JPH03227083A - Passivation method and device of excimer laser - Google Patents

Passivation method and device of excimer laser

Info

Publication number
JPH03227083A
JPH03227083A JP2278390A JP2278390A JPH03227083A JP H03227083 A JPH03227083 A JP H03227083A JP 2278390 A JP2278390 A JP 2278390A JP 2278390 A JP2278390 A JP 2278390A JP H03227083 A JPH03227083 A JP H03227083A
Authority
JP
Japan
Prior art keywords
discharge
gas
laser
passivation
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2278390A
Other languages
Japanese (ja)
Other versions
JPH0716061B2 (en
Inventor
Yutaka Ido
豊 井戸
Hideki Okamoto
英樹 岡本
Yoshifumi Yoshioka
吉岡 善文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2278390A priority Critical patent/JPH0716061B2/en
Publication of JPH03227083A publication Critical patent/JPH03227083A/en
Publication of JPH0716061B2 publication Critical patent/JPH0716061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To protect electrodes against damage by a method wherein a mixed gas of halogen and diluent gas is introduced into a discharge chamber, and a discharge is made to start. CONSTITUTION:A laser chamber 1 is exhausted by a vacuum pump 12, and when the chamber 1 is exhausted enough, a proper amount of helium is introduced into the laser chamber 1, and a voltage is applied to electrode 2 to make a glow discharge start. Then, when a proper amount of fluorine gas 7 is added, a discharge color turns into dark red from pink. As a passivation advances, the fluorine gas is consumed by reaction with the structure and impurity, so that a discharge color recovers its initial helium discharge color. Then, fluorine gas 7 is added again to start a discharge of red color. When this procedure is repeated for a few times, a passivation process is completed and a red color discharge stays unchanged. When the passivation process is finished, a discharge is tentatively stopped, the discharge chamber 1 is vacuated again through the vacuum pump 12, a mixed gas composed of a halogen gas 7, a rare gas 6, and a diluent gas 5 is introduced into the discharge chamber 1, a voltage is applied to the electrodes 2 to start a laser oscillation. By this setup, a stable discharge can be easily obtained and an electrode can be protected against damage during passivation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、エキシマレーザ装置、特に希ガスハライド・
エキシマレーザ装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an excimer laser device, particularly a rare gas halide
Regarding excimer laser equipment.

[従来技術] 希ガスハライド・エキシマレーザ装置は、レーザガスと
してクリプトン(Kr)、キセノン(Xe)、アルゴン
(Ar)などの希ガスと、フッ素(F2)、塩化水素(
Hcl)などのハロゲンと、ヘリウム(He)やネオン
(Ne)を用いた希釈ガスとの混合ガスを用いるもので
あり、放電等で励起することにより強力な紫外レーザ光
を得ることができる。
[Prior art] A rare gas halide excimer laser device uses rare gases such as krypton (Kr), xenon (Xe), and argon (Ar) as laser gases, as well as fluorine (F2) and hydrogen chloride (
It uses a mixed gas of a halogen such as HCl) and a diluent gas such as helium (He) or neon (Ne), and can produce powerful ultraviolet laser light by exciting it with an electric discharge or the like.

エキシマレーザ用ガスでは、成分として上記のようにフ
ッ素等の活性ガスを用いるため、このフッ素ガスがレー
ザー共振器を構成するチャンバー電極等の構造物もしく
は構造物の表面に付着した水分等の不純物と反応する。
Excimer laser gas uses an active gas such as fluorine as a component as described above, so this fluorine gas may cause impurities such as moisture attached to the structures such as the chamber electrodes that make up the laser resonator or the surfaces of the structures. react.

この反応によりハロゲンガスが減少するとともに、発生
した不純物ガスによって光が吸収されるので、レーザ出
力は徐々に減少する。このため、通常初めて発振させる
場合や、ガス種の交換、例えばフッ素から塩化水素に交
換した場合、あるいは大気解放した場合には、不純物を
除去するために、パッシベーションと呼ばれるガス交換
が行われてきた。
Due to this reaction, the halogen gas is reduced, and the generated impurity gas absorbs light, so that the laser output gradually decreases. For this reason, when oscillating for the first time, when exchanging gas types, such as exchanging fluorine with hydrogen chloride, or when releasing to the atmosphere, a gas exchange called passivation is usually performed to remove impurities. .

[発明が解決しようとする課題] 従来、このパッシベーションは、レーザチャンパーツ真
空引き、レーザガスの導入、発振といった手順を何回も
繰り返すことにより、チャンバー等の構造体のうちレー
ザガスと接触する部分の表面に付着した不純物質を除去
している。
[Problems to be Solved by the Invention] Conventionally, this passivation is performed by repeating the steps of evacuation of the laser chamber part, introduction of laser gas, and oscillation many times to reduce the surface of the part of the structure such as the chamber that comes into contact with the laser gas. Removes impurities attached to the

しかし、レーザガスを導入して放電させると、放電状態
が悪化しやすく、正常なグロー放電からアーク放電に移
行しやすい。これはレーザガスが不純物ガスの影響を受
けやすく、アーク放電に移行してしまうものと考えられ
る。アーク放電が生じると、レーザの電極が損傷を受け
、パッシベーション中に電極がかなりのダメージを受け
てしまうという問題があった。
However, when a laser gas is introduced to cause a discharge, the discharge condition tends to deteriorate, and a normal glow discharge tends to change to an arc discharge. This is considered to be because the laser gas is susceptible to the influence of impurity gases, leading to a transition to arc discharge. When arc discharge occurs, the electrodes of the laser are damaged, and the electrodes suffer considerable damage during passivation.

本発明は、上記のような従来技術の欠点を解消するため
に創案されたものであり、安定なグロー放電が得られや
すく、電極を損傷させることなくパッシベーションを行
うことができるパッシベーション方法およびその方法を
自動化することができる装置を提供することを目的とす
る。
The present invention was devised in order to eliminate the drawbacks of the prior art as described above, and provides a passivation method that can easily obtain stable glow discharge and can perform passivation without damaging electrodes, and the method thereof. The purpose is to provide a device that can automate the process.

[課題を解決するための手段] 上記目的を達成するために、本発明におけるエキシマレ
ーザのパッシベーション方法は、ノーロゲンと希釈ガス
のみの混合ガスを導入して放電させることによりパッシ
ベーションを行う。また、このパッシベーション方法を
自動化するためのエキシマレーザ装置は、レーザチャン
バーからの放電光がバンドパスフィルターを介して入射
する光検出器と、この光検出器の出力が入力される放電
色監視回路と、この放電色監視回路により制御されるハ
ロゲンガス導入用バルブとを有する。
[Means for Solving the Problems] In order to achieve the above object, an excimer laser passivation method according to the present invention performs passivation by introducing and discharging a mixed gas of only a norogen and a diluent gas. The excimer laser device for automating this passivation method also includes a photodetector into which the discharge light from the laser chamber enters through a bandpass filter, and a discharge color monitoring circuit into which the output of this photodetector is input. , and a halogen gas introduction valve controlled by this discharge color monitoring circuit.

[作用] 上記のように構成されたエキシマレーザ装置は、レーザ
チャンバーを十分に排気した後、希釈ガスを適量注入し
、電極に電圧を印加してグロー放電させる。次に、ハロ
ゲンガスを注入し、放電色がハロゲンガスの放電色にな
り、光検出器の信号レベルが設定値に達したところで、
放電色監視回路によりハロゲンガス注入用バルブの弁を
閉じる。
[Operation] In the excimer laser device configured as described above, after the laser chamber is sufficiently evacuated, an appropriate amount of diluent gas is injected, and a voltage is applied to the electrodes to cause glow discharge. Next, halogen gas is injected, and when the discharge color becomes that of halogen gas and the signal level of the photodetector reaches the set value,
The discharge color monitoring circuit closes the halogen gas injection valve.

この後、パッシベーションが進行してハロゲンガスが消
費され、もとの希釈ガスの放電色に変化すると、監視回
路により再び注入用バルブに信号を加えて弁を開ける。
Thereafter, when the passivation progresses and the halogen gas is consumed and the discharge color changes to the original dilution gas color, the monitoring circuit applies a signal to the injection valve again to open the valve.

このような動作を繰り返し、光検出器の信号レベルが設
定値以上である状態が所定時間以上継続すると、監視回
路がパッシベーションの完了を検出する。
When such an operation is repeated and the signal level of the photodetector continues to be equal to or higher than the set value for a predetermined period of time or more, the monitoring circuit detects the completion of passivation.

[実施例] 実施例について図面を参照して説明すると、第1図にお
いて、1はレーザチャンバー、2はレーザガス励起用電
極、3はレーザ光反射ミラー、4はレーザ光取出し窓、
5はヘリウムまたはネオンの希釈ガス、6はクリプトン
、キセノン、アルゴン等の希ガス、7はフッ素、塩化水
素等のハロゲンガス、8はバンドパスフィルター 9は
光検出器、10は放電色監視回路、11はハロゲンガス
注入用バルブ、12は真空ポンプである。
[Example] An example will be described with reference to the drawings. In FIG. 1, 1 is a laser chamber, 2 is a laser gas excitation electrode, 3 is a laser beam reflection mirror, 4 is a laser beam extraction window,
5 is a dilution gas of helium or neon, 6 is a rare gas such as krypton, xenon, or argon, 7 is a halogen gas such as fluorine or hydrogen chloride, 8 is a band pass filter, 9 is a photodetector, 10 is a discharge color monitoring circuit, 11 is a halogen gas injection valve, and 12 is a vacuum pump.

以下本発明によるパッシベーション方法を、/XXロジ
ンスとしてフッ素を用いた場合を例にとって説明する。
The passivation method according to the present invention will be described below, taking as an example the case where fluorine is used as the /XX rosin.

まず、レーザチャンバー1を真空ポンプ12を用いて排
気し、十分に排気されたところで希釈ガス、例えばヘリ
ウムを適量注入する。
First, the laser chamber 1 is evacuated using the vacuum pump 12, and after it is sufficiently evacuated, an appropriate amount of diluting gas, such as helium, is injected.

注入量はレーザーの構造に依存するが例えば1.5at
mである。ここで、電極2に電圧を印加してグロー放電
させる。次に、フッ素ガス7を適量、例えば、数tor
r (分圧)加えると、放電色が淡いピンク色から暗赤
色に劇的に変化する。パッシベーションが進行するに従
い、フッ素ガスが構造物や不純物と反応して消費され、
もとのヘリウム放電色に変化する。そこで、再びフッ素
ガス7を注入し赤色放電にさせる。この手順を何回か繰
り返すと、パッシベーションが完了し、赤い放電色のま
まほとんど変化しなくなる。この状態になったところで
放電を一時停止し、真空ポンプ12によりレーザチャン
バーを再び排気する。そして、十分真空に排気されたと
ころで、今度はレーザガス、即ち、ハロゲンガス7、希
ガス6、希釈ガス5の混合ガスを注入し、電極2に電圧
を印加してレーザ発振を行う。
The injection amount depends on the structure of the laser, but is 1.5at, for example.
It is m. Here, a voltage is applied to the electrode 2 to cause glow discharge. Next, apply an appropriate amount of fluorine gas 7, for example, several torr.
When r (partial pressure) is applied, the discharge color changes dramatically from pale pink to dark red. As passivation progresses, fluorine gas reacts with structures and impurities and is consumed.
Changes to the original helium discharge color. Then, fluorine gas 7 is again injected to produce a red discharge. By repeating this procedure several times, passivation is completed and the discharge color remains red and hardly changes. When this state is reached, the discharge is temporarily stopped and the laser chamber is evacuated again by the vacuum pump 12. After the vacuum is sufficiently evacuated, a laser gas, that is, a mixed gas of halogen gas 7, rare gas 6, and diluent gas 5, is injected, and a voltage is applied to the electrode 2 to perform laser oscillation.

次に、本発明のパッシベーション方法を自動化するため
の装置について説明を行う。
Next, a device for automating the passivation method of the present invention will be explained.

エキシマレーザの共振器は、通常、レーザ光反射ミラー
(全反射ミラー)3とレーザ光取出し窓(部分反射ミラ
ー)4の1対のミラーによって構成されている。レーザ
ー光反射ミラー3としては、誘電体多層膜ミラーが用い
られ、このミラーはレーザの発振波長である紫外光に対
して反射率を高くしているため、可視光に対してはほぼ
透明となっている。従って、レーザ光反射ミラー3の後
部に光検出器9を設置し、光検出器9とレーザ光反射ミ
ラー3の間にフッ素ガスの放電色に合わせたバンドパス
フィルター8を置くと、フッ素ガスの放電光の強度のみ
をモニターすることができる。
The resonator of an excimer laser is usually constituted by a pair of mirrors: a laser beam reflection mirror (total reflection mirror) 3 and a laser beam extraction window (partial reflection mirror) 4. A dielectric multilayer mirror is used as the laser light reflecting mirror 3, and since this mirror has a high reflectance for ultraviolet light, which is the oscillation wavelength of the laser, it is almost transparent for visible light. ing. Therefore, if a photodetector 9 is installed at the rear of the laser beam reflection mirror 3, and a bandpass filter 8 matched to the discharge color of fluorine gas is placed between the photodetector 9 and the laser beam reflection mirror 3, the fluorine gas Only the intensity of the discharge light can be monitored.

そこで、適量のフッ素ガスを加えたときの放電光の信号
強度をあらかじめ測定し、これを放電色監視回路10の
コンパレーターの設定レベルとじて設定する。そして、
レーザチャンバー1を真空ポンプ12を用いて排気し、
十分に排気されたところで希釈ガスを適量注入した後、
電極2に電圧を印加してグロー放電させる。次に、ハロ
ゲンガス注入用バルブ11に信号を加えて弁を開け、フ
ッ素ガス7を注入する。そして、放電色が赤色になり、
光検出器9の信号レベルが設定値に達したところで、放
電色監視回路10のコンパレーターが出力を発生し、監
視回路10がハロゲンガス注入用バルブ11に信号を送
って弁を閉じる。この後、パッシベーションが進行して
フッ素ガスが消費されると、放電色はもとのヘリウム放
電色に変化し、光検出器9の信号レベルが設定値以下に
低下すると、監視回路10が再び注入用バルブに信号を
加えて弁を開ける。このような動作を繰り返し、光検出
器9の信号レベルが設定値以上である状態が所定時間以
上継続すると、監視回路10がパッシベーションの完了
を表示するかあるいは完了信号を出力する。
Therefore, the signal intensity of the discharge light when an appropriate amount of fluorine gas is added is measured in advance, and this is set as the setting level of the comparator of the discharge color monitoring circuit 10. and,
The laser chamber 1 is evacuated using a vacuum pump 12,
After injecting an appropriate amount of diluent gas once it has been sufficiently exhausted,
A voltage is applied to the electrode 2 to cause glow discharge. Next, a signal is applied to the halogen gas injection valve 11 to open the valve and fluorine gas 7 is injected. Then, the discharge color becomes red,
When the signal level of the photodetector 9 reaches a set value, the comparator of the discharge color monitoring circuit 10 generates an output, and the monitoring circuit 10 sends a signal to the halogen gas injection valve 11 to close the valve. After this, as the passivation progresses and the fluorine gas is consumed, the discharge color changes to the original helium discharge color, and when the signal level of the photodetector 9 falls below the set value, the monitoring circuit 10 injects the gas again. Apply a signal to the valve to open it. When such an operation is repeated and the signal level of the photodetector 9 continues to be higher than the set value for a predetermined period of time or more, the monitoring circuit 10 displays the completion of passivation or outputs a completion signal.

第2図は本発明のパッシベーション方法の有効性を示す
データである。第2図(a)は通常のパッシベーション
方法により第1回目のレーザガス注入を行い、レーザ発
振させたときの、発振の初期を1とする相対出力のショ
ツト数依存性を示したものであり、レーザ出力が急速に
減少していることがわかる。このように出力の減少して
きたレーザガスにハロゲンガスを注入しても出力は幾分
回復するものの、放電状態は悪化し、アーク放電が多発
する。また、ハロゲンの消費ばかりでなく不純物ガスが
発生することによってもレーザガス放電が不安定になっ
ており、十分なパッシベーションが進んでいないにもか
かわらず、放電を中断し、新しいレーザガスと入れ替え
る必要がある。
FIG. 2 shows data showing the effectiveness of the passivation method of the present invention. Figure 2 (a) shows the dependence of the relative output on the number of shots, with the initial stage of oscillation taken as 1, when the first laser gas injection is performed using the usual passivation method and the laser oscillates. It can be seen that the output is rapidly decreasing. Even if halogen gas is injected into the laser gas whose output has decreased in this way, the output will recover to some extent, but the discharge condition will worsen and arc discharge will occur frequently. In addition, the laser gas discharge becomes unstable not only due to consumption of halogen but also due to the generation of impurity gas, and even though sufficient passivation has not progressed, it is necessary to interrupt the discharge and replace it with a new laser gas. .

一方、第2図(b)は、本発明によるパッシベーション
方法を施した後、初めてレーザガスを注入して発振させ
たときのレーザ出力のショツト数依存性を示したもので
ある。明らかにガス寿命に改善が見られ、実験ではこの
後2回程度のレーザガス交換で出力はほぼ一定となった
On the other hand, FIG. 2(b) shows the dependence of the laser output on the number of shots when the laser gas is injected for the first time to cause oscillation after the passivation method according to the present invention has been applied. There was a clear improvement in the gas life, and in experiments, the output became almost constant after two laser gas exchanges.

上記実施例では、ハロゲンガスとしてフッ素ガスを用い
た場合を説明したが、塩化水素ガスを用いた場合には、
放電色が青色になることが違うのみであるので、バンド
パスフィルターを青色用のものに交換することにより、
同様にパッシベーションの自動化を図ることができる。
In the above example, the case where fluorine gas was used as the halogen gas was explained, but when hydrogen chloride gas was used,
The only difference is that the discharge color becomes blue, so by replacing the bandpass filter with a blue one,
Similarly, passivation can be automated.

また、上記実施例では、バンドパスフィルター光検出器
をレーザ光反射ミラーの後部に設けたが、レーザ取出し
窓の前にビームスプリッタ−を置き、このビームスプリ
ッタ−により取り出した放電光の一部が入射する位置に
バンドパスフィルター光検出器を設けることもできる。
In the above embodiment, the bandpass filter photodetector was provided at the rear of the laser beam reflection mirror, but a beam splitter was placed in front of the laser extraction window, and a portion of the discharge light extracted by the beam splitter was A bandpass filter photodetector can also be provided at the incident position.

[発明の効果] 本発明は、以上のように構成されるので、安定な放電が
得られやすく、パッシベーション時における電極の損傷
を非常に少なくすることができるとともに、多数回レー
ザガスを交換する従来の方法と比較して簡単かつ短時間
にパッシベーションを行うことができる。また、レーザ
ガス成分中最もコストの高い希ガスの消費がなくガスコ
ストを低下することができる。さらに、放電色監視回路
を設けることにより、パッシベーション作業の自動化を
図ることができる。
[Effects of the Invention] Since the present invention is configured as described above, it is easy to obtain a stable discharge, and damage to the electrode during passivation can be extremely reduced, and the conventional method of exchanging the laser gas many times can be avoided. Passivation can be performed more easily and in a shorter time compared to other methods. Furthermore, there is no consumption of rare gas, which is the most expensive component of the laser gas, and gas costs can be reduced. Furthermore, by providing a discharge color monitoring circuit, the passivation work can be automated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるパッシベーション方法を実施す
るエキシマレーザ装置を示す図、第2図は本発明のパッ
シベーション方法の有効性を示すデータ図である。 1・・・・・・レーザチャンバー、2・・・・・・レー
ザガス励起用電極、3・・・・・・レーザ光反射ミラー
 4・・・・・・レーザ光取出し窓、5・・・・・・希
釈ガス、6・・・・・・希ガス、7・・・・・・ハロゲ
ンガス、8・・・・・・バンドパスフィルター 9・・
・・・・光検出器、10・・・・・・放電色監視回路、
11・・・・・・ハロゲンガス注入用バルブ、12・・
・・・・真空ポンプ葉 図 ! 図
FIG. 1 is a diagram showing an excimer laser device implementing the passivation method according to the present invention, and FIG. 2 is a data diagram showing the effectiveness of the passivation method according to the present invention. 1...Laser chamber, 2...Laser gas excitation electrode, 3...Laser light reflecting mirror 4...Laser light extraction window, 5... ...Dilution gas, 6...Rare gas, 7...Halogen gas, 8...Band pass filter 9...
...Photodetector, 10...Discharge color monitoring circuit,
11... Valve for halogen gas injection, 12...
...Vacuum pump leaf diagram! figure

Claims (2)

【特許請求の範囲】[Claims] (1)希ガス、ハロゲン、希釈ガスよりなるレーザガス
を励起することによりレーザ光を得るエキシマレーザの
パッシベーション方法において、ハロゲンと希釈ガスの
みの混合ガスを導入して放電させることを特徴とするエ
キシマレーザのパッシベーション方法。
(1) An excimer laser passivation method that obtains laser light by exciting a laser gas consisting of a rare gas, a halogen, and a diluent gas, which is characterized by introducing a mixed gas of only a halogen and a diluent gas to cause discharge. passivation method.
(2)ガス導入用配管及びガス排気用配管を有するレー
ザチャンバーと、放電光がバンドパスフィルターを介し
て入射する光検出器と、この光検出器の出力が入力され
る放電色監視回路と、この放電色監視回路により制御さ
れるハロゲンガス導入用バルブとをそれぞれ有すること
を特徴とするエキシマレーザ装置。
(2) a laser chamber having a gas introduction pipe and a gas exhaust pipe; a photodetector into which the discharge light enters via a band-pass filter; and a discharge color monitoring circuit into which the output of the photodetector is input; An excimer laser device comprising a halogen gas introduction valve controlled by the discharge color monitoring circuit.
JP2278390A 1990-01-31 1990-01-31 Excimer laser passivation method and apparatus used to implement the method Expired - Fee Related JPH0716061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2278390A JPH0716061B2 (en) 1990-01-31 1990-01-31 Excimer laser passivation method and apparatus used to implement the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2278390A JPH0716061B2 (en) 1990-01-31 1990-01-31 Excimer laser passivation method and apparatus used to implement the method

Publications (2)

Publication Number Publication Date
JPH03227083A true JPH03227083A (en) 1991-10-08
JPH0716061B2 JPH0716061B2 (en) 1995-02-22

Family

ID=12092273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2278390A Expired - Fee Related JPH0716061B2 (en) 1990-01-31 1990-01-31 Excimer laser passivation method and apparatus used to implement the method

Country Status (1)

Country Link
JP (1) JPH0716061B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097717A2 (en) * 2006-02-27 2007-08-30 How Kiap Gueh Method of a configurable lasing medium in a laser device
CN107287553A (en) * 2017-05-23 2017-10-24 中国科学院光电研究院 Dry and pre-passivating device and method
CN111307924A (en) * 2020-02-24 2020-06-19 中国科学院微电子研究所 Detection device and method for detecting passivation degree of discharge cavity part of excimer laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097717A2 (en) * 2006-02-27 2007-08-30 How Kiap Gueh Method of a configurable lasing medium in a laser device
WO2007097717A3 (en) * 2006-02-27 2009-10-08 How Kiap Gueh Method of a configurable lasing medium in a laser device
CN107287553A (en) * 2017-05-23 2017-10-24 中国科学院光电研究院 Dry and pre-passivating device and method
CN107287553B (en) * 2017-05-23 2024-02-06 中国科学院微电子研究所 Drying and pre-passivating device and method
CN111307924A (en) * 2020-02-24 2020-06-19 中国科学院微电子研究所 Detection device and method for detecting passivation degree of discharge cavity part of excimer laser
CN111307924B (en) * 2020-02-24 2023-05-12 中国科学院微电子研究所 Detection device and method for detecting passivation degree of excimer laser discharge cavity component

Also Published As

Publication number Publication date
JPH0716061B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
Ewing et al. Laser action on the 2Σ+ 1/2→ 2Σ+ 1/2 bands of KrF and XeCl
US20020196823A1 (en) Injection locking type or MOPA type of laser device
US6219368B1 (en) Beam delivery system for molecular fluorine (F2) laser
JPH11191660A (en) Gas doped narrow-band excimer laser
JPH03227083A (en) Passivation method and device of excimer laser
JPH0770749A (en) Formation of thin film and device therefor
JP2003249707A (en) Narrow band gas laser apparatus
Osborne et al. Low-divergence operation of a long-pulse excimer laser using a SBS phase-conjugate cavity
KR101173582B1 (en) Methods and systems for synchronized pulse shape tailoring
CN105932535A (en) Regeneration amplifier with first pulse self-inhibition function
US20020018506A1 (en) Line selection of molecular fluorine laser emission
JPWO2018047280A1 (en) Laser device
US6063709A (en) Removal of SOG etchback residue by argon treatment
Sucha et al. Generation of high-power femtosecond pulses near 1.5 mu m using a color-center laser system
Wakabayashi et al. Billion-level durable ArF excimer laser with highly stable energy
JPH07176816A (en) Starting of carbonic acid gas laser oscillator
Endert et al. New KrF and ArF excimer lasers for advanced deep ultraviolet optical lithography
US20030095580A1 (en) Beam delivery system for lithographic exposure radiation source
JPH069270B2 (en) Noble gas halide excimer laser device
US6792023B1 (en) Method and apparatus for reduction of spectral fluctuations
KR100731948B1 (en) Excimer laser device and gas for excimer laser
KR100484900B1 (en) Plasma ignition method in a semiconductor manufacturing system
JPS63182884A (en) Manufacture of resonator of semiconductor laser
JP2002223020A (en) Fluorine molecular laser apparatus and fluorine exposure apparatus
JPH03227079A (en) Excimer laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees