JP2004238228A - Method for producing optical fiber glass preform with reduced outside diameter fluctuation and few defective ends by soot method - Google Patents

Method for producing optical fiber glass preform with reduced outside diameter fluctuation and few defective ends by soot method Download PDF

Info

Publication number
JP2004238228A
JP2004238228A JP2003027069A JP2003027069A JP2004238228A JP 2004238228 A JP2004238228 A JP 2004238228A JP 2003027069 A JP2003027069 A JP 2003027069A JP 2003027069 A JP2003027069 A JP 2003027069A JP 2004238228 A JP2004238228 A JP 2004238228A
Authority
JP
Japan
Prior art keywords
burner
optical fiber
soot
outer diameter
glass preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003027069A
Other languages
Japanese (ja)
Other versions
JP4169260B2 (en
Inventor
Takahiro Kakiuchi
孝宏 垣内
Masanori Suzuki
正則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2003027069A priority Critical patent/JP4169260B2/en
Publication of JP2004238228A publication Critical patent/JP2004238228A/en
Application granted granted Critical
Publication of JP4169260B2 publication Critical patent/JP4169260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/54Multiple burner arrangements combined with means for heating the deposit, e.g. non-deposition burner
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an optical fiber glass preform with reduced outside diameter fluctuation and few defective parts by a soot method. <P>SOLUTION: The method for producing an optical fiber glass preform is characterized in that, in a method for producing an optical glass fiber preform comprising depositing glass soot on a rotating starting material by means of a row of a plurality of burners which reciprocates in parallel with the starting material, the reciprocating movement comprises a constant movement speed and deceleration/stop/acceleration for turning back movement, and the time t necessary to restore the constant movement speed after the start of the deceleration, stop, and acceleration and the constant movement speed v satisfy the relationship (1): t (msec)≤v (mm/min)×0.3. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、光ファイバ用ガラス母材の製造方法に関し、さらに詳しくは外径変動が小さく、両端の不良部の少ないスート法によるガラス母材の製造方法に関する。
【0002】
【従来の技術】
従来から光ファイバー用ガラス母材の製造方法として、VAD法(気相軸付法)、MCVD法(内付法)、OVD法(外付法)などが挙げられ、中でもOVD法は、大型化が比較的容易である上に、マルチバーナー化により高速で光ファイバー用ガラス母材が製造できることから多用されている。前記OVD法では、回転する出発材の上にガラス微粒子(以下スートという)を堆積させるバーナーを出発材の長手方向に往復運動させスートを堆積させるが、特に生産性を向上させるためには出発材の長手方向に複数のバーナーを一列に配しそれを相対的に往復運動させるマルチバーナー化がよい。従来のマルチバーナー化では、各バーナーの移動距離がバーナーの間隔程度であり、バーナー毎のスートの付着範囲が決まっているため隣接バーナーとスート付着との境目で不均一な堆積部分が生じ外径が変動したり、焼結後に光ファイバ用ガラス母材内部に泡が発生するなどの欠点があった。そのため複数のバーナー列の幅を狭くし出発材全長に渡ってバーナー全てを振幅(以下ストロークという)させることでスート付着の均一性を保つことが図られたが、出発材の両端部のスート堆積層の数が少なく外径が小さくなり不良部が多く発生する欠点があった(特許文献1第12欄)。
【0003】
また、光ファイバ用ガラス母材の生産性を高めるため出発材のほぼ全長に渡ってバーナーを並べてスートを堆積させる場合、バーナー全てを出発材全長にわたってストロークすることが不可能であるので、大きな往復運動に小刻みな往復運動を併用する堆積方法(特許文献2)や、往路、復路共にスートを堆積させるのでなく2つの複数バーナー列を使用して、一方方向の運動時のみに堆積させる方法(特許文献3)などが提案された。
【0004】
【特許文献1】
特開平3−228845号公報第12欄
【特許文献2】
特開平3−228845号公報
【特許文献3】
特開2002−137924号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許文献2に記載の方法では、バーナーの駆動部と制御系が複雑化し大規模な装置が必要でコスト高となるばかりでなく、維持管理の手間もかかかり問題となっていた。さらに、バーナー周囲の気流がスート堆積に悪影響を及ぼすことからバーナー駆動部をそれに対応するよう設計しなければならないなどの問題もあった。
【0006】
また、上記特許文献3に記載の方法では、光ファイバ用ガラス母材の両端での堆積層数が少なく外径が小さくなって不良部分が多く発生する欠点があった。
【0007】
こうした現状に鑑み、本発明者らは鋭意研究を重ねた結果、バーナーの往復運動において、運動方向を変える時の減速から加速して一定の移動速度まで復帰する時間と往復運動での一定の移動速度との関係を特定の範囲とすることで均一なスート堆積が得られ、かつバーナーのストロークも小さくできること、その結果、外径変動が少なく、両端部の不良部も少ない光ファイバ用ガラス母材が得られることを見出して、本発明を完成したものである。すなわち、
【0008】
本発明は、外径変動が少なく、両端の不良部の少ないスート法による光ファイバ用ガラス母材の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するための本発明は、回転する出発材に対して平行に往復運動する複数のバーナー列によってガラス微粒子を堆積する光ファイバ用ガラス母材の製造方法において、前記往復運動が一定の移動速度と折り返すための減速・停止・加速からなり、前記減速の開始、停止及び加速後の一定の移動速度になる迄の復帰時間tが前記一定の移動速度vに対して、式(1)
【0010】
【式1】
t(msec)≦v(mm/min)×0.3 (1)
で表される範囲にあることを特徴とする光ファイバ用ガラス母材の製造方法に関する。
【0011】
上記製造方法で使用する出発材としては、MCVD法やVAD法で作成したコアロッド、あるいはそれらにクラッド部を堆積した石英ガラスロッド、またはセラミックスなどの耐熱性のロッドあるいはチューブが挙げられる。前記出発材は回転され、その表面に対して複数のバーナーを往復運動させてスートを堆積するが、その往復運動ではバーナーは一定の速度で移動したのち、折り返すために減速、停止、加速を行う。本発明にあっては、前記往復運動の減速の開始、停止及び加速後の一定の移動速度への復帰時間tを一定の移動速度vに対して式(3)
【0012】
【式3】
t(msec)≦v(mm/min)×0.3 (3)
で表される範囲とすることを必須とする。前記範囲とすることで均一なスートの堆積が得られるとともに、両端部に生じる不良部も少なくなる。特にバーナー間隔を50〜150mm、バーナーのストロークをバーナー間隔の2倍以下とすると、堆積層数が少なく外径が小さくなる両端部の不良部が一段と少なくなり好ましい。
【0013】
【発明の実施の形態】
本発明のOVD法の概略図を図1に示す。1は多孔質スート体、2は出発材、3は複数のバーナー列、4は火炎、5は原料ガス供給管、6、7は燃焼ガス供給管、8はバーナー間隔である。複数のバーナー列3は図2、3に示すように出発材に対して直列に並置され出発材に平行に移動する。そして、各バーナーには原料ガス5及び燃焼ガス6、7が導入され、火炎4が形成され、火炎加水分解でスートが形成され出発材の上に堆積されてスート体1が作製される。前記バーナーの往復運動は、減速の開始、停止及び加速後の一定の移動速度への復帰時間tと一定移動速度vとが式(3)の範囲にあることが重要である。特にバーナーのストロークがバーナ間隔の2倍以下で、かつバーナー間隔が50〜150mmの範囲にある往復運動がよい。図2(a)、(b)にバーナーのストロークがバーナ間隔の2倍の例を摸式的に示す。図2(a)において、バーナー▲1▼〜▲6▼はそれぞれバーナー間隔8の2倍のストローク9で移動する。この往復運動で得られた多孔質スート体を図2(b)に示す。10は定常部、11は不良部である。この図2(b)から明らかなように不良部分11は小さくなっており、かつ外径変動も少ない。しかしながら、バーナーのストローク9がバーナー間隔8の3倍であると図3(a)、(b)に示すように不良部分11が大きくなる。
【0014】
上記原料ガスとしては、四塩化珪素、有機珪素化合物などが挙げられ、また、燃焼ガスとしては、酸素ガス及び水素ガス、メタンガス、エチレンガス、プロパンガスのいずれか1又はそれらの混合物が挙げられる。
【0015】
【実施例】
以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。
【0016】
実施例1
高純度の四塩化珪素を酸水素火炎で火炎加水分解するバーナの間隔8を100mm、バーナーのストローク9を200mm、往復運動の速度を400mm/minとし、往復運動の折り返しに要する時間を80msecとしてOVD法で出発材2の石英ガラスロッド上に多孔質スートを堆積させ多孔質スート体1を得た。その外径を10mmピッチでレーザー外径測定器で測定したところ、多孔質スート体全体の平均外径に対する外径が90%以下となるスート体の両端の不良部11の長さはそれぞれ120mmであった。また、多孔質スート体の定常部平均外径に対する定常部10の最大外径は101.1%、定常部最小外径は98.97%と、定常部の外径変動は定常部の平均外径の約1%以内であった。また、表面に発生する凹凸は十分に小さく、焼結後のガラス母材の内部を目視で検査したが、堆積の不均一がなく、泡の発生もなかった。
【0017】
比較例1
実施例1において、バーナー間隔8を100mm、バーナーストローク9を200mm、往復運動の速度を400mm/min、往復運動の折り返しに要する時間80msecとした以外、実施例1と同様にして多孔質スート体1を製造し、その外径を測定したところ、多孔質スート体全体の平均外径に対する外径が90%以下となる多孔質スート体の両端の不良部11の長さは130mmと小さかったが、多孔質スート体の定常部10は、定常部平均外径に対し定常部最大外径が102.9%、定常部最小外径が97.34%と、定常部外径変動が定常部平均外径に対し、3%程度と大きくなっていた。また、焼結後のガラス母材について目視で検査したところ、ガラス母材内部に堆積の不均一なところがありガラス母材の外径が大きくなった部分に周状の泡が発生していた。
【0018】
比較例2
実施例1において、バーナー間隔8を100mm、バーナーストローク9を400mm、往復運動の速度を400mm/min、往復運動の折り返しに要する時間を80msecとした以外、実施例1と同様にして多孔質スート体1を製造し、その外径を測定したところ、多孔質スート体全体の平均外径に対する外径が90%以下となる両端の不良部11の長さは340mmと大きかった。この多孔質スート体の定常部10は、定常部平均外径に対し、定常部最大外径は101.3%、定常部最小外径は98.86%と、定常部外径変動が定常部平均外径に対し、1%程度以下となり小さくなっていた。また、焼結後のガラス母材について目視で検査したところ、光ファイバ用ガラス母材内部には泡がみれなかった。
【0019】
比較例3
実施例1において、バーナー間隔8を200mm、バーナーストローク9を300mm、往復運動の速度を400mm/min、往復運動の折り返しに要する時間を80msecとした以外、実施例1と同様にして多孔質スート体を製造し、その外径を測定したところ、多孔質スート体全体の平均外径に対する外径が90%以下となる両端の不良部は230mmであった。この多孔質スート体の定常部は、定常部平均外径に対し定常部最大外径は103.4%、定常部最小外径は97.10%と、定常部外径変動が定常部平均外径に対し、3%程度と大きくなっていた。また、焼結後のガラス母材について目視で検査したところ、光ファイバ用ガラス母材内部に周状の泡が発生していた。
【0020】
【発明の効果】
本発明は、OVD法による光ファイバ用ガラス母材の製造方法であって、端部の不良部が少なく低コストで光ファイバ用ガラス母材が製造できる上に、定常部の均一性に優れ、工業的価値の高い製造方法である。
【図面の簡単な説明】
【図1】本発明のOVD法の概略図を示す。
【図2】本発明の製造方法において、バーナーのストロークがバーナー間隔の2倍であるときの定常部と不良部の摸式図である。
【図3】バーナーのストロークがバーナー間隔の3倍であるときの定常部と不良部の摸式図である。
【符号の説明】
1:多孔質スート体
2:出発材
3:複数のバーナー列
4:火炎
5:原料ガス供給管
6、7:燃焼ガス供給管
8:バーナー間隔
9:バーナーが最大ストローク位置
10:スート体の定常部
11:スート体の不良部
▲1▼〜▲6▼:バーナー番号
[0001]
[Industrial applications]
The present invention relates to a method for manufacturing a glass base material for optical fibers, and more particularly, to a method for manufacturing a glass base material by a soot method in which variation in outer diameter is small and defective portions at both ends are small.
[0002]
[Prior art]
Conventionally, methods for producing a glass base material for optical fibers include a VAD method (gas phase shaft attaching method), an MCVD method (internal attaching method), an OVD method (external attaching method), and the like. In addition to being relatively easy, a multi-burner method can be used to produce a glass base material for optical fibers at high speed, so that it is widely used. In the OVD method, a burner for depositing glass particles (hereinafter referred to as soot) on a rotating starting material is reciprocated in the longitudinal direction of the starting material to deposit soot. In particular, in order to improve productivity, the starting material is deposited. It is preferable to arrange a plurality of burners in a line in the longitudinal direction, and to make a relative reciprocating movement of the burners. In the conventional multi-burner method, the moving distance of each burner is about the distance between the burners, and the adhesion range of the soot for each burner is determined. Of the optical fiber glass base material after sintering. For this reason, it was attempted to maintain uniform soot deposition by reducing the width of the plurality of burner rows and making the entire burner amplitude (hereinafter referred to as stroke) over the entire length of the starting material. There was a disadvantage that the number of layers was small, the outer diameter was small, and many defective portions were generated (Patent Document 1, column 12).
[0003]
Further, when soot is deposited by arranging burners over almost the entire length of the starting material in order to increase the productivity of the glass base material for optical fibers, it is impossible to stroke all the burners over the entire length of the starting material, so that a large reciprocation is required. A deposition method that uses a small reciprocating motion in combination with a motion (Patent Document 2), and a method in which soot is not deposited on both the forward and return paths, but is deposited only during one-way motion using two or more burner rows (Patent Document 2). Reference 3) has been proposed.
[0004]
[Patent Document 1]
JP-A-3-228845, column 12, [Patent Document 2]
JP-A-3-228845 [Patent Document 3]
JP-A-2002-137924 [0005]
[Problems to be solved by the invention]
However, the method described in Patent Literature 2 has a problem that not only the driving section and the control system of the burner are complicated, a large-scale device is required and the cost is increased, but also maintenance and management are troublesome. Further, there is another problem that the burner drive unit must be designed to cope with the soot accumulation due to the airflow around the burner.
[0006]
Further, the method described in Patent Document 3 has a disadvantage that the number of deposited layers at both ends of the glass base material for an optical fiber is small, the outer diameter is reduced, and many defective portions are generated.
[0007]
In view of this situation, the present inventors have conducted intensive studies and found that in the reciprocating motion of the burner, the time required to accelerate from deceleration when changing the direction of motion to returning to a constant moving speed and a constant movement in the reciprocating motion. By setting the relationship with the speed to a specific range, uniform soot deposition can be obtained and the stroke of the burner can be reduced, and as a result, the outer diameter variation is small and the defective portion at both ends is small, and the glass base material for optical fiber is small. Have been obtained, and the present invention has been completed. That is,
[0008]
An object of the present invention is to provide a method of manufacturing a glass preform for an optical fiber by a soot method with a small variation in outer diameter and a small number of defective portions at both ends.
[0009]
[Means for Solving the Problems]
The present invention for achieving the above object provides a method of manufacturing a glass preform for an optical fiber in which glass fine particles are deposited by a plurality of burner rows reciprocating in parallel to a rotating starting material, wherein the reciprocating movement is constant. The deceleration / stop / acceleration for turning back the moving speed and the return time t until the deceleration starts, stops, and accelerates to a certain moving speed after the acceleration are given by the following equation (1).
[0010]
(Equation 1)
t (msec) ≦ v (mm / min) × 0.3 (1)
The present invention relates to a method for producing a glass preform for an optical fiber, characterized by being in the range represented by
[0011]
Examples of the starting material used in the above manufacturing method include a core rod prepared by the MCVD method or the VAD method, a quartz glass rod having a clad portion deposited thereon, or a heat-resistant rod or tube such as a ceramic. The starting material is rotated, and soot is deposited by reciprocating a plurality of burners against the surface.In the reciprocating motion, the burner moves at a constant speed, and then decelerates, stops, and accelerates in order to turn back. . In the present invention, the return time t to the constant moving speed after the start, stop, and acceleration of the deceleration of the reciprocating motion is expressed by the following formula (3) for a constant moving speed v
[0012]
[Equation 3]
t (msec) ≦ v (mm / min) × 0.3 (3)
Must be within the range represented by. By setting the content in the above range, uniform soot deposition can be obtained, and defective portions generated at both ends can be reduced. Particularly, when the burner interval is 50 to 150 mm and the stroke of the burner is twice or less the burner interval, the number of defective portions at both ends where the number of deposited layers is small and the outer diameter is small is further reduced, which is preferable.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a schematic diagram of the OVD method of the present invention. 1 is a porous soot body, 2 is a starting material, 3 is a plurality of burner rows, 4 is a flame, 5 is a raw material gas supply pipe, 6 and 7 are combustion gas supply pipes, and 8 is a burner interval. The plurality of burner rows 3 are juxtaposed in series with the starting material and move parallel to the starting material as shown in FIGS. Then, the raw material gas 5 and the combustion gases 6, 7 are introduced into each burner, a flame 4 is formed, soot is formed by flame hydrolysis, and the soot is deposited on the starting material to produce the soot body 1. In the reciprocating motion of the burner, it is important that the return time t to a constant moving speed after the start, stop, and acceleration of deceleration and the constant moving speed v are within the range of Expression (3). In particular, a reciprocating motion in which the burner stroke is twice or less the burner interval and the burner interval is in the range of 50 to 150 mm is preferable. FIGS. 2A and 2B schematically show an example in which the burner stroke is twice the burner interval. In FIG. 2A, each of the burners (1) to (6) moves with a stroke 9 twice the burner interval 8. FIG. 2B shows the porous soot body obtained by this reciprocating motion. Reference numeral 10 denotes a stationary part, and 11 denotes a defective part. As is clear from FIG. 2B, the defective portion 11 is small, and the variation in the outer diameter is small. However, if the burner stroke 9 is three times the burner interval 8, the defective portion 11 becomes large as shown in FIGS. 3 (a) and 3 (b).
[0014]
Examples of the raw material gas include silicon tetrachloride and an organic silicon compound. Examples of the combustion gas include oxygen gas, hydrogen gas, methane gas, ethylene gas, and propane gas, or a mixture thereof.
[0015]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[0016]
Example 1
OVD with a burner interval 8 of 100 mm, a burner stroke 9 of 200 mm, a reciprocating speed of 400 mm / min, and a time required for reversing the reciprocating motion of 80 msec, for flame-hydrolyzing high-purity silicon tetrachloride with an oxyhydrogen flame. Porous soot was deposited on a quartz glass rod as a starting material 2 by a method to obtain a porous soot body 1. When the outer diameter was measured with a laser outer diameter measuring device at a pitch of 10 mm, the length of the defective portions 11 at both ends of the soot body whose outer diameter was 90% or less of the average outer diameter of the entire porous soot body was 120 mm, respectively. there were. In addition, the maximum outer diameter of the stationary portion 10 is 101.1% and the minimum outer diameter of the stationary portion is 98.97% of the average outer diameter of the stationary portion of the porous soot body. It was within about 1% of the diameter. Further, the irregularities generated on the surface were sufficiently small, and the inside of the glass base material after sintering was visually inspected. As a result, there was no uneven deposition and no generation of bubbles.
[0017]
Comparative Example 1
In the same manner as in Example 1, except that the burner interval 8 was 100 mm, the burner stroke 9 was 200 mm, the reciprocating motion speed was 400 mm / min, and the time required for the reciprocating motion to return was 80 msec. When the outer diameter of the porous soot body was measured and the outer diameter thereof was 90% or less with respect to the average outer diameter of the entire porous soot body, the length of the defective portions 11 at both ends of the porous soot body was as small as 130 mm. The stationary part 10 of the porous soot body has a stationary part maximum outer diameter of 102.9% and a stationary part minimum outer diameter of 97.34% with respect to the stationary part average outer diameter. It was as large as about 3% of the diameter. Further, when the glass base material after sintering was visually inspected, it was found that there was uneven deposition inside the glass base material, and peripheral bubbles were generated at the portion where the outer diameter of the glass base material became large.
[0018]
Comparative Example 2
A porous soot body was produced in the same manner as in Example 1 except that the burner interval 8 was 100 mm, the burner stroke 9 was 400 mm, the reciprocating speed was 400 mm / min, and the time required for the reciprocating motion was 80 msec. 1 was manufactured and its outer diameter was measured. As a result, the length of the defective portion 11 at both ends where the outer diameter was 90% or less of the average outer diameter of the entire porous soot body was as large as 340 mm. The stationary part 10 of the porous soot body has a stationary part maximum outer diameter of 101.3% and a stationary part minimum outer diameter of 98.86% with respect to the stationary part average outer diameter. It was smaller than about 1% of the average outer diameter. When the glass base material after sintering was visually inspected, no bubbles were found inside the glass base material for optical fibers.
[0019]
Comparative Example 3
A porous soot body was produced in the same manner as in Example 1 except that the burner interval 8 was 200 mm, the burner stroke 9 was 300 mm, the reciprocating speed was 400 mm / min, and the time required for the reciprocating motion was 80 msec. Was manufactured and its outer diameter was measured. As a result, the defective portion at both ends where the outer diameter was 90% or less of the average outer diameter of the entire porous soot body was 230 mm. The steady portion of the porous soot body has a maximum constant portion outer diameter of 103.4% and a constant portion minimum outer diameter of 97.10% with respect to the constant portion average outer diameter. It was as large as about 3% of the diameter. Further, when the glass base material after sintering was visually inspected, circumferential bubbles were generated inside the glass base material for optical fiber.
[0020]
【The invention's effect】
The present invention is a method for producing a glass preform for optical fiber by the OVD method, in which a glass preform for optical fiber can be produced at a low cost with few defective portions at the ends, and further, the uniformity of the steady portion is excellent, This is a production method with high industrial value.
[Brief description of the drawings]
FIG. 1 shows a schematic diagram of the OVD method of the present invention.
FIG. 2 is a schematic view of a steady portion and a defective portion when the burner stroke is twice the burner interval in the manufacturing method of the present invention.
FIG. 3 is a schematic diagram of a steady portion and a defective portion when the burner stroke is three times the burner interval.
[Explanation of symbols]
1: Porous soot body 2: Starting material 3: Plural burner rows 4: Flame 5: Source gas supply pipes 6, 7: Combustion gas supply pipe 8: Burner interval 9: Burner is at maximum stroke position 10: Steady state of the soot body Part 11: defective part of soot body [1] to [6]: burner number

Claims (2)

回転する出発材に対して平行に往復運動する複数のバーナー列によってガラス微粒子を堆積する光ファイバ用ガラス母材の製造方法において、前記往復運動が一定の移動速度と折り返すための減速・停止・加速からなり、前記減速の開始、停止及び加速後の一定の移動速度になる迄の復帰時間tが前記一定の移動速度vに対して、式(1)
【式1】
Figure 2004238228
で表される範囲にあることを特徴とする光ファイバ用ガラス母材の製造方法。
In a method for manufacturing a glass preform for an optical fiber, in which glass fine particles are deposited by a plurality of burner rows reciprocating in parallel with a rotating starting material, deceleration, stop, and acceleration for the reciprocation to return at a constant moving speed. The return time t required to reach a constant moving speed after the start, stop, and acceleration of the deceleration is equal to the constant moving speed v by the formula (1).
(Equation 1)
Figure 2004238228
A method for producing a glass preform for an optical fiber, characterized by being in the range represented by:
複数バーナー列のバーナー同士の間隔が50〜150mmで、複数バーナーの往復運動の振幅がバーナー間隔の2倍以下であることを特徴とする請求項1記載の光ファイバ用ガラス母材の製造方法。2. The method according to claim 1, wherein the interval between the burners in the plurality of burners is 50 to 150 mm, and the amplitude of the reciprocating motion of the plurality of burners is not more than twice the interval between the burners.
JP2003027069A 2003-02-04 2003-02-04 Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends Expired - Lifetime JP4169260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003027069A JP4169260B2 (en) 2003-02-04 2003-02-04 Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003027069A JP4169260B2 (en) 2003-02-04 2003-02-04 Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends

Publications (2)

Publication Number Publication Date
JP2004238228A true JP2004238228A (en) 2004-08-26
JP4169260B2 JP4169260B2 (en) 2008-10-22

Family

ID=32954909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027069A Expired - Lifetime JP4169260B2 (en) 2003-02-04 2003-02-04 Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends

Country Status (1)

Country Link
JP (1) JP4169260B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1635564A2 (en) 2004-08-18 2006-03-15 Sony Corporation Information processing apparatus, information processing method, and program
CN115327700A (en) * 2022-09-09 2022-11-11 中国建筑材料科学研究总院有限公司 Arrangement method of optical fiber filaments and preparation method of optical fiber component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1635564A2 (en) 2004-08-18 2006-03-15 Sony Corporation Information processing apparatus, information processing method, and program
CN115327700A (en) * 2022-09-09 2022-11-11 中国建筑材料科学研究总院有限公司 Arrangement method of optical fiber filaments and preparation method of optical fiber component

Also Published As

Publication number Publication date
JP4169260B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP2612949B2 (en) Manufacturing method of optical fiber preform base material
JP2622182B2 (en) Manufacturing method of optical fiber preform base material
JP3512027B2 (en) Method for producing porous base material
JP4614782B2 (en) Method for producing quartz glass preform for optical fiber
JP4169260B2 (en) Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends
JP3744350B2 (en) Porous glass base material synthesis burner and method for producing porous glass base material
CN1286751C (en) Method and apparatus for manufacturing optical fiber preforms using the outside vapor deposition process
JP7393985B2 (en) Optical fiber preform manufacturing device and optical fiber preform manufacturing method
KR100630117B1 (en) Optical vapor deposition apparatus for optical preform
JP2000313625A (en) Apparatus for producing porous glass preform
WO2019239705A1 (en) Method for producing porous glass microparticles and method for producing optical fiber preform
JP2007210829A (en) Method for producing glass microparticle deposit and method for producing glass body
JP5485003B2 (en) Optical fiber preform manufacturing method
US20230331618A1 (en) Method and facility for producing optical fiber base material
JP3917022B2 (en) Method for producing porous preform for optical fiber
JP4049365B2 (en) Method and apparatus for producing porous glass preform for optical fiber
JP4140839B2 (en) Optical fiber preform manufacturing method
WO2022158421A1 (en) Device for manufacturing optical fiber preform and method for manufacturing optical fiber preform
JP4398114B2 (en) Manufacturing method of glass base material for optical fiber with less unevenness
JP2001048550A (en) Apparatus and method for producing porous glass preform
JP2005162541A (en) Method of manufacturing glass preform
JP2006199526A (en) Method of manufacturing optical fiber preform
JPH10330129A (en) Production of porous glass body for optical fiber
JPH08325029A (en) Production of porous glass preform for optical fiber
JP2005194133A (en) Method for producing glass preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4169260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term