジョンを確
認し最終製品とされる。
The porous glass preform obtained in this way is then made into a transparent vitrification by a known method to form an optical fiber preform preform. Chlorine gas, 5OCI2
.. 5iC14, 1,000℃ in an inert gas atmosphere such as helium, argon, or nitrogen gas containing fluorine gas, etc.
The optical fiber preform base material obtained in this way is stretched in a glass lathe or electric furnace, and the profile verification and dimension are confirmed using a preform analyzer. It is considered the final product.

(実施例) つぎに本発明の実施例をあげる。(Example) Next, examples of the present invention will be given.

実施例1 横型外付装置に直径20mmφ長さ800mmLの石英
ガラス棒を取りつけた。この石英棒の側面に対向して同
一寸法で設計された四重管同心円バーナーを中心間距l
I!t 100mmで6本を等間隔に並べ、その両端に
加熱バーナーを取りつけた。各バーナーの中心軸は石英
ガラス棒の軸中芯と合うようにし、その距離を同一にし
てバーナー台に固定した。各バナーの炎ばあらかしめ調
べ、炎の形、温度が同一になるよう、バーナーの向き、
ガス条件を合わせた。
Example 1 A quartz glass rod with a diameter of 20 mm and a length of 800 mm was attached to a horizontal external device. A four-pipe concentric burner designed with the same dimensions was placed opposite the side of this quartz rod with a center distance of l.
I! Six pieces were arranged at equal intervals with a length of 100 mm, and heating burners were attached to both ends. The central axis of each burner was aligned with the central axis of the quartz glass rod, and the burners were fixed to the burner stand at the same distance. Check the flame of each banner, make sure the flame shape and temperature are the same, and adjust the direction of the burner.
The gas conditions were adjusted.

外付装置の回転数を30rpmで回転させ、バーナ列に
ガスを流して点火しバーナー列を60mm/minで往
復運動させた。バーナーは100mm移動したら逆方向
にもどることを確認し、左端で止った時点からキャリヤ
ーガスに同伴させた四塩化珪素を流した。原料は炎の中
で火炎加水分解してシリカ微粒子を生成し、ガラス棒の
表面に堆積した。バーナー列は100mm右を移動した
時点で5秒間停止し、次いで左側に60mm/minの
速度で90mm移動させた。左側へ移動してぎたバーナ
ー列は最初のスタート位置の10mm手前で止めるが、
この時点で各バーナーは各々 10m+n手前で止まる
ので、堆積層は左側移動時には100mmおぎに10m
mずつ層が途切れた。次に5秒間停止后2回目のスター
トを行い100mm右に移動し、1回目より 10mm
右でバーナー列を止め、そして左へ90mm移動した。
The external device was rotated at 30 rpm, gas was flowed through the burner row, ignited, and the burner row was reciprocated at 60 mm/min. It was confirmed that the burner would return in the opposite direction after moving 100 mm, and silicon tetrachloride entrained in the carrier gas was flowed from the point at which it stopped at the left end. The raw material was flame-hydrolyzed in the flame to produce silica particles, which were deposited on the surface of the glass rod. The burner row was stopped for 5 seconds after moving 100 mm to the right, and then moved 90 mm to the left at a speed of 60 mm/min. The burner row that had moved to the left will stop 10mm before the initial starting position, but
At this point, each burner stops at 10m+n, so when moving to the left, the deposited layer spreads 100mm and then 10m.
The layers were discontinued by m. Next, after stopping for 5 seconds, start the second time and move 100mm to the right, 10mm from the first time.
I stopped the burner row on the right and moved it 90mm to the left.

この停止点は1回目のスタート開始点から20mm右に
ずれた点で、層は各々 10mmづつ途切れた。これを
10回繰り返すと、スタートから100m+m右にずれ
た点が移動開始点のスタート点となり、これは第2バナ
ーの1回目の移動開始点にあたり、これが1ユニツトで
ある。1往復につき10mmずつ不足の層を生じたが1
0回の繰り返しで1層分(100mm)欠け19層堆積
した事になるが、1ユニツト、100mm間にバーナー
の停止点は11ケ所、堆積層の途切れた異常点は10ケ
所に均等に分散された。
This stopping point was shifted 20 mm to the right from the first starting point, and each layer was interrupted by 10 mm. If this is repeated 10 times, a point shifted 100 m+m to the right from the start point becomes the starting point of the movement, which corresponds to the first movement starting point of the second banner, and is one unit. There was a layer shortage of 10 mm per round trip, but 1
In 0 repetitions, 1 layer (100 mm) was missing and 19 layers were deposited, but the burner stopped at 11 points during 1 unit and 100 mm, and the abnormal points where the deposited layer was interrupted were evenly distributed at 10 points. Ta.

次に移動の開始点を順次左へずらせるが、スタートは1
00m+m右へずれた開始点からはじまり、まず100
mm右へさらに移動させる。次に左へ移動するとき11
01移動する。すると各堆積層の左側で1011I11
だけ重ねて堆積される。左端で5秒間停止后右へ100
mm移動させ、停止后再び左へ110mm移動する。こ
の動作を10回繰り返すと左端のスタート点にもどる。
Next, shift the starting point of the movement to the left one by one, but the starting point is 1
Starting from the starting point shifted to the right by 00m+m, first 100m
Move further mm to the right. Next when moving to the left 11
01 Move. Then, on the left side of each deposited layer, 1011I11
are deposited one on top of the other. Pause at the left end for 5 seconds, then move 100 degrees to the right.
It moves 110mm to the left after stopping. Repeat this action 10 times to return to the starting point on the far left.

左へもどる時は、1往復につき10wnずつ重ねて堆積
されるので1ユニツトが終ると堆積層が21層と1層多
くなり、右へ移動時の19層と合せて40層となる。
When moving back to the left, 10wn are piled up for each round trip, so when one unit is completed, the number of deposited layers increases by one to 21 layers, making 40 layers in total, including 19 layers when moving to the right.

本実施例ではこのユニット間を4往復、移動堆積層が1
60層で終了した。
In this example, there are 4 reciprocations between these units, and 1 moving deposit layer.
Finished with 60 layers.

ガス条件は堆積の途中で増加させ、特にユニットの切り
かえ時に大きく変えて、最終的にはH228j2 /m
in、0236 jll/min、 SiCj!424
g/min流した。また、これらの位置移動、ガスの切
りかえは全てコンピュータにより行った。
The gas conditions were increased during the deposition, and changed significantly especially when switching units, and finally reached H228j2/m.
in, 0236 jll/min, SiCj! 424
g/min. All of these positional movements and gas switching were performed by computer.

作成した堆積体は、両端に約120mmLのコーンン部
を持った均一な白色スートで、直胴部長さが約410+
am 、直径145mmφ堆積物の重量は4.95k 
gで凸凹のない非常に平滑なスートが得られた。
The created deposit was a uniform white soot with cone portions of approximately 120 mmL at both ends, and the straight body length was approximately 410+.
am, the weight of the diameter 145mmφ deposit is 4.95k
A very smooth soot with no unevenness was obtained at g.

このスートは1,520℃の電気炉で5%の塩素ガスを
含むHeガスを流しながら溶解したが、直胴部400m
m間には異常な径変動は無かった。
This soot was melted in an electric furnace at 1,520°C while flowing He gas containing 5% chlorine gas.
There was no abnormal diameter variation between m.

比較例1 実施例1で用いた装置で、次の3種類の実験を行った。Comparative example 1 Using the apparatus used in Example 1, the following three types of experiments were conducted.

(A)は1本バーナーで600mUaの全長を往復移動
させた。(B)は2本バーナーで600mmの範囲を往
復移動(定常部は400III11)シた。但しこれは
定常部は1回の移動で2本バーナー堆積により2層とな
る。(C)は実施例と同じ6本バーナーで100m1間
を定点移動させた。層の数はいずれも160層とし各方
法とも合せた。バーナー数が少ないと堆積している時間
より冷却されている時間が長くなり、熱量が不足するの
で酸水素量を多くした。これ等の比較例を実施例1とと
もに第1表に示す。
In (A), one burner was used to reciprocate the entire length of 600 mUa. In (B), two burners were moved back and forth over a range of 600 mm (400 III 11 in the stationary part). However, in this case, the steady part becomes two layers due to two burner depositions in one movement. In (C), the same six burners as in the example were used to move a fixed point over a distance of 100 m1. The number of layers was 160 for each method. If the number of burners is small, the cooling time will be longer than the deposition time, and the amount of heat will be insufficient, so the amount of oxyhydrogen was increased. These comparative examples are shown in Table 1 along with Example 1.

 0 比較例のCは3時間を過ぎると変形部分が強調され出し
、次第に径が凹凸となるのでこれ以上堆積する事は困難
であり、堆積効率が著しく低下してきた。
0 In Comparative Example C, after 3 hours, the deformed portion began to be emphasized and the diameter gradually became uneven, making it difficult to deposit any more, and the deposition efficiency was significantly reduced.

実施例2 直径24.0mmφ、長さ620+nmLのシングルモ
ード用コア石英ガラス棒を準備しその両端にダミー用石
英棒を溶接した。この条件で全体の芯を合せ、コア用石
英ガラス棒の外径変動が±200μ(±0.83%)以
下となるようガラス旋盤で修正した。コア部は英国ヨー
ク社製プリフォームアナライザーP101により構造パ
ラメータを測定し、完成したプリフォームに必要なりラ
ッドの厚さを計算で求めた。
Example 2 A core quartz glass rod for single mode with a diameter of 24.0 mmφ and a length of 620+nmL was prepared, and dummy quartz rods were welded to both ends of the core quartz glass rod. Under these conditions, the entire core was aligned and corrected using a glass lathe so that the variation in the outer diameter of the quartz glass rod for the core was ±200μ (±0.83%) or less. The structural parameters of the core part were measured using Preform Analyzer P101 manufactured by York, UK, and the thickness of the rad required for the completed preform was calculated.

コア用石英ガラス棒はアセトンで表面の汚れを掃きとり
、タテ型の密閉式外付装置の回転部に垂直に装着した。
The surface of the quartz glass rod for the core was cleaned with acetone, and the rod was attached vertically to the rotating part of a vertical closed external device.

回転駆動部はコアガラス棒を装着したまま秤量台に載せ
られ、更にこの秤量台は上下に移動可能な大型引上機の
可動台に固定した。
The rotary drive unit was placed on a weighing platform with the core glass rod attached, and the weighing platform was further fixed to a movable platform of a large lifting machine that could be moved up and down.

垂直に設置されたコア用ガラス棒は回転させて軸芯を合
せた后30rpmで回転させた。
The vertically installed core glass rod was rotated to align its axes and then rotated at 30 rpm.

バーナーは実施例1に用いた同心円状四重管バナーを8
個、100mm等間隔でタテに直列に並べ固定した。排
気はバーナーの反対側にとりつけ、チャンバーの上下か
ら清浄な空気を送入した。ガス条件は実施例1に準じた
。ガスを点火し、引上機を昇降させ移動速度を60mm
/ff1inに設定した。ガラス棒上に異物、欠陥が無
いことを確認し、コア用石英ガラス棒の最下端部より 
5iCrl14ガスを流し、100mm間を1ユニツト
とし位置の移動を10mn+づつずらせ、20往復、4
0層で元のスタート位置にもどった。これを4回繰り返
した后、重量調節のため停止点の間隔を変えた。第1回
目の調整はずれ間隔を25mmとし、5点間移動を行い
20層付着させた(第2図C)。第2調整は3点間移動
(第2図b)を1回6層、最終的に2点間移動(第2図
a)を4回行い目標重量を達成した。でき上ったスート
は表面が一様で凹凸は全く無いものであり層の数は19
0層、スートの重量6.046kg 、時間は5.48
時間であった。これを1,520℃、ヘリウム、3 塩素ガス中で脱水、 溶融したところ、 78.9mmφの 透明なインゴットが得られた。
The burner was 8 concentric quadruple tube banners used in Example 1.
They were arranged vertically in series at equal intervals of 100 mm and fixed. The exhaust was installed on the opposite side of the burner, and clean air was introduced from above and below the chamber. The gas conditions were the same as in Example 1. Ignite the gas and raise and lower the pulling machine to a moving speed of 60mm.
/ff1in. Confirm that there are no foreign objects or defects on the glass rod, and then insert it from the bottom end of the quartz glass rod for the core.
5iCrl14 gas was flowed, 100 mm was defined as 1 unit, and the position was shifted by 10 mm+, 20 reciprocations, 4
It returned to its original starting position on the 0th layer. After repeating this four times, the interval between the stopping points was changed to adjust the weight. In the first adjustment, the deviation interval was set to 25 mm, and 20 layers were deposited by moving between 5 points (FIG. 2C). In the second adjustment, the target weight was achieved by moving between 3 points (Fig. 2 b) once for 6 layers and finally moving between 2 points (Fig. 2 a) 4 times. The finished soot has a uniform surface with no irregularities and has 19 layers.
0 layer, suit weight 6.046 kg, time 5.48
It was time. When this was dehydrated and melted at 1,520°C in helium and trichlorine gas, a transparent ingot with a diameter of 78.9 mm was obtained.

第 表 本インゴットは電気炉を用い外径47φに延伸し定常部
を線引した。本ファイバの特性値は第3表に示すとおり
安定し、クラッド層の変動は全く見られなかった。
The ingot shown in Table 1 was stretched to an outer diameter of 47φ using an electric furnace, and a steady portion was drawn. The characteristic values of this fiber were stable as shown in Table 3, and no fluctuations in the cladding layer were observed.

4゜ (発明の効果) 本発明による光ファイバプリフォーム母材の製法は前記
したように気体状ガラス原料の火炎加水分解で発生した
ガラス微粒子をガラス棒に堆積して多孔質ガラス母材を
製造するときに、ガラス棒に対向してその全長にわたり
複数個の同一寸法のバーナーを一定間隔で配置し、その
往復運動の開始位置を順次移動分散させるというもので
あり、これによれば往復運動における停止点がずれるの
で長時間の運転後には得られる多孔質ガラス母材の表面
における凹凸が平均的に均一化され、構造特性を低下さ
せることなく、また軸穆動を行ない、反応チャンバーを
密閉にすることで気泡の低減も可能となり、大型の光フ
アイバプリファーム母材を生産性よく容易に得ることが
できるという有利性が与えられる。
4゜ (Effects of the Invention) As described above, the method for producing an optical fiber preform base material according to the present invention involves depositing glass particles generated by flame hydrolysis of a gaseous glass raw material on a glass rod to produce a porous glass base material. When doing so, a plurality of burners of the same size are placed at regular intervals across the entire length of the glass rod, and the starting positions of the reciprocating motion are sequentially moved and dispersed. Since the stopping point is shifted, the unevenness on the surface of the porous glass base material obtained after long-term operation is evened out on the average, and the axial movement is performed without deteriorating the structural properties and the reaction chamber is sealed tightly. This also makes it possible to reduce air bubbles, giving the advantage that a large optical fiber pre-firm base material can be easily obtained with good productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に使用される多孔質ガラス母材製
造装置の縦断面図を示したものであり、第2図は本発明
の方法におけるバーナー群の往復運動の開始位置を順次
移動させることを示す模式図を、また第3図は1ユニツ
トをバーナー距離の2倍、3倍に拡大したとぎの末端部
の形状を示したものである。
Fig. 1 shows a longitudinal cross-sectional view of the porous glass preform manufacturing apparatus used in the method of the present invention, and Fig. 2 shows the starting position of the reciprocating movement of the burner group in the method of the present invention, which is sequentially moved. FIG. 3 shows the shape of the end of the knife when one unit is enlarged to twice or three times the burner distance.

Claims (1)

【特許請求の範囲】 1、気体状ガラス原料を酸水素火炎バーナーに導入し、
その火炎加水分解で生成したガラス微粒子を回転してい
るコア用ガラス棒の外周に吹きつけ、該バーナーまたは
ガラス棒を軸方向に平行に相対的に往復移動させること
によって該ガラス微粒子をコア用ガラス棒上に一層づつ
積層させて多孔質ガラス母材を形成させ、ついでこれを
加熱し脱水、透明ガラス化して光ファイバプリフォーム
母材を製造する方法において、該コア用ガラス棒に対向
してその全長にわたり少なくとも3個以上の同一寸法の
バーナーを一定等間隔で配置し、その往復運動の開始位
置を3点以上に順次移動分散させながらガラス微粒子を
堆積させることを特徴とする光ファイバプリフォーム母
材の製造方法。 2、往復運動距離および運動開始位置の最大ずれ幅は隣
接バーナー間隔の1倍以上3倍以下の範囲とされる請求
項1に記載した光ファイバプリフォーム母材の製造方法
。 3、往復運動の開始位置の移動が3mm以上バーナー間
距離以内とされる請求項1に記載した光ファイバプリフ
ォーム母材の製造方法。 4、移動開始点は遂次移動またはランダム移動で行ない
、いずれの場合も実質的に堆積層の数が等しく、停止位
置が等間隔である請求項1に記載した光ファイバプリフ
ォーム母材の製造方法。 5、往復運動がコアガラス棒で行なわれる請求項1に記
載した光ファイバプリフォーム母材の製造方法。
[Claims] 1. Introducing a gaseous glass raw material into an oxyhydrogen flame burner,
The glass particles generated by the flame hydrolysis are blown onto the outer periphery of the rotating core glass rod, and the burner or the glass rod is relatively reciprocated in parallel with the axial direction to blow the glass particles into the core glass. In the method of manufacturing an optical fiber preform base material by laminating layers one by one on a rod to form a porous glass base material, which is then heated, dehydrated, and made into transparent glass, the core glass rod is An optical fiber preform motherboard characterized in that at least three or more burners of the same size are arranged at regular intervals over the entire length, and glass fine particles are deposited while sequentially moving and dispersing the starting positions of the reciprocating motion at three or more points. Method of manufacturing wood. 2. The method for manufacturing an optical fiber preform preform according to claim 1, wherein the reciprocating movement distance and the maximum deviation width of the movement start position are in a range of 1 to 3 times the distance between adjacent burners. 3. The method for manufacturing an optical fiber preform base material according to claim 1, wherein the start position of the reciprocating movement is moved by at least 3 mm and within the distance between the burners. 4. Manufacturing the optical fiber preform base material according to claim 1, wherein the movement starting point is sequentially moved or randomly moved, and in either case, the number of deposited layers is substantially the same, and the stopping positions are equally spaced. Method. 5. The method for manufacturing an optical fiber preform preform according to claim 1, wherein the reciprocating movement is performed by a core glass rod.
JP2336990A 1990-02-01 1990-02-01 Manufacturing method of optical fiber preform base material Expired - Lifetime JP2612949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2336990A JP2612949B2 (en) 1990-02-01 1990-02-01 Manufacturing method of optical fiber preform base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2336990A JP2612949B2 (en) 1990-02-01 1990-02-01 Manufacturing method of optical fiber preform base material

Publications (2)

Publication Number Publication Date
JPH03228845A true JPH03228845A (en) 1991-10-09
JP2612949B2 JP2612949B2 (en) 1997-05-21

Family

ID=12108638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2336990A Expired - Lifetime JP2612949B2 (en) 1990-02-01 1990-02-01 Manufacturing method of optical fiber preform base material

Country Status (1)

Country Link
JP (1) JP2612949B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260618A (en) * 1990-09-20 1992-09-16 Corning Inc Method and device for manufacture of porous glass preform
US5958102A (en) * 1996-11-27 1999-09-28 Shin-Etsu Chemical Co., Ltd. Apparatus and method for making an optical fiber preform using a correction pass
US6047564A (en) * 1996-07-18 2000-04-11 Heraeus Quarzglas Gmbh Method of producing quartz glass bodies
EP1065175A1 (en) * 1999-07-02 2001-01-03 Shin-Etsu Chemical Co., Ltd. Method and apparatus for manufacturing a glass optical fibre preform by the outside vapour deposition process
JP2002121046A (en) * 2000-08-07 2002-04-23 Shin Etsu Chem Co Ltd Apparatus for grinding glass preform and method for producing glass preform
US6474105B1 (en) * 1994-12-29 2002-11-05 Alcatel Cable Modulating a diameter-increasing step of a fiber preform with no modulation prior to a predetermined diameter
WO2003037809A1 (en) * 2001-11-01 2003-05-08 Sumitomo Electric Industries, Ltd. Method for producing optical fiber base material
EP1325891A1 (en) * 2000-07-31 2003-07-09 Shin-Etsu Chemical Co., Ltd. Glass base material producing device and glass base material producing method
EP1340724A1 (en) * 2000-11-24 2003-09-03 Sumitomo Electric Industries, Ltd. Method and device for manufacturing glass particulate sedimented body
EP1295854A3 (en) * 2001-09-20 2004-01-07 Sumitomo Electric Industries, Ltd. Method for producing a glass soot preform for optical fibres by vapour phase deposition
EP1211227A3 (en) * 2000-11-29 2004-01-21 Sumitomo Electric Industries, Ltd. Method of producing a preform for optical fibres by outside vapour deposition
EP1190992A3 (en) * 2000-09-21 2004-04-07 Sumitomo Electric Industries, Ltd Method of producing an optical fiber preform using deposition burners
EP1496021A1 (en) * 2002-04-18 2005-01-12 Sumitomo Electric Industries, Ltd. Method of manufacturing glass particulate stacked body
US6889529B2 (en) 2000-10-30 2005-05-10 Sumitomo Electric Industries, Ltd. Method of manufacturing optical fiber preform
US7716951B2 (en) 2004-02-12 2010-05-18 Sumitomo Electric Industries, Ltd. Method for manufacturing article comprising deposited fine glass particles
US8072424B2 (en) 2004-04-30 2011-12-06 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
JP2014043360A (en) * 2012-08-24 2014-03-13 Sumitomo Electric Ind Ltd Method for manufacturing porous glass body, and porous glass body
US8834271B2 (en) 2005-08-24 2014-09-16 Nintendo Co., Ltd. Game controller and game system
US9011248B2 (en) 2005-08-22 2015-04-21 Nintendo Co., Ltd. Game operating device
USRE45905E1 (en) 2005-09-15 2016-03-01 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
JP2016044087A (en) * 2014-08-21 2016-04-04 住友電気工業株式会社 Method of manufacturing glass fine particle deposition body
US10782792B2 (en) 2004-04-30 2020-09-22 Idhl Holdings, Inc. 3D pointing devices with orientation compensation and improved usability
KR20220009353A (en) 2020-07-15 2022-01-24 신에쯔 세끼에이 가부시키가이샤 Large hollow porous quartz glass preform and manufacturing the same
US11780761B2 (en) 2018-06-12 2023-10-10 Fujikura Ltd. Method for producing porous glass fine particle body and method for producing optical fiber preform

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102612247B1 (en) * 2023-03-14 2023-12-11 비씨엔씨 주식회사 A DEVICE CAPABLE OF CONTROLLING the protrusion IN SILICA SOOT BY CONTROLLING THE DESTANCE BETWEEN THE BURNER AND THE MANDREL SURFACE

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260618A (en) * 1990-09-20 1992-09-16 Corning Inc Method and device for manufacture of porous glass preform
US6474105B1 (en) * 1994-12-29 2002-11-05 Alcatel Cable Modulating a diameter-increasing step of a fiber preform with no modulation prior to a predetermined diameter
US6047564A (en) * 1996-07-18 2000-04-11 Heraeus Quarzglas Gmbh Method of producing quartz glass bodies
US5958102A (en) * 1996-11-27 1999-09-28 Shin-Etsu Chemical Co., Ltd. Apparatus and method for making an optical fiber preform using a correction pass
US6672112B2 (en) 1999-07-02 2004-01-06 Shin-Etsu Chemical Co. OVD apparatus including air-regulating structure
US6546759B1 (en) 1999-07-02 2003-04-15 Shin-Etsu Chemical Co., Ltd. Glass base material manufacturing apparatus with super imposed back-and-forth burner movement
US7055345B2 (en) * 1999-07-02 2006-06-06 Yuuji Tobisaka Glass base material manufacturing apparatus and glass base material manufacturing method
EP1065175A1 (en) * 1999-07-02 2001-01-03 Shin-Etsu Chemical Co., Ltd. Method and apparatus for manufacturing a glass optical fibre preform by the outside vapour deposition process
US7213416B2 (en) 2000-07-31 2007-05-08 Shin-Etsu Chemical Co., Ltd. Glass base material producing device
EP1325891A1 (en) * 2000-07-31 2003-07-09 Shin-Etsu Chemical Co., Ltd. Glass base material producing device and glass base material producing method
EP1325891A4 (en) * 2000-07-31 2005-07-13 Shinetsu Chemical Co Glass base material producing device and glass base material producing method
US7823418B2 (en) 2000-07-31 2010-11-02 Shin-Etsu Chemical Co., Ltd. Method of making glass base material
JP2008208025A (en) * 2000-07-31 2008-09-11 Shin Etsu Chem Co Ltd Glass base material manufacturing device and glass base material manufacturing method
JP4722337B2 (en) * 2000-08-07 2011-07-13 信越化学工業株式会社 Glass base material manufacturing apparatus and glass base material manufacturing method
JP2002121046A (en) * 2000-08-07 2002-04-23 Shin Etsu Chem Co Ltd Apparatus for grinding glass preform and method for producing glass preform
EP1190992A3 (en) * 2000-09-21 2004-04-07 Sumitomo Electric Industries, Ltd Method of producing an optical fiber preform using deposition burners
CN1318333C (en) * 2000-09-21 2007-05-30 住友电气工业株式会社 Method for production of fibre-optical prefab
AU778586B2 (en) * 2000-09-21 2004-12-09 Sumitomo Electric Industries, Ltd. Method of producing optical fibre preform
US6895783B2 (en) 2000-09-21 2005-05-24 Sumitomo Electric Industries, Ltd. Method of producing optical fiber preform
US6889529B2 (en) 2000-10-30 2005-05-10 Sumitomo Electric Industries, Ltd. Method of manufacturing optical fiber preform
EP1340724A1 (en) * 2000-11-24 2003-09-03 Sumitomo Electric Industries, Ltd. Method and device for manufacturing glass particulate sedimented body
EP1211227A3 (en) * 2000-11-29 2004-01-21 Sumitomo Electric Industries, Ltd. Method of producing a preform for optical fibres by outside vapour deposition
US6748769B2 (en) 2000-11-29 2004-06-15 Sumitomo Electric Industries, Ltd. Method of producing glass particles deposit
US6837077B2 (en) * 2001-09-20 2005-01-04 Sumitomo Electric Industries, Ltd. Method for producing soot body
EP1295854A3 (en) * 2001-09-20 2004-01-07 Sumitomo Electric Industries, Ltd. Method for producing a glass soot preform for optical fibres by vapour phase deposition
WO2003037809A1 (en) * 2001-11-01 2003-05-08 Sumitomo Electric Industries, Ltd. Method for producing optical fiber base material
EP1496021A1 (en) * 2002-04-18 2005-01-12 Sumitomo Electric Industries, Ltd. Method of manufacturing glass particulate stacked body
US7726153B2 (en) 2002-04-18 2010-06-01 Sumitomo Electric Industries, Ltd. Method of manufacturing glass particulate stacked body
EP1496021A4 (en) * 2002-04-18 2011-04-27 Sumitomo Electric Industries Method of manufacturing glass particulate stacked body
US7716951B2 (en) 2004-02-12 2010-05-18 Sumitomo Electric Industries, Ltd. Method for manufacturing article comprising deposited fine glass particles
US8072424B2 (en) 2004-04-30 2011-12-06 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
US10782792B2 (en) 2004-04-30 2020-09-22 Idhl Holdings, Inc. 3D pointing devices with orientation compensation and improved usability
US9700806B2 (en) 2005-08-22 2017-07-11 Nintendo Co., Ltd. Game operating device
US9011248B2 (en) 2005-08-22 2015-04-21 Nintendo Co., Ltd. Game operating device
US9498728B2 (en) 2005-08-22 2016-11-22 Nintendo Co., Ltd. Game operating device
US10155170B2 (en) 2005-08-22 2018-12-18 Nintendo Co., Ltd. Game operating device with holding portion detachably holding an electronic device
US10238978B2 (en) 2005-08-22 2019-03-26 Nintendo Co., Ltd. Game operating device
US10661183B2 (en) 2005-08-22 2020-05-26 Nintendo Co., Ltd. Game operating device
US9044671B2 (en) 2005-08-24 2015-06-02 Nintendo Co., Ltd. Game controller and game system
US9227138B2 (en) 2005-08-24 2016-01-05 Nintendo Co., Ltd. Game controller and game system
US11027190B2 (en) 2005-08-24 2021-06-08 Nintendo Co., Ltd. Game controller and game system
US9498709B2 (en) 2005-08-24 2016-11-22 Nintendo Co., Ltd. Game controller and game system
US8834271B2 (en) 2005-08-24 2014-09-16 Nintendo Co., Ltd. Game controller and game system
US10137365B2 (en) 2005-08-24 2018-11-27 Nintendo Co., Ltd. Game controller and game system
USRE45905E1 (en) 2005-09-15 2016-03-01 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
JP2014043360A (en) * 2012-08-24 2014-03-13 Sumitomo Electric Ind Ltd Method for manufacturing porous glass body, and porous glass body
JP2016044087A (en) * 2014-08-21 2016-04-04 住友電気工業株式会社 Method of manufacturing glass fine particle deposition body
US11780761B2 (en) 2018-06-12 2023-10-10 Fujikura Ltd. Method for producing porous glass fine particle body and method for producing optical fiber preform
KR20220009353A (en) 2020-07-15 2022-01-24 신에쯔 세끼에이 가부시키가이샤 Large hollow porous quartz glass preform and manufacturing the same

Also Published As

Publication number Publication date
JP2612949B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
JPH03228845A (en) Production of matrix for optical fiber preform
JP3131162B2 (en) Manufacturing method of optical fiber preform
US4265649A (en) Method for preparing a preform for optical waveguides
JPH03279234A (en) Production of parent material of preform of optical fiber
US6536240B1 (en) Method of making an optical fiber preform via multiple plasma depositing and sintering steps
JPH10114535A (en) Production of optical fiber base material
AU750390B2 (en) Method of making an optical fiber preform
US20030101772A1 (en) Manufacturing method for optical fiber preform
KR101655271B1 (en) Method for producing optical fiber preform having good production efficiency
JP4690979B2 (en) Optical fiber preform manufacturing method
JP7393985B2 (en) Optical fiber preform manufacturing device and optical fiber preform manufacturing method
KR100402847B1 (en) OVD apparatus for Optical fiber
US20230331619A1 (en) Apparatus for manufacturing optical fiber preform and method for manufacturing optical fiber preform
JP3212331B2 (en) Manufacturing method of preform preform for optical fiber
JP2866436B2 (en) Method for producing porous preform preform for optical fiber
JP3917022B2 (en) Method for producing porous preform for optical fiber
JPH0986948A (en) Production of porous glass base material for optical fiber
JPH0777968B2 (en) Optical fiber preform base material manufacturing method
JP2003226545A (en) Method for manufacturing optical fiber preform and device for manufacturing optical fiber preform
JP2004269285A (en) Production method for fine glass particle deposit
JP4169260B2 (en) Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends
JPH08325029A (en) Production of porous glass preform for optical fiber
JP2649450B2 (en) Method for producing porous glass base material
JPH03257037A (en) Production of porous glass preform for optical fiber
JPH02307838A (en) Production of optical fiber preform

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

EXPY Cancellation because of completion of term