JPH03228826A - Production of lithium-containing vanadium oxide - Google Patents

Production of lithium-containing vanadium oxide

Info

Publication number
JPH03228826A
JPH03228826A JP2021135A JP2113590A JPH03228826A JP H03228826 A JPH03228826 A JP H03228826A JP 2021135 A JP2021135 A JP 2021135A JP 2113590 A JP2113590 A JP 2113590A JP H03228826 A JPH03228826 A JP H03228826A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
vanadium oxide
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021135A
Other languages
Japanese (ja)
Inventor
Tadaaki Miyazaki
忠昭 宮崎
Hiroaki Wada
宏明 和田
Yoshitomo Masuda
善友 増田
Takao Ogino
隆夫 荻野
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2021135A priority Critical patent/JPH03228826A/en
Publication of JPH03228826A publication Critical patent/JPH03228826A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain the powdery lithium-contg. vanadium oxide appropriate as the positive electrode active material for a galvanic cell and which need not be crushed by mixing vanadium pentoxide and a specified lithium compd. and subjecting the mixture to a solid-phase reaction at a specified calcination temp. CONSTITUTION:(A) Vanadium pentoxide and (B) a lithium compd. selected from Li2O, Li2O2, LiOH, LiNO3, LiI, LiCH3CO2 and Li2C2O4 or their hydrated compds. are mixed. The mixture is then calcined at <500 deg.C to allow the A component to react with the B component in a solid phase, and the lithium- contg. vanadium oxide expressed by the formula (0<=x<=0.6 and -0.5<=y<=0.3) is obtained in the form of powder. Consequently, when the product is applied to the positive electrode active material for a galvanic cell, crushing and classification can be omitted, the production process is simplified, and the positive electrode is efficiently produced.

Description

【発明の詳細な説明】 童栗上勿■朋分互 本発明は、L 11+xVa Os+y (0≦x≦0
.6゜−0,5≦y≦0.3)で示されるリチウム含有
バナジウム酸化物の製造方法に関し、更に詳述すると、
高電位、高エネルギー密度で非水電解質二次電池の正極
活物質として好適に使用されるリチウム含有バナジウム
酸化物の製造方法に関する。
[Detailed description of the invention] The present invention is based on L 11+xVa Os+y (0≦x≦0
.. Regarding the method for producing a lithium-containing vanadium oxide represented by 6°-0.5≦y≦0.3, in more detail,
The present invention relates to a method for producing a lithium-containing vanadium oxide that has a high potential and a high energy density and is suitably used as a positive electrode active material for non-aqueous electrolyte secondary batteries.

来の   び  が  しよ゛とする 従来から、非水電解質二次電池の正極活物質としてv2
O、、 v、o□、、 v、o、、非晶質V 20 s
 ’ P 20 s −L I 0.3 V20s r
 L i V3011などのバナジウム酸化物が提案さ
れている。中でもLi1+xv308(x=0.05又
はx=0.2)で示されるリチ2− ラム含有バナジウム酸化物は高エネルギー密度の正極活
物質となることが報告されている(G。
V2 has been used as a positive electrode active material for non-aqueous electrolyte secondary batteries since it is expected to expand in the future.
O,, v, o□,, v, o,, amorphous V 20 s
' P 20 s -L I 0.3 V20s r
Vanadium oxides such as L i V3011 have been proposed. Among them, it has been reported that a lithium-2-lamum-containing vanadium oxide represented by Li1+xv308 (x=0.05 or x=0.2) can be used as a positive electrode active material with high energy density (G).

Pistoia et al、 J 、 Electr
ochem、 Soc、 Vol。
Pistoia et al., J., Electr.
ochem, Soc, Vol.

133、Nα12.P2454〜2458.1986)
133, Nα12. P2454-2458.1986)
.

しかし、ここで示されているリチウム含有バナジウム酸
化物の合成法は、Li2Co、とV2O5とを650〜
680℃で溶融させて合成する溶融合成法であるが、こ
のような方法で得られたものは、冷却すると塊状となっ
てしまう。このために、電池の正極活物質として使用す
る場合、粉砕工程と分級工程が必要となり、製造工程が
煩雑になるという欠点がある。また、500〜560℃
の温度で合成する方法も提案されている(D、 G W
iehhamtJ 、  Inorg、 Nuch、 
Chew、 Vol、27 、1939〜1946、1
965)が、この温度領域で反応を完結させると、生成
物は粉体が融着した溶岩状のかたまりとなり、やはり粉
砕及び分級工程が必要となる。
However, the synthesis method of lithium-containing vanadium oxide shown here uses Li2Co and V2O5 at 650~
This is a melt synthesis method in which the material is synthesized by melting it at 680° C., but the material obtained by this method becomes lumpy when cooled. For this reason, when used as a cathode active material for a battery, a pulverization process and a classification process are required, making the manufacturing process complicated. Also, 500-560℃
A method of synthesis at a temperature of (D, GW) has also been proposed.
iehhamtJ, Inorg, Nuch,
Chew, Vol, 27, 1939-1946, 1
965), when the reaction is completed in this temperature range, the product becomes a lava-like mass of fused powder, which also requires pulverization and classification steps.

このため、非水電解質二次電池の正極活物質としてのリ
チウム含有バナジウム酸化物を合成する3− 場合、電極の作製工程上粉末状で該酸化物を得ることが
好ましく、このような合成法の開発が望まれる。
For this reason, when synthesizing a lithium-containing vanadium oxide as a positive electrode active material for a non-aqueous electrolyte secondary battery, it is preferable to obtain the oxide in powder form for the electrode manufacturing process, and such a synthesis method Development is desired.

本発明は、上記事情に鑑みなされたもので、L i i
+xVa Oa+y (0≦x≦0.6.−0.5≦y
≦0.3)で示されるリチウム含有バナジウム酸化物を
粉末状態のままで合成することが可能なリチウム含有バ
ナジウム酸化物の製造方法を提供することを目的とする
The present invention was made in view of the above circumstances, and L i i
+xVa Oa+y (0≦x≦0.6.-0.5≦y
An object of the present invention is to provide a method for producing a lithium-containing vanadium oxide, which is capable of synthesizing the lithium-containing vanadium oxide represented by ≦0.3) in a powder state.

を  するための   び 本発明は、上記目的を達成するため、五酸化バナジウム
とリチウム化合物とを混合、焼成してL l 1+xV
20a+y (0≦x≦0.6.−0.5≦y≦0.3
)で示されるリチウム含有バナジウム酸化物を製造する
方法において、上記リチウム化合物としてLi2O,L
i、02.LiOH,LiNo、。
In order to achieve the above-mentioned object, the present invention mixes vanadium pentoxide and a lithium compound and burns them to form L l 1+xV.
20a+y (0≦x≦0.6.-0.5≦y≦0.3
), in which the lithium compound is Li2O, L
i, 02. LiOH, LiNo.

Li I、LiCH,Co□、Li2C2O4から選ば
れたリチウム化合物又はこれらの含水化合物を用い、5
00℃未満の焼成温度で上記五酸化バナジウムとリチウ
ム化合物とを固相反応させることを4− 特徴とするリチウム含有バナジウム酸化物の製造方法、
及び五酸化バナジウムとリチウム化合物とを混合、焼成
してL 1 x+xVa Os+y (0≦x≦0.6
゜−〇、5≦y≦0.3)で示されるリチウム含有バナ
ジウム酸化物を製造する方法において、上記リチウム化
合物としてLi2Co3を用い、500〜600℃の温
度で予備焼成した後再混合し、これを500℃未満の温
度で本焼成して上記五酸化バナジウムとLi2Co3と
を固相反応させることを特徴とするリチウム含有バナジ
ウム酸化物の製造方法を提供する。
Using a lithium compound selected from LiI, LiCH, Co□, Li2C2O4 or a water-containing compound thereof, 5
4- A method for producing a lithium-containing vanadium oxide, characterized in that the vanadium pentoxide and the lithium compound are subjected to a solid phase reaction at a firing temperature of less than 00°C;
Then, vanadium pentoxide and a lithium compound are mixed and fired to obtain L 1 x+xVa Os+y (0≦x≦0.6
゜-〇, 5≦y≦0.3) In the method for producing a lithium-containing vanadium oxide, Li2Co3 is used as the lithium compound, pre-calcined at a temperature of 500 to 600°C, and then remixed. Provided is a method for producing a lithium-containing vanadium oxide, characterized in that the above-mentioned vanadium pentoxide and Li2Co3 are subjected to a solid phase reaction by main firing at a temperature of less than 500°C.

即ち、本発明者は、L i 、、、V2O−+y(0≦
x≦0.6.−0.5≦y≦0.3)を五酸化バナジウ
ム(V 20 S )とリチウム化合物とを混合、焼成
して合成する方法において、反応生成物を粉末状で得る
方法について種々検討を行なった結果、リチウム化合物
として酸化リチウム(Li20又はLi2O□)、水酸
化リチウム(L i OH)、硝酸リチウ゛ム(LiN
O3)−ヨウ化リチウム(LiI)、酢酸リチウム(L
 iCH3Coz )、5− シュウ酸リチウム(LxzC204)等のリチウム化合
物又はこれらの含水化合物を用いることにより、500
℃未満、好ましくは200〜500℃の温度で良好に固
相反応さることができ、L l 1+XV30e+y 
(0≦x≦0.6.−0.5≦y≦0.3)で示される
生成物を粉末状態で得ることができることを見い出した
。またリチウム化合物として炭酸リチウム(Li2GO
3)を用いることも可能であり、この場合は500〜6
00℃の温度で予備焼成を行ない、これを再混合した後
、500℃未満の温度で本焼成することにより、生成物
を粉末状態で得ることが可能であることを知見し、本発
明を完成したものである。
That is, the present inventor has determined that L i , , V2O−+y (0≦
x≦0.6. -0.5≦y≦0.3) by mixing and firing vanadium pentoxide (V 20 S ) and a lithium compound, and various studies were conducted on methods to obtain the reaction product in powder form. As a result, lithium compounds such as lithium oxide (Li20 or Li2O□), lithium hydroxide (LiOH), and lithium nitrate (LiN
O3)-lithium iodide (LiI), lithium acetate (L
500
The solid phase reaction can be carried out well at a temperature below ℃, preferably 200 to 500℃, and L l 1+XV30e+y
It has been found that a product having the formula (0≦x≦0.6.-0.5≦y≦0.3) can be obtained in powder form. Also, as a lithium compound, lithium carbonate (Li2GO
3) can also be used, in this case 500 to 6
They found that it is possible to obtain a product in powder form by pre-calcining at a temperature of 00°C, remixing this, and then main-calcining at a temperature of less than 500°C, and completed the present invention. This is what I did.

以下、本発明について更に詳しく説明する。The present invention will be explained in more detail below.

本発明のリチウム含有バナジウム酸化物の製造方法は、
上述したように、V、O,とLi2O,Li2O2゜L
iOH,LiNO3,Li I、LiCH,CO2゜L
i2C2O4から選ばれたリチウム化合物もしくはこれ
らの含水化合物又はLi2CO3とを混合し、500℃
未満の温度で両者を固相反応させるもの6− であり、Li2Co3を用いる場合は500℃未満の温
度で焼成する前に500〜600℃の温度で予備焼成し
、再混合を行なうものである。
The method for producing lithium-containing vanadium oxide of the present invention includes:
As mentioned above, V, O, and Li2O, Li2O2゜L
iOH, LiNO3, Li I, LiCH, CO2゜L
A lithium compound selected from i2C2O4 or a hydrous compound thereof or Li2CO3 is mixed and heated at 500°C.
When Li2Co3 is used, it is pre-fired at a temperature of 500 to 600°C and remixed before firing at a temperature of less than 500°C.

ここで、上記■20sとリチウム化合物との混合比は、
特に限定されないが、V:Li比で3:0.8〜3:1
.4、特に3:0.9〜3:1.2とすることが好まし
い。
Here, the mixing ratio of the above ■20s and the lithium compound is:
Although not particularly limited, the V:Li ratio is 3:0.8 to 3:1
.. 4, particularly preferably 3:0.9 to 3:1.2.

また、焼成温度(反応温度)は、500℃未満であり、
好ましくは200〜500℃である。焼成の下限温度は
、特に限定されないが、用いたリチウム化合物の融点又
は分解温度以上とすることが普通である。処理時間(反
応時間)も制限されないが、生成物のX線回折(Cu 
Ka線)による2θ=20.4°付近のピーク強度が2
0=23.4゜付近のピーク強度の2倍以下となるまで
混合、焼成を繰り返すことが好ましく、これにより、更
に高性能な電池用正極活物質とすることができる。
Further, the firing temperature (reaction temperature) is less than 500°C,
Preferably it is 200-500°C. The lower limit temperature for calcination is not particularly limited, but is usually higher than the melting point or decomposition temperature of the lithium compound used. The treatment time (reaction time) is also not limited, but X-ray diffraction of the product (Cu
The peak intensity near 2θ=20.4° due to Ka line) is 2
It is preferable to repeat the mixing and firing until the peak intensity is less than twice the peak intensity around 0=23.4°, thereby making it possible to obtain a positive electrode active material for batteries with even higher performance.

なお、リチウム化合物としてLi2Co3を用いた場合
の予備焼成の温度は、上述したように500〜600℃
であるが、この予備焼成によりV2O。
Note that when Li2Co3 is used as the lithium compound, the pre-calcination temperature is 500 to 600°C as described above.
However, this preliminary firing produces V2O.

7− とLi2Co、との間で部分的な反応とLi2CO3の
分解が生じる程度で粉体粒子間の融着が起きない程度に
温度及び処理時間を設定する。具体的には450〜50
0℃で6〜48時間処理することが好ましい。その他の
焼成条件は予備焼成も本焼成も通常の条件とすることが
できるが、通常焼成時の雰囲気は、空気中又は酸素雰囲
気とされる。
7- The temperature and treatment time are set to such an extent that partial reaction between Li2Co and Li2CO3 occurs, but fusion between powder particles does not occur. Specifically 450-50
Preferably, the treatment is carried out at 0°C for 6 to 48 hours. Other firing conditions can be set to normal conditions for both preliminary firing and main firing, but the atmosphere during firing is usually air or oxygen atmosphere.

なお、本発明の製造方法で得られるリチウム含有バナジ
ウム酸化物は、上述したように。
Note that the lithium-containing vanadium oxide obtained by the production method of the present invention is as described above.

L l l+XV30s+yで示されるものであり、式
中のXの値は0〜0.6であるが、この値は合成時又は
電池正極として用いたとき、3.5v以上に充電された
状態の値であり、このXの値は充放電時にはOから5程
度まで変化する。また、yの値はバナジウム(V)の酸
化状態により−0,5〜0.3の範囲で変化するもので
ある。なお、このXe’jのより好ましい範囲は、Xは
O−0,1゜yは−0,3〜0である。
It is expressed as L l l + XV30s + y, and the value of The value of this X changes from 0 to about 5 during charging and discharging. Moreover, the value of y changes in the range of -0.5 to 0.3 depending on the oxidation state of vanadium (V). In addition, the more preferable range of this Xe'j is that X is O-0.1°y is -0.3 to 0.

本発明の製造方法により製造されたリチウム含有バナジ
ウム酸化物は非水電解質二次電池用正極8− 活物質として好適に使用されるものであるが、このリチ
ウム含有バナジウム酸化物を用いて、これを活物質とす
る電池正極を作成する場合、これらの粉末に対し、アセ
チレンブラック等の導電剤やフッ素樹脂粉末等の結着剤
などを添加混合し、有機溶剤で混練りし、ロールで圧延
し、乾燥する等の方法により正極を作成することができ
る。なお、この場合正極材料の粒径は必ずしも制限され
ないが、平均粒径が3μ以下のものを用いるとより高性
能の正極を作ることができ、また導電剤の混合量は活物
質100重量部に対し3〜25重量部、特に5〜15重
量部とすることができ、本発明にあってはその活物質の
導電性が良好であるため、導電剤使用量を少なくするこ
とができる。また、結着剤の配合量は上記正極材料10
0重量部に対し2〜25重量部とすることが好ましい。
The lithium-containing vanadium oxide produced by the production method of the present invention is suitably used as a positive electrode active material for non-aqueous electrolyte secondary batteries. When creating a battery positive electrode as an active material, these powders are mixed with a conductive agent such as acetylene black, a binder such as fluororesin powder, etc., kneaded with an organic solvent, rolled with a roll, A positive electrode can be created by a method such as drying. In this case, the particle size of the positive electrode material is not necessarily limited, but a positive electrode with higher performance can be produced by using one with an average particle size of 3μ or less, and the amount of the conductive agent mixed is 100 parts by weight of the active material. On the other hand, it can be set at 3 to 25 parts by weight, especially 5 to 15 parts by weight, and in the present invention, since the conductivity of the active material is good, the amount of the conductive agent used can be reduced. In addition, the amount of the binder is 10% of the above positive electrode material.
The amount is preferably 2 to 25 parts by weight relative to 0 parts by weight.

上記正極と組合せる負極活物質としては、リチウム金属
又はリチウムを吸蔵、放出可能なリチウム合金が用いら
れる。この場合、リチウム合金としては、リチウムを含
むIla、IIb、l1la、IVa。
As the negative electrode active material to be combined with the positive electrode, lithium metal or a lithium alloy capable of intercalating and deintercalating lithium is used. In this case, the lithium alloys include Ila, IIb, l1la, and IVa containing lithium.

9− Va族の金属又はその2種以上の合金が使用可能である
が、特にリチウムを含むAQ、In、Sn。
9- Va group metals or alloys of two or more thereof can be used, especially AQ, In, Sn containing lithium.

Pb、Bi、Cd、Zn又はこれらの2種以上の合金が
好適である。
Pb, Bi, Cd, Zn, or an alloy of two or more of these is suitable.

また、電解質としては、前記正極活物質及び負極活物質
に対して化学的に安定であり、かつリチウムイオンが前
記正極活物賛成いは前記負極活物質と電気化学反応をす
るための移動を行ない得る非水物質であればいずれのも
のでも使用することができ、具体的にはLiP Fr、
、 LiA s F、。
In addition, as an electrolyte, it is chemically stable with respect to the positive electrode active material and the negative electrode active material, and allows lithium ions to move for an electrochemical reaction with the positive electrode active material or the negative electrode active material. Any non-aqueous substance that can be obtained can be used, specifically LiP Fr,
, LiA s F,.

LiS b F、、 LiB F4. LiCQO,、
LiI 、 LiBr。
LiS b F,, LiB F4. LiCQO,,
LiI, LiBr.

LiCJ、LiA12CQ4.LiHF2.Li5CN
LiCJ, LiA12CQ4. LiHF2. Li5CN
.

Li503CF、等が挙げられる。これらのうちでは特
にLiPF6.LiAsF、、LiCQO4が好適であ
る。
Li503CF, etc. are mentioned. Among these, especially LiPF6. LiAsF, LiCQO4 are preferred.

なお、上記電解質は通常溶媒により溶解された状態で使
用され、この場合溶媒は特に限定されないが、比較的極
性の大きい溶媒が好適に用いられる。具体的には、プロ
ピレンカーボネート、エチレンカーボネート、ブチレン
カーボネート等の環10− 状カーボネート類、ジエチルカーボネート、ジブチルカ
ーボネートなどの非環状カーボネート類、テトラヒドロ
フラン、2−メチルテトラヒドロフラン、ジオキソラン
、ジオキサン、ジメトキシエタン、ジエチレングリコー
ルジメチルエーテル等のグライム類、γ−ブチロラクト
ン等のラクトン類、トリエチルフォスフェート等のリン
酸エステル類、ホウ酸トリエチル等のホウ酸エステル類
、スルホラン、ジメチルスルホキシド等の硫黄化合物、
アセトニトリル等のニトリル類、ジメチルホルムアミド
、ジメチルアセトアミド等のアミド類、硫酸ジメチル、
ニトロメタン、ニトロベンゼン、ジクロロエタンなどの
1種又は2種以上の混合物を挙げることができる。これ
らの内では、特にエチレンカーボネート、プロピレンカ
ーボネートなどの環状カーボネート類、ジエチルカーボ
ネートなどの非環状カーボネート類から選ばれた1種又
は2種以上の混合溶媒が好適である。また、これらの溶
媒に3〜10重量%の芳香族炭化水素(ベンゼン、トル
エン等)を添加することができる。
Note that the electrolyte is usually used in a state dissolved in a solvent, and in this case, the solvent is not particularly limited, but a relatively highly polar solvent is preferably used. Specifically, cyclic 10-carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate, acyclic carbonates such as diethyl carbonate and dibutyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, dioxane, dimethoxyethane, and diethylene glycol dimethyl ether. lactones such as γ-butyrolactone, phosphoric acid esters such as triethyl phosphate, boric acid esters such as triethyl borate, sulfolane, sulfur compounds such as dimethyl sulfoxide,
Nitriles such as acetonitrile, amides such as dimethylformamide and dimethylacetamide, dimethyl sulfate,
Examples include one or a mixture of two or more of nitromethane, nitrobenzene, dichloroethane, and the like. Among these, particularly preferred are one or more mixed solvents selected from cyclic carbonates such as ethylene carbonate and propylene carbonate, and acyclic carbonates such as diethyl carbonate. Moreover, 3 to 10% by weight of aromatic hydrocarbons (benzene, toluene, etc.) can be added to these solvents.

11Rυ弧果 本発明の製造方法によれば、Li1+xV3O8+7(
0≦x≦0.6.−0.5≦y≦0.3)で示されるリ
チウム含有バナジウム酸化物を粉末状に合成することが
でき、このため生成物を電池用正極活物質に適用する場
合、粉砕工程及び分級工程を省略することができ、製造
工程が簡略化されると共に、ロスも少なく効率的に正極
を製造することができる。しかも、該リチウム含有バナ
ジウム酸化物を正極活物質に用いることにより、平均電
位が高く、高率放電時の容量低下が少ない高性能な非水
電解質電池が得られるものである。
According to the production method of the present invention, Li1+xV3O8+7(
0≦x≦0.6. -0.5≦y≦0.3) can be synthesized in powder form, and therefore, when the product is applied to a positive electrode active material for batteries, a pulverization process and a classification process are required. This can be omitted, simplifying the manufacturing process, and making it possible to efficiently manufacture the positive electrode with less loss. Furthermore, by using the lithium-containing vanadium oxide as a positive electrode active material, a high-performance non-aqueous electrolyte battery with a high average potential and little capacity loss during high-rate discharge can be obtained.

以下、実施例及び比較例を示し、本発明を具体的に説明
するが、本発明は下記の実施例に制限されるものではな
い。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below.

〔実施例1〕 3モルのV2O,と2モ/Lz(7)LiOH−I20
をよく混合した後、空気中で450℃で6時間加熱し、
さらによく混合した後、再度450℃で12時間加熱し
て反応を完結させ、粉末状のLi−V酸化物を得た。こ
の粉末のX線回折(CuKα)パターンは750℃で溶
融合成したL i V30a(又はr、 i V3 o
7.s )に一致した。また、この粉末の23.4°の
ピーク強度に対する20.4゜のピーク強度比は(I2
゜、、h/ I 2.、、)は1.2であった。
[Example 1] 3 moles of V2O, and 2 moles/Lz(7)LiOH-I20
After mixing thoroughly, heat at 450℃ in air for 6 hours,
After further mixing well, the mixture was heated again at 450° C. for 12 hours to complete the reaction, and a powdered Li-V oxide was obtained. The X-ray diffraction (CuKα) pattern of this powder is that of Li V30a (or r, i V3 o) melt-synthesized at 750°C.
7. s). Also, the ratio of the peak intensity at 20.4° to the peak intensity at 23.4° for this powder is (I2
゜,,h/I 2. ,,) was 1.2.

[実施例2〕 3モルのV2O5と2.1モルのLiN0.をよく混合
した後、空気中で400℃×6時間加熱し、再混合する
プロセスを3回繰り返して反応を完結させ、粉末状のL
i−V酸化物を得た。この粉末のX線回折(CuKα)
パターンは実施例1と同じであった。またこの粉末のI
2゜、4/I23.4の値は0.8であった。
[Example 2] 3 moles of V2O5 and 2.1 moles of LiN0. After mixing thoroughly, the process of heating at 400℃ x 6 hours in air and remixing was repeated three times to complete the reaction, and powdered L
An i-V oxide was obtained. X-ray diffraction of this powder (CuKα)
The pattern was the same as in Example 1. Also, this powder I
The value of 2°, 4/I23.4 was 0.8.

〔実施例3〕 3モルのV2O5と1モルのLi2CO3をよく混合し
た後、空気中で550℃、6時間予備加熱した。ここで
得られた物質はまだ粉末状であった。
[Example 3] After thoroughly mixing 3 moles of V2O5 and 1 mole of Li2CO3, they were preheated in air at 550°C for 6 hours. The material obtained here was still in powder form.

これをよく再混合して、490℃で12時間再加熱して
反応を完結させ、粉末状のLi−V酸3− 化物を得た。得られた粉末のX線回折パターン(Cu 
Kα)は実施例1と同じであった。またこの粉末のI2
゜、4/I23.4の値は1.9であった(図面参照)
This was thoroughly remixed and reheated at 490°C for 12 hours to complete the reaction, yielding a powdered Li-V acid 3-oxide. The X-ray diffraction pattern of the obtained powder (Cu
Kα) was the same as in Example 1. Also, I2 of this powder
°, the value of 4/I23.4 was 1.9 (see drawing)
.

〔比較例1〕 3モル(7)V2O,と1モルのLi2CO3をよく混
合し、空気中で750℃、6時間加熱反応させた。
[Comparative Example 1] 3 moles (7) V2O and 1 mole of Li2CO3 were thoroughly mixed and reacted by heating at 750° C. for 6 hours in air.

融液を銅ブロツク中に流し込み冷却して、塊状物を得た
。これを粉砕機で3時間粉砕した後、200メツシユの
ふるいにかけたところ、得られた粉体は元の塊状物の7
0重量%程度であった。更に200メツシユふるいを通
らなかったものを2時間再粉砕して、再度200メツシ
ユのふるいにかけたところ、前回のものと合せて90重
量%程度の回収率であった。この粉末のX線回折パター
ンは実施例1と同じであった。またI20.4/ I2
3.4の値は0.4であった。
The melt was poured into a copper block and cooled to obtain a lump. After crushing this in a crusher for 3 hours, it was passed through a 200-mesh sieve, and the resulting powder was 70% of the original lumps.
It was about 0% by weight. Furthermore, those that did not pass through the 200-mesh sieve were re-pulverized for 2 hours and passed through the 200-mesh sieve again, resulting in a recovery rate of about 90% by weight, including the previous one. The X-ray diffraction pattern of this powder was the same as in Example 1. Also I20.4/I2
The value of 3.4 was 0.4.

〔比較例2〕 3モルのV2O5と1モルのLi2CO3をよく混合し
、空気中で550’C,6時間加熱した。ここ14− ではまだ粉末状の物質であった。更にこれを再混合し、
550℃で12時間加熱反応させたところ、溶岩状の塊
状物が得られた。これを比較例1と同様に粉砕・分級を
行なったところ、1回目収率は80%程度であった。こ
の粉末のX線回折パターンは実施例1と同じであった。
[Comparative Example 2] 3 moles of V2O5 and 1 mole of Li2CO3 were thoroughly mixed and heated in air at 550'C for 6 hours. Here at 14- it was still a powdery substance. Then remix this and
When the mixture was heated and reacted at 550° C. for 12 hours, lava-like lumps were obtained. When this was crushed and classified in the same manner as in Comparative Example 1, the first yield was about 80%. The X-ray diffraction pattern of this powder was the same as in Example 1.

またI211.4/I21.4の値は0.7であった。Moreover, the value of I211.4/I21.4 was 0.7.

上記実施例1〜3及び比較例1,2で得たLi−■酸化
物を正極活物質として常法に従い、電池用正極を作製し
た。これら正極にリチウム金属からなる負極及びプロピ
レンカーボネートとエチレンカーボネートとの混合溶媒
(容量比1:1)にLiPFGを1モル/Qで溶解した
電解液を組み合せて非水電解質二次電池を作製した。
A positive electrode for a battery was prepared according to a conventional method using the Li-■ oxide obtained in Examples 1 to 3 and Comparative Examples 1 and 2 as a positive electrode active material. These positive electrodes were combined with a negative electrode made of lithium metal and an electrolytic solution in which LiPFG was dissolved at 1 mol/Q in a mixed solvent of propylene carbonate and ethylene carbonate (volume ratio 1:1) to prepare a non-aqueous electrolyte secondary battery.

これら電池の電池性能を比較したところ、放電容量はど
れも同程度であったが、上記実施例1〜3の正極活物質
を用いた電池は比較例1,2の活物質を用いたものに比
べ平均電位が高く、高率放電時の容量低下が少ないこと
が確認された。
When the battery performance of these batteries was compared, the discharge capacities were all about the same, but the batteries using the positive electrode active materials of Examples 1 to 3 above were superior to those using the active materials of Comparative Examples 1 and 2. It was confirmed that the average potential was higher and the capacity drop during high rate discharge was smaller.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の製造方法により合成したリチウム含有
バナジウム酸化物のX線回折チャートを示すグラフであ
る。
The drawing is a graph showing an X-ray diffraction chart of a lithium-containing vanadium oxide synthesized by the production method of the present invention.

Claims (1)

【特許請求の範囲】 1、五酸化バナジウムとリチウム化合物とを混合、焼成
してLi_1_+_xV_3O_8_+_y(0≦x≦
0.6、−0.5≦y≦0.3)で示されるリチウム含
有バナジウム酸化物を製造する方法において、上記リチ
ウム化合物としてLi_2O、Li_2O_2、LiO
H、LiNO_3、LiI、LiCH_3CO_2、L
i_2C_2O_4から選ばれたリチウム化合物又はこ
れらの含水化合物を用い、500℃未満の焼成温度で上
記五酸化バナジウムとリチウム化合物とを固相反応させ
ることを特徴とするリチウム含有バナジウム酸化物の製
造方法。 2、五酸化バナジウムとリチウム化合物とを混合、焼成
してLi_1_+_xV_3O_8_+_y(0≦x≦
0.6、−0.5≦y≦0.3)で示されるリチウム含
有バナジウム酸化物を製造する方法において、上記リチ
ウム化合物としてLi_2CO_3を用い、500〜6
00℃の温度で予備焼成した後再混合し、これを600
℃未満の温度で本焼成して上記五酸化バナジウムとLi
_2Co_3とを固相反応させることを特徴とするリチ
ウム含有バナジウム酸化物の製造方法。
[Claims] 1. Vanadium pentoxide and a lithium compound are mixed and fired to form Li_1_+_xV_3O_8_+_y (0≦x≦
0.6, -0.5≦y≦0.3), in which the lithium compounds include Li_2O, Li_2O_2, LiO
H, LiNO_3, LiI, LiCH_3CO_2, L
A method for producing a lithium-containing vanadium oxide, which comprises using a lithium compound selected from i_2C_2O_4 or a hydrous compound thereof, and subjecting the vanadium pentoxide and the lithium compound to a solid phase reaction at a firing temperature of less than 500°C. 2. Mix vanadium pentoxide and lithium compound and sinter to form Li_1_+_xV_3O_8_+_y (0≦x≦
0.6, -0.5≦y≦0.3), using Li_2CO_3 as the lithium compound,
After pre-calcining at a temperature of 00°C, it is remixed and heated to 600°C.
The above vanadium pentoxide and Li are main fired at a temperature below ℃.
A method for producing a lithium-containing vanadium oxide, which comprises performing a solid phase reaction with _2Co_3.
JP2021135A 1990-01-30 1990-01-30 Production of lithium-containing vanadium oxide Pending JPH03228826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021135A JPH03228826A (en) 1990-01-30 1990-01-30 Production of lithium-containing vanadium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021135A JPH03228826A (en) 1990-01-30 1990-01-30 Production of lithium-containing vanadium oxide

Publications (1)

Publication Number Publication Date
JPH03228826A true JPH03228826A (en) 1991-10-09

Family

ID=12046454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021135A Pending JPH03228826A (en) 1990-01-30 1990-01-30 Production of lithium-containing vanadium oxide

Country Status (1)

Country Link
JP (1) JPH03228826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136476A (en) * 1999-01-29 2000-10-24 Hydro-Quebec Corporation Methods for making lithium vanadium oxide electrode materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136476A (en) * 1999-01-29 2000-10-24 Hydro-Quebec Corporation Methods for making lithium vanadium oxide electrode materials

Similar Documents

Publication Publication Date Title
JP4253142B2 (en) Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP4642959B2 (en) Method for producing lithium titanate
JP2003160328A (en) Lithium-containing silicon oxide powder and method for production thereof
KR20060127877A (en) High voltage laminar cathode materials for lithium rechargeable batteries, and processes for making the same
KR20010033168A (en) Lithium manganate, method of producing the same, and lithium cell produced by the method
JPH04270125A (en) Manganese oxide compound
JP3372204B2 (en) Method for producing Li-Mn composite oxide
JP2001213623A (en) Process of producing lithium titanate, lithium ion battery and electrode thereof
JPH08130011A (en) Nonaqueous secondary battery
JP5733571B2 (en) Method for producing lithium-containing composite oxide, positive electrode active material, and secondary battery
US6699456B1 (en) Method for producing lithium metal oxides
JP2001048545A (en) Production of lithium-manganese multiple oxide and secondary battery using the same
JP2004522674A (en) Synthesis of transition metal lithium sulfide
JPH09245787A (en) Positive electrode active material for lithium secondary battery
JP2002042809A (en) Non-aqueous secondary battery
JP2001508391A (en) Preparation method of lithium manganese oxide
EP2146931A2 (en) Method for the production of lithium-rich metal oxides
JP2001256975A (en) Lithium nickel compound oxide for lithium secondary battery positive electrode active material, manufacturing method thereof, and lithium secondary battery using the same
JP2001185148A (en) Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor
JP4769998B2 (en) Method for producing lithium manganese composite oxide
JP2001185148A5 (en)
JP2000182616A (en) Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP2001064020A (en) Production of lithium manganate
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it