JP4169260B2 - Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends - Google Patents

Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends Download PDF

Info

Publication number
JP4169260B2
JP4169260B2 JP2003027069A JP2003027069A JP4169260B2 JP 4169260 B2 JP4169260 B2 JP 4169260B2 JP 2003027069 A JP2003027069 A JP 2003027069A JP 2003027069 A JP2003027069 A JP 2003027069A JP 4169260 B2 JP4169260 B2 JP 4169260B2
Authority
JP
Japan
Prior art keywords
burner
outer diameter
manufacturing
optical fiber
glass preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003027069A
Other languages
Japanese (ja)
Other versions
JP2004238228A (en
Inventor
孝宏 垣内
正則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2003027069A priority Critical patent/JP4169260B2/en
Publication of JP2004238228A publication Critical patent/JP2004238228A/en
Application granted granted Critical
Publication of JP4169260B2 publication Critical patent/JP4169260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/54Multiple burner arrangements combined with means for heating the deposit, e.g. non-deposition burner
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Description

【0001】
【産業上の利用分野】
本発明は、光ファイバ用ガラス母材の製造方法に関し、さらに詳しくは外径変動が小さく、両端の不良部の少ないスート法によるガラス母材の製造方法に関する。
【0002】
【従来の技術】
従来から光ファイバー用ガラス母材の製造方法として、VAD法(気相軸付法)、MCVD法(内付法)、OVD法(外付法)などが挙げられ、中でもOVD法は、大型化が比較的容易である上に、マルチバーナー化により高速で光ファイバー用ガラス母材が製造できることから多用されている。前記OVD法では、回転する出発材の上にガラス微粒子(以下スートという)を堆積させるバーナーを出発材の長手方向に往復運動させスートを堆積させるが、特に生産性を向上させるためには出発材の長手方向に複数のバーナーを一列に配しそれを相対的に往復運動させるマルチバーナー化がよい。従来のマルチバーナー化では、各バーナーの移動距離がバーナーの間隔程度であり、バーナー毎のスートの付着範囲が決まっているため隣接バーナーとスート付着との境目で不均一な堆積部分が生じ外径が変動したり、焼結後に光ファイバ用ガラス母材内部に泡が発生するなどの欠点があった。そのため複数のバーナー列の幅を狭くし出発材全長に渡ってバーナー全てを振幅(以下ストロークという)させることでスート付着の均一性を保つことが図られたが、出発材の両端部のスート堆積層の数が少なく外径が小さくなり不良部が多く発生する欠点があった(特許文献1第12欄)。
【0003】
また、光ファイバ用ガラス母材の生産性を高めるため出発材のほぼ全長に渡ってバーナーを並べてスートを堆積させる場合、バーナー全てを出発材全長にわたってストロークすることが不可能であるので、大きな往復運動に小刻みな往復運動を併用する堆積方法(特許文献2)や、往路、復路共にスートを堆積させるのでなく2つの複数バーナー列を使用して、一方方向の運動時のみに堆積させる方法(特許文献3)などが提案された。
【0004】
【特許文献1】
特開平3−228845号公報第12欄
【特許文献2】
特開平3−228845号公報
【特許文献3】
特開2002−137924号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許文献2に記載の方法では、バーナーの駆動部と制御系が複雑化し大規模な装置が必要でコスト高となるばかりでなく、維持管理の手間もかかかり問題となっていた。さらに、バーナー周囲の気流がスート堆積に悪影響を及ぼすことからバーナー駆動部をそれに対応するよう設計しなければならないなどの問題もあった。
【0006】
また、上記特許文献3に記載の方法では、光ファイバ用ガラス母材の両端での堆積層数が少なく外径が小さくなって不良部分が多く発生する欠点があった。
【0007】
こうした現状に鑑み、本発明者らは鋭意研究を重ねた結果、バーナーの往復運動において、運動方向を変える時の減速から加速して一定の移動速度まで復帰する時間と往復運動での一定の移動速度との関係を特定の範囲とすることで均一なスート堆積が得られ、かつバーナーのストロークも小さくできること、その結果、外径変動が少なく、両端部の不良部も少ない光ファイバ用ガラス母材が得られることを見出して、本発明を完成したものである。すなわち、
【0008】
本発明は、外径変動が少なく、両端の不良部の少ないスート法による光ファイバ用ガラス母材の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するための本発明は、回転する出発材に対して平行に往復運動する複数のバーナー列によってガラス微粒子を堆積する光ファイバ用ガラス母材の製造方法において、前記往復運動が一定の移動速度と折り返すための減速・停止・加速からなり、前記減速の開始、停止及び加速後の一定の移動速度になる迄の復帰時間tが前記一定の移動速度vに対して、式(1)
【0010】
【式1】
t(msec)≦v(mm/min)×0.3 (1)
で表される範囲にあることを特徴とする光ファイバ用ガラス母材の製造方法に関する。
【0011】
上記製造方法で使用する出発材としては、MCVD法やVAD法で作成したコアロッド、あるいはそれらにクラッド部を堆積した石英ガラスロッド、またはセラミックスなどの耐熱性のロッドあるいはチューブが挙げられる。前記出発材は回転され、その表面に対して複数のバーナーを往復運動させてスートを堆積するが、その往復運動ではバーナーは一定の速度で移動したのち、折り返すために減速、停止、加速を行う。本発明にあっては、前記往復運動の減速の開始、停止及び加速後の一定の移動速度への復帰時間tを一定の移動速度vに対して式(3)
【0012】
【式3】
t(msec)≦v(mm/min)×0.3 (3)
で表される範囲とすることを必須とする。前記範囲とすることで均一なスートの堆積が得られるとともに、両端部に生じる不良部も少なくなる。特にバーナー間隔を50〜150mm、バーナーのストロークをバーナー間隔の2倍以下とすると、堆積層数が少なく外径が小さくなる両端部の不良部が一段と少なくなり好ましい。
【0013】
【発明の実施の形態】
本発明のOVD法の概略図を図1に示す。1は多孔質スート体、2は出発材、3は複数のバーナー列、4は火炎、5は原料ガス供給管、6、7は燃焼ガス供給管、8はバーナー間隔である。複数のバーナー列3は図2、3に示すように出発材に対して直列に並置され出発材に平行に移動する。そして、各バーナーには原料ガス5及び燃焼ガス6、7が導入され、火炎4が形成され、火炎加水分解でスートが形成され出発材の上に堆積されてスート体1が作製される。前記バーナーの往復運動は、減速の開始、停止及び加速後の一定の移動速度への復帰時間tと一定移動速度vとが式(3)の範囲にあることが重要である。特にバーナーのストロークがバーナ間隔の2倍以下で、かつバーナー間隔が50〜150mmの範囲にある往復運動がよい。図2(a)、(b)にバーナーのストロークがバーナ間隔の2倍の例を摸式的に示す。図2(a)において、バーナー▲1▼〜▲6▼はそれぞれバーナー間隔8の2倍のストローク9で移動する。この往復運動で得られた多孔質スート体を図2(b)に示す。10は定常部、11は不良部である。この図2(b)から明らかなように不良部分11は小さくなっており、かつ外径変動も少ない。しかしながら、バーナーのストローク9がバーナー間隔8の3倍であると図3(a)、(b)に示すように不良部分11が大きくなる。
【0014】
上記原料ガスとしては、四塩化珪素、有機珪素化合物などが挙げられ、また、燃焼ガスとしては、酸素ガス及び水素ガス、メタンガス、エチレンガス、プロパンガスのいずれか1又はそれらの混合物が挙げられる。
【0015】
【実施例】
以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。
【0016】
実施例1
高純度の四塩化珪素を酸水素火炎で火炎加水分解するバーナの間隔8を100mm、バーナーのストローク9を200mm、往復運動の速度を400mm/minとし、往復運動の折り返しに要する時間を80msecとしてOVD法で出発材2の石英ガラスロッド上に多孔質スートを堆積させ多孔質スート体1を得た。その外径を10mmピッチでレーザー外径測定器で測定したところ、多孔質スート体全体の平均外径に対する外径が90%以下となるスート体の両端の不良部11の長さはそれぞれ120mmであった。また、多孔質スート体の定常部平均外径に対する定常部10の最大外径は101.1%、定常部最小外径は98.97%と、定常部の外径変動は定常部の平均外径の約1%以内であった。また、表面に発生する凹凸は十分に小さく、焼結後のガラス母材の内部を目視で検査したが、堆積の不均一がなく、泡の発生もなかった。
【0017】
比較例1
実施例1において、バーナー間隔8を100mm、バーナーストローク9を200mm、往復運動の速度を400mm/min、往復運動の折り返しに要する時間80msecとした以外、実施例1と同様にして多孔質スート体1を製造し、その外径を測定したところ、多孔質スート体全体の平均外径に対する外径が90%以下となる多孔質スート体の両端の不良部11の長さは130mmと小さかったが、多孔質スート体の定常部10は、定常部平均外径に対し定常部最大外径が102.9%、定常部最小外径が97.34%と、定常部外径変動が定常部平均外径に対し、3%程度と大きくなっていた。また、焼結後のガラス母材について目視で検査したところ、ガラス母材内部に堆積の不均一なところがありガラス母材の外径が大きくなった部分に周状の泡が発生していた。
【0018】
比較例2
実施例1において、バーナー間隔8を100mm、バーナーストローク9を400mm、往復運動の速度を400mm/min、往復運動の折り返しに要する時間を80msecとした以外、実施例1と同様にして多孔質スート体1を製造し、その外径を測定したところ、多孔質スート体全体の平均外径に対する外径が90%以下となる両端の不良部11の長さは340mmと大きかった。この多孔質スート体の定常部10は、定常部平均外径に対し、定常部最大外径は101.3%、定常部最小外径は98.86%と、定常部外径変動が定常部平均外径に対し、1%程度以下となり小さくなっていた。また、焼結後のガラス母材について目視で検査したところ、光ファイバ用ガラス母材内部には泡がみれなかった。
【0019】
比較例3
実施例1において、バーナー間隔8を200mm、バーナーストローク9を300mm、往復運動の速度を400mm/min、往復運動の折り返しに要する時間を80msecとした以外、実施例1と同様にして多孔質スート体を製造し、その外径を測定したところ、多孔質スート体全体の平均外径に対する外径が90%以下となる両端の不良部は230mmであった。この多孔質スート体の定常部は、定常部平均外径に対し定常部最大外径は103.4%、定常部最小外径は97.10%と、定常部外径変動が定常部平均外径に対し、3%程度と大きくなっていた。また、焼結後のガラス母材について目視で検査したところ、光ファイバ用ガラス母材内部に周状の泡が発生していた。
【0020】
【発明の効果】
本発明は、OVD法による光ファイバ用ガラス母材の製造方法であって、端部の不良部が少なく低コストで光ファイバ用ガラス母材が製造できる上に、定常部の均一性に優れ、工業的価値の高い製造方法である。
【図面の簡単な説明】
【図1】本発明のOVD法の概略図を示す。
【図2】本発明の製造方法において、バーナーのストロークがバーナー間隔の2倍であるときの定常部と不良部の摸式図である。
【図3】バーナーのストロークがバーナー間隔の3倍であるときの定常部と不良部の摸式図である。
【符号の説明】
1:多孔質スート体
2:出発材
3:複数のバーナー列
4:火炎
5:原料ガス供給管
6、7:燃焼ガス供給管
8:バーナー間隔
9:バーナーが最大ストローク位置
10:スート体の定常部
11:スート体の不良部
▲1▼〜▲6▼:バーナー番号
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a glass base material for optical fibers, and more particularly to a method for manufacturing a glass base material by a soot method in which fluctuations in the outer diameter are small and there are few defective portions at both ends.
[0002]
[Prior art]
Conventionally, methods for producing glass preforms for optical fibers include the VAD method (vapor phase shaft attachment method), the MCVD method (internal attachment method), the OVD method (external attachment method), and the OVD method is particularly large. In addition to being relatively easy, a glass preform for optical fibers can be manufactured at a high speed by using a multi-burner, which is widely used. In the OVD method, a soot is deposited by reciprocating a burner for depositing glass fine particles (hereinafter referred to as soot) on a rotating starting material in the longitudinal direction of the starting material. In particular, in order to improve productivity, the starting material is used. It is preferable that a plurality of burners are arranged in a line in the longitudinal direction of the slab and the multi burners are reciprocated relatively. In the conventional multi-burner, the travel distance of each burner is about the interval of the burner, and the soot adhesion range for each burner is determined, so an uneven deposition portion occurs at the boundary between adjacent burners and soot adhesion. There are drawbacks such as fluctuations and bubbles generated inside the glass preform for optical fiber after sintering. For this reason, it was attempted to maintain the uniformity of soot adhesion by narrowing the width of multiple burner rows and making all the burners amplitude (hereinafter referred to as stroke) over the entire length of the starting material. There was a defect that the number of layers was small, the outer diameter was small, and many defective portions were generated (Patent Document 1, column 12).
[0003]
In addition, in order to increase the productivity of the optical fiber glass base material, when soot is deposited by arranging the burners over almost the entire length of the starting material, it is impossible to stroke all the burners over the entire length of the starting material. Deposition method that uses small reciprocating motions in combination with motion (Patent Document 2), or a method of depositing only in one direction of motion using two multiple burner rows instead of depositing soot on both the forward and return paths (patent) Document 3) has been proposed.
[0004]
[Patent Document 1]
JP-A-3-228845, column 12, [Patent Document 2]
JP-A-3-228845 [Patent Document 3]
Japanese Patent Laid-Open No. 2002-137924
[Problems to be solved by the invention]
However, in the method described in Patent Document 2, not only the burner drive unit and the control system are complicated, a large-scale apparatus is required and the cost is high, but also the maintenance work is troublesome and has become a problem. Furthermore, since the airflow around the burner adversely affects the soot deposition, there has been a problem that the burner drive unit must be designed to cope with it.
[0006]
Further, the method described in Patent Document 3 has a drawback in that the number of deposited layers at both ends of the glass preform for optical fiber is small and the outer diameter is small, resulting in many defective portions.
[0007]
In view of such a current situation, the present inventors have conducted intensive research. As a result, in the reciprocating motion of the burner, the time to accelerate from deceleration when changing the motion direction to return to a constant moving speed and the constant motion in the reciprocating motion By making the relationship with the speed within a specific range, uniform soot deposition can be obtained and the burner stroke can be reduced. As a result, the outer diameter fluctuation is small and there are few defective parts at both ends. And the present invention has been completed. That is,
[0008]
An object of this invention is to provide the manufacturing method of the glass preform for optical fibers by the soot method with little fluctuation | variation in an outer diameter, and few defective parts of both ends.
[0009]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a glass base material for an optical fiber in which glass fine particles are deposited by a plurality of burner arrays reciprocating in parallel with a rotating starting material, wherein the reciprocating motion is constant. The return time t from the moving speed and the deceleration, stop, and acceleration for returning to the constant moving speed after the start, stop, and acceleration of the deceleration with respect to the constant moving speed v is expressed by Equation (1).
[0010]
[Formula 1]
t (msec) ≦ v (mm / min) × 0.3 (1)
It is related with the manufacturing method of the glass preform | base_material for optical fibers characterized by being in the range represented by these.
[0011]
Examples of the starting material used in the above manufacturing method include a core rod prepared by the MCVD method or the VAD method, a quartz glass rod having a cladding portion deposited thereon, or a heat-resistant rod or tube such as ceramics. The starting material is rotated and the soot is deposited by reciprocating a plurality of burners with respect to the surface. In the reciprocating motion, the burner moves at a constant speed, and then decelerates, stops, and accelerates to return. . In the present invention, the return time t to the constant moving speed after the start, stop, and acceleration of the reciprocating motion is expressed by the equation (3).
[0012]
[Formula 3]
t (msec) ≦ v (mm / min) × 0.3 (3)
It is indispensable to be in the range represented by. By setting the amount within the above range, uniform soot deposition can be obtained, and defective portions generated at both ends can be reduced. In particular, when the burner interval is 50 to 150 mm and the burner stroke is twice or less the burner interval, the number of deposited layers is small and the number of defective portions at both ends where the outer diameter is small is further reduced.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
A schematic diagram of the OVD method of the present invention is shown in FIG. 1 is a porous soot body, 2 is a starting material, 3 is a plurality of burner rows, 4 is a flame, 5 is a raw material gas supply pipe, 6 and 7 are combustion gas supply pipes, and 8 is a burner interval. As shown in FIGS. 2 and 3, the plurality of burner rows 3 are juxtaposed in series with the starting material and move in parallel to the starting material. Then, the raw material gas 5 and the combustion gases 6 and 7 are introduced into each burner, a flame 4 is formed, soot is formed by flame hydrolysis, and deposited on the starting material to produce the soot body 1. In the reciprocating motion of the burner, it is important that the return time t to the constant movement speed after the start, stop and acceleration of the burner and the constant movement speed v are within the range of the expression (3). In particular, a reciprocating motion in which the stroke of the burner is not more than twice the burner interval and the burner interval is in the range of 50 to 150 mm is preferable. FIGS. 2A and 2B schematically show an example in which the burner stroke is twice the burner interval. In FIG. 2A, the burners {circle around (1)} to {circle around (6)} each move with a stroke 9 twice the burner interval 8. The porous soot body obtained by this reciprocating motion is shown in FIG. 10 is a stationary part and 11 is a defective part. As is apparent from FIG. 2B, the defective portion 11 is small, and the outer diameter fluctuation is small. However, when the burner stroke 9 is three times the burner interval 8, the defective portion 11 becomes large as shown in FIGS. 3 (a) and 3 (b).
[0014]
Examples of the source gas include silicon tetrachloride, an organosilicon compound, and examples of the combustion gas include any one of oxygen gas, hydrogen gas, methane gas, ethylene gas, and propane gas, or a mixture thereof.
[0015]
【Example】
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited thereto.
[0016]
Example 1
OVD with high-purity silicon tetrachloride flame hydrolyzing with oxyhydrogen flame, burner interval 8 is 100mm, burner stroke 9 is 200mm, reciprocating speed is 400mm / min, reciprocating time is 80msec. Porous soot was deposited on the quartz glass rod of the starting material 2 by the method to obtain a porous soot body 1. When the outer diameter was measured with a laser outer diameter measuring device at a pitch of 10 mm, the length of the defective portion 11 at both ends of the soot body with an outer diameter of 90% or less with respect to the average outer diameter of the entire porous soot body was 120 mm. there were. Further, the maximum outer diameter of the stationary part 10 is 101.1% and the minimum outer diameter of the stationary part is 98.97% with respect to the stationary part average outer diameter of the porous soot body. It was within about 1% of the diameter. Further, the irregularities generated on the surface were sufficiently small, and the inside of the sintered glass base material was visually inspected, but there was no uneven deposition and no bubbles were generated.
[0017]
Comparative Example 1
In Example 1, the porous soot body 1 was made in the same manner as in Example 1 except that the burner interval 8 was 100 mm, the burner stroke 9 was 200 mm, the reciprocating speed was 400 mm / min, and the time required for reciprocating folding was 80 msec. The outer diameter of the porous soot body was measured and the outer diameter relative to the average outer diameter of the entire porous soot body was 90% or less. The length of the defective portion 11 at both ends of the porous soot body was as small as 130 mm. The stationary part 10 of the porous soot body has a stationary part maximum outer diameter of 102.9% and a stationary part minimum outer diameter of 97.34% with respect to the stationary part average outer diameter. It was about 3% larger than the diameter. Further, when the glass base material after sintering was visually inspected, there was an uneven deposition inside the glass base material, and circumferential bubbles were generated in the portion where the outer diameter of the glass base material was increased.
[0018]
Comparative Example 2
A porous soot body in the same manner as in Example 1 except that the burner interval 8 is 100 mm, the burner stroke 9 is 400 mm, the reciprocating speed is 400 mm / min, and the time required for reciprocating folding is 80 msec. 1 was manufactured and the outer diameter thereof was measured, and the length of the defective portion 11 at both ends where the outer diameter was 90% or less with respect to the average outer diameter of the entire porous soot body was as large as 340 mm. The stationary part 10 of this porous soot body has a steady part maximum outer diameter of 101.3% and a steady part minimum outer diameter of 98.86% with respect to the steady part average outer diameter, and the steady part outer diameter fluctuation is the steady part. The average outer diameter was smaller than about 1%. Moreover, when the glass base material after sintering was visually inspected, no bubbles were found inside the glass base material for optical fibers.
[0019]
Comparative Example 3
A porous soot body in the same manner as in Example 1, except that the burner interval 8 is 200 mm, the burner stroke 9 is 300 mm, the reciprocating speed is 400 mm / min, and the time required for the reciprocating folding is 80 msec. When the outer diameter was measured, the defective portion at both ends where the outer diameter was 90% or less with respect to the average outer diameter of the entire porous soot body was 230 mm. The stationary part of this porous soot body has a steady part maximum outer diameter of 103.4% and a steady part minimum outer diameter of 97.10% with respect to the steady part average outer diameter. It was about 3% larger than the diameter. Moreover, when the glass base material after sintering was visually inspected, circumferential bubbles were generated inside the glass base material for optical fibers.
[0020]
【The invention's effect】
The present invention is a method for producing a glass preform for an optical fiber by an OVD method, which can produce a glass preform for an optical fiber at a low cost with few defective parts at the end, and is excellent in uniformity of a stationary part, This is a manufacturing method with high industrial value.
[Brief description of the drawings]
FIG. 1 shows a schematic diagram of the OVD method of the present invention.
FIG. 2 is a schematic diagram of a stationary part and a defective part when the stroke of the burner is twice the burner interval in the manufacturing method of the present invention.
FIG. 3 is a schematic diagram of a steady portion and a defective portion when the stroke of the burner is three times the burner interval.
[Explanation of symbols]
1: Porous soot body 2: Starting material 3: Multiple burner rows 4: Flame 5: Raw material gas supply pipe 6, 7: Combustion gas supply pipe 8: Burner interval 9: Burner has maximum stroke position 10: Steady body steady state Part 11: Bad part of soot body (1) to (6): Burner number

Claims (2)

回転する出発材に対して平行に往復運動する複数のバーナー列によってガラス微粒子を堆積する光ファイバ用ガラス母材の製造方法において、前記往復運動が一定の移動速度と折り返すための減速・停止・加速からなり、前記減速の開始、停止及び加速後の一定の移動速度になる迄の復帰時間tが前記一定の移動速度vに対して、式(1)
【式1】
t(msec)≦v(mm/min)×0.3 (1)
で表される範囲にあることを特徴とする光ファイバ用ガラス母材の製造方法。
In a method for manufacturing a glass preform for optical fiber in which glass particles are deposited by a plurality of burner arrays reciprocating in parallel with a rotating starting material, the reciprocating motion is decelerated, stopped, and accelerated so that the reciprocating motion returns with a constant moving speed. The return time t until the constant moving speed after starting, stopping and accelerating the deceleration is equal to the constant moving speed v.
[Formula 1]
t (msec) ≦ v (mm / min) × 0.3 (1)
The manufacturing method of the glass preform | base_material for optical fibers characterized by being in the range represented by these.
複数バーナー列のバーナー同士の間隔が50〜150mmで、複数バーナーの往復運動の振幅がバーナー間隔の2倍以下であることを特徴とする請求項1記載の光ファイバ用ガラス母材の製造方法。The method for producing a glass preform for an optical fiber according to claim 1, wherein the interval between the burners in the plurality of burner rows is 50 to 150 mm, and the amplitude of the reciprocating motion of the plurality of burners is not more than twice the burner interval.
JP2003027069A 2003-02-04 2003-02-04 Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends Expired - Lifetime JP4169260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003027069A JP4169260B2 (en) 2003-02-04 2003-02-04 Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003027069A JP4169260B2 (en) 2003-02-04 2003-02-04 Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends

Publications (2)

Publication Number Publication Date
JP2004238228A JP2004238228A (en) 2004-08-26
JP4169260B2 true JP4169260B2 (en) 2008-10-22

Family

ID=32954909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027069A Expired - Lifetime JP4169260B2 (en) 2003-02-04 2003-02-04 Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends

Country Status (1)

Country Link
JP (1) JP4169260B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4264827B2 (en) 2004-08-18 2009-05-20 ソニー株式会社 Information processing apparatus and method, and program
CN115327700B (en) * 2022-09-09 2023-06-06 中国建筑材料科学研究总院有限公司 Method for arranging optical fiber and method for manufacturing optical fiber component

Also Published As

Publication number Publication date
JP2004238228A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP2612949B2 (en) Manufacturing method of optical fiber preform base material
JPH039047B2 (en)
JP2622182B2 (en) Manufacturing method of optical fiber preform base material
US8230701B2 (en) Method for forming fused silica glass using multiple burners
JP6700307B2 (en) Improved particle deposition system and method
JP4169260B2 (en) Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends
JP4614782B2 (en) Method for producing quartz glass preform for optical fiber
JP4690979B2 (en) Optical fiber preform manufacturing method
CN1286751C (en) Method and apparatus for manufacturing optical fiber preforms using the outside vapor deposition process
KR100630117B1 (en) Optical vapor deposition apparatus for optical preform
JP7393985B2 (en) Optical fiber preform manufacturing device and optical fiber preform manufacturing method
CN1138713C (en) Method and apparatus for manufacturing optical fiber base material
WO2022158421A1 (en) Device for manufacturing optical fiber preform and method for manufacturing optical fiber preform
US20230331618A1 (en) Method and facility for producing optical fiber base material
US20060185399A1 (en) Apparatus for fabricating optical fiber preform through external vapor deposition process
JP3917022B2 (en) Method for producing porous preform for optical fiber
KR20030037172A (en) OVD apparatus for Optical fiber
JP4140839B2 (en) Optical fiber preform manufacturing method
JPH08325029A (en) Production of porous glass preform for optical fiber
JPH10330129A (en) Production of porous glass body for optical fiber
CN117902824A (en) Controlling refractive index profile in optical fiber preform fabrication
JPH11189428A (en) Production of optical fiber preform
JP2005162541A (en) Method of manufacturing glass preform
JP2005194133A (en) Method for producing glass preform
JPH11116263A (en) Production of optical fiber preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4169260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term