JPH03226962A - Far infrared radiator - Google Patents

Far infrared radiator

Info

Publication number
JPH03226962A
JPH03226962A JP2326190A JP2326190A JPH03226962A JP H03226962 A JPH03226962 A JP H03226962A JP 2326190 A JP2326190 A JP 2326190A JP 2326190 A JP2326190 A JP 2326190A JP H03226962 A JPH03226962 A JP H03226962A
Authority
JP
Japan
Prior art keywords
microwaves
far infrared
far
infrared rays
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2326190A
Other languages
Japanese (ja)
Inventor
Masaharu Saito
雅春 斉藤
Naofumi Yano
直文 矢野
Hidetsugu Habata
幅田 英告
Yasuhiro Taniguchi
康弘 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP2326190A priority Critical patent/JPH03226962A/en
Publication of JPH03226962A publication Critical patent/JPH03226962A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently radiate far infrared rays using microwaves by integrating a material which generates heat by means of absorption of microwaves and a material radiating far infrared rays into a far infrared radiator. CONSTITUTION:A material which generates heat by means of absorption of microwaves and a material radiating far infrared rays are assembled and integrated together. The far infrared ray radiator has structure e.g. such that a material A which generates heat by means of absorption of microwaves and a material B radiating far infrared rays are uniformly mixed and molded or structure whose center portion is formed of the material A which generates heat by means of absorption of microwaves and in which the material B radiating far infrared rays is disposed at its outer peripheral portion. Thus the absorbing, heat-generating material in the far infrared radiator efficiently absorbs microwaves and the microwaves are converted into heat so that far infrared radiation is efficiently carried out.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、加熱等に用いる遠赤外線放射体、特にマイク
ロ波加熱と併用して用いる遠赤外線放射体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a far-infrared radiator used for heating, etc., and particularly to a far-infrared radiator used in combination with microwave heating.

(従来の技術) 遠赤外線加熱は、対流、伝導、放射の5つの形態の熱伝
播のうち、途中媒体によるエネルギー損失が小さい放射
を利用する加熱方式である。このため、遠赤外線加熱方
式は、省エネルギー効果が高いと判断され、乾燥や暖房
の目的で、民生用途および工業用途に広く用いられるよ
うになって来−ま た。また最近では、広い工業分野での加熱・乾燥や日常
生活での暖房といった用途のみならず、生体的効果や食
品類の味覚の向上といった効果がうたわれるようにもな
って来た。
(Prior Art) Far-infrared heating is a heating method that utilizes radiation, which causes less energy loss due to intermediate media, among the five forms of heat propagation: convection, conduction, and radiation. For this reason, the far-infrared heating method has been judged to have a high energy-saving effect, and has come to be widely used in consumer and industrial applications for drying and heating purposes. Recently, they have been touted not only for their use in heating and drying in a wide range of industrial fields and for heating in daily life, but also for their biological effects and improving the taste of foods.

加熱や乾燥を目的とする従来の遠赤外線加熱方式におい
ては、例えば特開昭48−4625G号、特開昭491
11241号、特開昭50−108658号、特開昭5
0−144944号等に開示されているように、いづれ
も電気抵抗発熱体に通電することにより発熱体を発熱さ
せ、この熱が発熱体に接するかもしくは近接する遠赤外
線放射体に伝えられ、濃赤外線が放射されるというもの
であった。
In the conventional far-infrared heating method for heating and drying, for example, Japanese Patent Application Laid-Open No. 48-4625G and Japanese Patent Application Laid-open No. 491
No. 11241, JP-A-50-108658, JP-A-5
As disclosed in Japanese Patent No. 0-144944, etc., in both cases, the electric resistance heating element is made to generate heat by supplying electricity, and this heat is transmitted to a far-infrared radiator that is in contact with or in the vicinity of the heating element. It was said that infrared rays were emitted.

遠赤外線放射体からの遠赤外線放射による加熱や乾燥に
おいて、遠赤外線は被加熱物や被乾燥物の表面からごく
僅か内部までしか照射されることがなく、単なる加熱や
乾燥という見地から見た場合、効率的でない。そこで物
体に対し内部加熱がなされ、エネルギー効率も高いとい
われるマイクロ波加熱との併用が考え出されている。し
かし、マイクロ波と遠赤外線の併用加熱・乾燥において
も、従来の遠赤外線放射体を用いた場合においては、わ
ざわざ遠赤外線放射体に電気エネルギーを供給しなけれ
ばならなかった。このため加熱・乾燥器としての構造が
複雑となり、かつ長期の使用においては、電気抵抗発熱
体の断線等により遠赤外線放射機能が失われることがあ
った。
In heating and drying by far-infrared radiation from a far-infrared radiator, far-infrared rays are irradiated only from the surface of the object to be heated or dried to a very small area inside the object, and from the standpoint of mere heating and drying. , not efficient. Therefore, ideas have been devised to combine this with microwave heating, which heats objects internally and is said to be highly energy efficient. However, even in heating and drying using microwaves and far infrared rays in combination, when conventional far infrared rays are used, it is necessary to supply electrical energy to the far infrared rays. For this reason, the structure of the heating/drying device becomes complicated, and in long-term use, the far-infrared radiation function may be lost due to breakage of the electrical resistance heating element, etc.

(発明が解決しようとする課題) 本発明者等は、上記既存の遠赤外線放射体の有する諸問
題点に鑑み鋭意研究を続けた結果本発明を完成したもの
であって、その目的とするところは、遠赤外線放射のエ
ネルギー源として直接電気エネルギーを使用することに
代替してマイクロ波を使用する新規な遠赤外線放射体を
提供するにある。他の目的は、長期の使用に対しても高
い信頼性を有する遠赤外線放射体を提供するにある。本
発明の更に他の目的及び利点は以下の説明から明らかに
されよう。
(Problems to be Solved by the Invention) The present inventors have completed the present invention as a result of diligent research in view of the problems of the existing far-infrared radiators described above, and the purpose thereof is to The object of the present invention is to provide a novel far-infrared radiator that uses microwaves as an energy source for far-infrared radiation instead of using direct electrical energy. Another object is to provide a far-infrared radiator that has high reliability even for long-term use. Further objects and advantages of the present invention will become apparent from the following description.

(課題を解決するための手段) 上述の目的は、マイクロ波を吸収し発熱する材料と遠赤
外線を放射する材料とを一体化して成る3− マイクロ波を吸収して発熱を伴いながら赤外線を放射す
ることを特徴とする遠赤外線放射体により達成される。
(Means for solving the problem) The above purpose is to integrate a material that absorbs microwaves and generates heat with a material that emits far infrared rays. 3- Absorbs microwaves and emits infrared rays while generating heat. This is achieved by a far-infrared radiator characterized by the following.

本発明に使用されるマイクロ波を吸収して発熱する材料
としては覆々考えられるが、好ましいものとして酸化亜
鉛、チタン酸バリウムが、マイクロ波吸収の応答性の点
で特に好ましいものとして、炭化珪素、酸化錫が挙げら
れる。
There are many possible materials that can be used in the present invention to generate heat by absorbing microwaves, but zinc oxide and barium titanate are preferred, and silicon carbide is particularly preferred in terms of microwave absorption response. , tin oxide.

また、遠赤外線を放射する材料としてはジルコニア、チ
タニア、チタン酸アルミニウム、窒化珪挙げられる。そ
してこれら好適な材料中、ジルコニア及びアルミナは強
度の高い放射体が得られる、コージェライトは遠赤外線
部のみに対して効率的に放射を生じ、耐衝撃性が高い放
射体が得られる特長を有する。また、チタン酸アルミニ
ウムを遠赤外線を放射する材料として適用すると、耐熱
性に優れた放射体が得られ、β−スポジューメンを適用
するとチタン酸アルミニウムの場合よりも更4 に耐熱性に優れた放射体が得られる特長がある。
Furthermore, examples of materials that emit far-infrared rays include zirconia, titania, aluminum titanate, and silicon nitride. Among these suitable materials, zirconia and alumina provide a radiator with high strength, while cordierite efficiently emits radiation only in the far infrared region, and has the feature of providing a radiator with high impact resistance. . Furthermore, when aluminum titanate is used as a material that emits far infrared rays, a radiator with excellent heat resistance can be obtained, and when β-spodumene is used, a radiator with even better heat resistance than aluminum titanate can be obtained. It has the advantage of providing

更にまた、遷移金属酸化物は、コージェライトやβ−ス
ポジューメンと併用すると遠赤外のみならず近赤外部迄
広範囲の放射が起こり窒化珪素は、単独でも近赤外線部
から遠赤外線部迄広範囲の放射が起こり放射エネルギー
の大きな放射体が得られる特長がある。
Furthermore, when transition metal oxides are used in combination with cordierite or β-spodumene, they emit a wide range of radiation, not only in the far infrared but also in the near infrared, and silicon nitride, alone, emits a wide range of radiation from the near infrared to the far infrared. This has the advantage that a radiator with large radiant energy can be obtained.

これらマイクロ波を吸収することにより発熱する材料と
遠赤外線を放射する材料とは組み合わせて一体化するが
その構造については、次のようなものが好適である。
The material that generates heat by absorbing microwaves and the material that emits far infrared rays are combined and integrated, and the following structure is preferable.

第1図に示すようにマイクロ波を吸収すること第2図に
示すように中心部がマイクロ波を吸収することにより発
熱する材料(4)からなり外周部に遠赤外線を放射する
材料(6)を配した構造。
As shown in Figure 1, it absorbs microwaves.As shown in Figure 2, the center part is made of a material (4) that generates heat by absorbing microwaves, and the outer part is made of a material (6) that emits far infrared rays. A structure with

マイクロ波を吸収することにより発熱する材料(4)と
遠赤外線を放射する材料の)が層状に重なりあっている
か、第5図に示すように表面から裏面に一 かけて徐々にその割合いを変化させている構造。
The material that generates heat by absorbing microwaves (4) and the material that emits far infrared rays) overlap in layers, or the ratio gradually increases from the front to the back as shown in Figure 5. The structure that is changing.

第4図に示すようにマイクロ波を吸収すること縞模様等
に成形した構造。
As shown in Figure 4, the structure is shaped into a striped pattern to absorb microwaves.

更には第5図に示すようにマイクロ波を吸収することに
より発熱する材料(4)を成型し、この表面に遠赤外線
を放射しやすい材料(6)を施釉、OVD。
Furthermore, as shown in Fig. 5, a material (4) that generates heat by absorbing microwaves is molded, and a material (6) that easily emits far infrared rays is glazed on its surface by OVD.

溶射等によるコーティングを施した構造。Structure coated with thermal spraying, etc.

そして上記構造において遠赤外線放射体の少なくとも一
部を多孔体構造又は少なくとも一部に粗面構造を形成す
ると一層優れた効果が得られた。
Further, in the above structure, even more excellent effects were obtained when at least a portion of the far-infrared radiator was formed with a porous structure or at least a portion with a rough surface structure.

また本発明の遠赤外線放射体においては、このマイクロ
波を吸収し発熱する材料の組成割合いが全体の発熱量に
影響を与えるため、遠赤外線放射体の遠赤外線放射特性
にも影響をおよぼす。本発明における遠赤外線放射体に
対するマイクロ波を吸収し発熱する材料の最適混合割合
いを知るために、マイクロ波を吸収し発熱する材料とし
て炭化珪素を用い、これをアルミナに種々の割合いで混
合6− した焼結体を作成し、マイクロ波(発信周波数2.45
 GHz 、発信出力500W)を1分間照射した後の
発熱状態を調べた。焼結体の作成は所定混合割合の原料
粉末をPVAバインダーを用いて顆粒とした後、1t/
cm’ の圧力で金型ブレス成形後、非酸化性雰囲気中
で1800°Cで焼成させて得た。但し、炭化珪素が5
0wt%以上の場合には、上手く焼結しなかったので金
型プレス成形後の成形体に無機バインダー(アルミニウ
ムヒドロキシクロライド)を含浸させ乾燥後非酸化性雰
囲気中で800°Cにて焼成して得た。実験結果を第6
図に示す。同図から分かるように炭化珪素含有率が10
wt%以上では、十分な発熱が認められ、より好ましく
は炭化珪素含有率が20wt%以上では、さらに十分な
発熱が認められ、遠赤外線放射体に適用可能と判断され
た。なお表面温度計にてマイクロ波照射直後の焼結体の
表面温度測定を試みたが、マイクロ波照射を停止すると
急激に温度が低下したため、若干低めの測定値となって
いる。
Furthermore, in the far-infrared radiator of the present invention, the composition ratio of the material that absorbs microwaves and generates heat affects the overall calorific value, and therefore also affects the far-infrared radiation characteristics of the far-infrared radiator. In order to find out the optimal mixing ratio of the material that absorbs microwaves and generates heat for the far-infrared radiator in the present invention, silicon carbide was used as the material that absorbs microwaves and generates heat, and it was mixed with alumina in various ratios. - Create a sintered body, and microwave (transmission frequency 2.45
GHz, transmission output 500 W) for 1 minute, the state of heat generation was investigated. To create a sintered body, raw material powder at a predetermined mixing ratio is made into granules using a PVA binder, and then 1 t//
It was obtained by press molding with a mold at a pressure of cm' and then firing at 1800°C in a non-oxidizing atmosphere. However, silicon carbide is 5
In the case of 0wt% or more, the sintering did not work well, so the molded body after mold press molding was impregnated with an inorganic binder (aluminum hydroxychloride), dried, and then fired at 800°C in a non-oxidizing atmosphere. Obtained. The experimental results are shown in the 6th
As shown in the figure. As can be seen from the figure, the silicon carbide content is 10
At a silicon carbide content of 20 wt% or more, sufficient heat generation was observed, and more preferably, at a silicon carbide content of 20 wt% or more, even more sufficient heat generation was observed, and it was determined that the silicon carbide content was applicable to far-infrared radiators. An attempt was made to measure the surface temperature of the sintered body immediately after microwave irradiation using a surface thermometer, but the temperature dropped rapidly when the microwave irradiation was stopped, resulting in a slightly lower measured value.

酸化亜鉛、酸化錫、チタン酸バリウムについても=7− 同様に実験を行ったところ、はぼ同様な結果が得られた
Similar experiments were conducted for zinc oxide, tin oxide, and barium titanate (=7), and almost the same results were obtained.

(発明の効果) 本発明によれば遠赤外線放射体内の吸収し発熱する材料
が効率的にマイクロ波を吸収しマイクロ波が熱に変換さ
れ、効率的に遠赤外線が放射される。
(Effects of the Invention) According to the present invention, the material in the far-infrared radiator that absorbs and generates heat efficiently absorbs microwaves, converts the microwaves into heat, and efficiently radiates far-infrared rays.

以下本発明を実施例により具体的に説明する。The present invention will be specifically explained below using examples.

実施例1 炭化珪素粉末(平均粒子径0.6pm)とアルミナ粉末
(平均粒子径0.6.am1含む0.8wt%MgO)
を重量比で5=7の割合いで混合しバインダーとしてP
VAを用い流動層造粒した後、60メツシユのフルイに
て整粒し原料顆粒Aを得た。
Example 1 Silicon carbide powder (average particle size 0.6pm) and alumina powder (0.8wt% MgO including average particle size 0.6.am1)
were mixed in a weight ratio of 5=7 to form P as a binder.
After fluidized bed granulation using VA, the granules were sized using a 60-mesh sieve to obtain raw material granules A.

(a)  原料顆粒Aにポリスチレンビーズ(平均粒子
径2.5 pm )を46vol優添加し十分混合した
後、It/cm!にて金型プレス成形し、グリーン体を
得た。得られたグリーン体を非酸化性雰囲気中1800
℃にて焼成し、多孔性焼結体を得た。アルキメデス法に
て気孔率を測定したところ、75vo1%であっ8 た。
(a) After adding 46 vol of polystyrene beads (average particle size 2.5 pm) to raw material granules A and mixing thoroughly, It/cm! A green body was obtained by press molding using a mold. The obtained green body was heated at 1800 °C in a non-oxidizing atmosphere.
It was fired at ℃ to obtain a porous sintered body. When the porosity was measured using the Archimedes method, it was found to be 75 vol.

(b)  原料顆粒Aをit/cm2にて金型プレス成
形した後、非酸化性雰囲気中1800’Oにて焼成し、
焼結体を得た。気孔率を測定したところ、3゜vo1%
であった。
(b) After press-molding the raw material granules A with a mold at it/cm2, firing at 1800'O in a non-oxidizing atmosphere,
A sintered body was obtained. When the porosity was measured, it was 3°vo1%
Met.

(c)  原料顆粒Aをit/cm!にて金型プレス成
形した後、大気中で脱脂しグリーン体を得た。得られた
グリーン体を真空中1800 ”0 20 MPaでホ
ットプレス焼結させ、気孔率3%の緻密焼結体を得た。
(c) It/cm of raw material granule A! After press-molding with a mold, the material was degreased in the air to obtain a green body. The obtained green body was hot-press sintered in vacuum at 1800"0 20 MPa to obtain a dense sintered body with a porosity of 3%.

得られた(a)〜(c)の焼結体を幅5 cm長さ6 
cm厚さ0.5cmに成形した後、マイクロ波(発信周
波数2.45GHz、高周波出力500W)を1分間照
射した後の温度を表面温度針にて測定したところ、(a
)の多孔性焼結体では120″C,(b)の焼結体では
110℃、(C)の緻密焼結体では106°Cであった
The obtained sintered bodies (a) to (c) are 5 cm wide and 6 cm long.
After molding to a thickness of 0.5 cm and irradiating it with microwaves (oscillation frequency 2.45 GHz, high frequency output 500 W) for 1 minute, the temperature was measured with a surface temperature needle.
The temperature was 120''C for the porous sintered body of ), 110°C for the sintered body of (b), and 106°C for the dense sintered body of (C).

比較例1 アルミナ粉末(平均粒子径0.f+)1ms含むO,S
wt%MgO)  のみをバインダーとしてPTAを用
9− い流動層造粒した後、60メツシユのフルイにて整粒し
アルミナ顆粒を得た。アルミナ顆粒を1t/emuにて
金型プレス成形した後、非酸化性雰囲気中1800℃に
て焼成し、焼結体を得た。気孔率を測定したところ、1
0vo1%であった。
Comparative example 1 O, S containing alumina powder (average particle size 0.f+) 1ms
After granulation in a 9-year fluidized bed using PTA (wt% MgO) as a binder, the granules were sized using a 60-mesh sieve to obtain alumina granules. Alumina granules were press-molded with a mold at 1 t/emu, and then fired at 1800° C. in a non-oxidizing atmosphere to obtain a sintered body. When the porosity was measured, it was 1
It was 0vo1%.

得られたアルミナ焼結体を幅6cm長さ8cm厚さ0.
5cmに成形した後、マイクロ波(発信周波数2.46
GHz1高周波出力60 GW)を1分間照射した後の
温度を表面温度計にて測定したところ、30°Cであり
マイクロ波照射前とほとんど変化しなかった。
The obtained alumina sintered body was sized to have a width of 6 cm, a length of 8 cm, and a thickness of 0.5 cm.
After molding to 5 cm, microwave (transmission frequency 2.46
When the temperature was measured with a surface thermometer after being irradiated with GHz 1 high frequency power (60 GW) for 1 minute, it was 30°C, which was almost unchanged from before the microwave irradiation.

実施例2 酸化錫と水酸化マグネシウムを重量比で1=3の割合で
混合し大気中700℃にて仮焼した後、粉砕、整粒(6
0メツシユふるい)シ、酸化錫と酸化マグネシウムの混
合顆粒を得た。得られた混合顆粒を金型プレス成形した
後、大気中で16!a 0℃にて焼結させた。得られた
焼結体を幅5cm長さ5cm厚さ0.6cmに成形しマ
イクロ波吸収発熱板を得た。
Example 2 Tin oxide and magnesium hydroxide were mixed at a weight ratio of 1=3 and calcined in the atmosphere at 700°C, then crushed and sized (6
Mixed granules of tin oxide and magnesium oxide were obtained. After press-molding the obtained mixed granules with a mold, the mixture was placed in the atmosphere for 16 seconds. a Sintered at 0°C. The obtained sintered body was molded to a width of 5 cm, a length of 5 cm, and a thickness of 0.6 cm to obtain a microwave absorption heating plate.

10− コージェライト(平均粒子径:1.am)と酸化鉄(平
均粒子径:0.57m)および酸化マンガン(平均粒子
径:0.5/um)を重量比で5:3:2の割合で混合
した。さらに、おが屑を50wt%添加し十分混合した
後、金型プレス成形し大気中1200℃にて焼成し得ら
れた焼結体を幅6cm長さ6cm厚さ0.5cmに成形
し多孔性焼結体を得た。
10- Cordierite (average particle diameter: 1.am), iron oxide (average particle diameter: 0.57 m) and manganese oxide (average particle diameter: 0.5/um) in a weight ratio of 5:3:2 mixed with. Furthermore, after adding 50 wt% of sawdust and mixing thoroughly, the sintered body was press-molded with a mold and fired at 1200°C in the atmosphere. I got a body.

このようにして得られたマイクロ波吸収発熱板と多孔性
焼結体を無機バインダーで接着させ、遠赤外線放射体を
得た。
The microwave absorbing heating plate thus obtained and the porous sintered body were bonded together with an inorganic binder to obtain a far-infrared radiator.

得られた遠赤外線放射体にマイクロ波(発信局波数2.
46GHz1高周波出力50 GW)を1分間照射した
後の温度を表面温度計にて測定したところ、100°C
であった。
The obtained far-infrared radiator is exposed to microwaves (wave number 2.
When the temperature was measured with a surface thermometer after being irradiated with 46 GHz (1 high frequency output 50 GW) for 1 minute, it was 100°C.
Met.

比較例2 コージェライト(平均粒子径:1μm)と酸化鉄(平均
粒子径−0,67m)および酸化マンガン(平均粒子径
:0.5.um)を重量比で6:3:2の割合で混合し
た。さらに、おが屑を50wt%添加し十分混合した後
、金型プレス成形し大気中1200°Cにて焼成し多孔
性焼結体を得た。得られた焼結体を幅5 cm長さ6 
cm厚さ0.6cmに成形した。
Comparative Example 2 Cordierite (average particle size: 1 μm), iron oxide (average particle size -0.67 m), and manganese oxide (average particle size: 0.5 μm) were mixed in a weight ratio of 6:3:2. Mixed. Further, 50 wt % of sawdust was added and thoroughly mixed, followed by press molding with a die and firing at 1200° C. in the atmosphere to obtain a porous sintered body. The obtained sintered body is 5 cm wide and 6 cm long.
It was molded to a thickness of 0.6 cm.

このようにして得られた多孔性焼結体にマイクロ波(発
信周波数2,450.H2,高周波出力500W)を1
分間照射した後の温度を表面温度計にて測定したところ
、50℃であった。
Microwave (oscillation frequency 2,450.H2, high frequency output 500W) was applied to the porous sintered body thus obtained.
The temperature after irradiation for one minute was measured with a surface thermometer and found to be 50°C.

実施例5 チタン酸バリウム3部を粘土7部に混線、成形後750
°Cで焼成し、直径15 cm厚さ1 cmの素焼き円
板を得た。得られた素焼き円板の全面に窒化珪素の等モ
ル組成物を溶射した。
Example 5 Mixing 3 parts of barium titanate with 7 parts of clay, 750 ml after molding
It was fired at °C to obtain an unglazed disk with a diameter of 15 cm and a thickness of 1 cm. An equimolar composition of silicon nitride was sprayed onto the entire surface of the resulting unglazed disk.

このようにして得られた素焼き円板にマイクロ波(発信
周波数2.46 GHz、高周波出力soow)を1分
間照射した後の温度を表面温度計にて測定したところ、
200℃であった。
The unglazed disk thus obtained was irradiated with microwaves (oscillation frequency 2.46 GHz, high frequency output solow) for 1 minute, and the temperature was then measured using a surface thermometer.
The temperature was 200°C.

比較例3 チタン酸バリウム3部を粘土7部に混線、成形後750
’Oで焼成し、直径15cm厚さ1 crnの素焼き円
板を得た。
Comparative Example 3 Mixing 3 parts of barium titanate with 7 parts of clay, 750 ml after molding
An unglazed disk with a diameter of 15 cm and a thickness of 1 crn was obtained.

このようにして得られた素焼き円板にマイクロ波(発信
周波数2.415GHz、高周波出力500W)を1分
間照射した後の温度を表面温度計にて測定したところ、
85゛Cであった。
The unglazed disc thus obtained was irradiated with microwaves (transmission frequency 2.415 GHz, high frequency output 500 W) for 1 minute, and the temperature was then measured using a surface thermometer.
It was 85°C.

実施例4 実施例1の(a)マイクロ波吸収焼結体をもちい、家庭
用電子レンジ(発信周波数2.450Hz 1高周波出
力500W)中で、冷凍グラタンに覆い被せる様にマイ
クロ波吸収焼結体を配し、8分間マイクロ波を照射した
ところ、グラタン内部まで加熱されていることは勿論の
ことグラタンの表面が適度に焦げた。
Example 4 Using the (a) microwave-absorbing sintered body of Example 1, the microwave-absorbing sintered body was placed over frozen gratin in a household microwave oven (transmission frequency 2.450 Hz, 1 high frequency output 500 W). When irradiated with microwaves for 8 minutes, not only the inside of the gratin was heated, but also the surface of the gratin was moderately burnt.

比較例4 家庭用電子レンジ(発信周波数2.46 GHz、高周
波出力50 GW)中で、冷凍グラタンに8分間マイク
ロ波を照射したところ、グラタン内部まで加熱されたが
、グラタンの表面にはまったく焦げたところを認めるこ
とが出来なかった。
Comparative Example 4 When frozen gratin was irradiated with microwaves for 8 minutes in a household microwave oven (transmission frequency 2.46 GHz, high frequency output 50 GW), the inside of the gratin was heated, but the surface of the gratin was not burnt at all. I couldn't admit where I was.

(発明の効果) 15 実施例5 β−スポジューメン粉末(平均粒径50fim)3部に
対し酸化亜鉛粉末(平均粒径20μm)7部を混合し、
無機バインダーとしてシリカゾル(スノーテックス−X
L、8産化学製)を除々に加えながら混練し粘土状にす
る。これを幅6cm長さ5 cm厚さ1 amに成形し
た後、乾燥器(60°C)で乾燥させ、さらに大気雰囲
気の焼成炉にて1200℃、2時間処理し、遠赤外線放
射体を得た。
(Effect of the invention) 15 Example 5 7 parts of zinc oxide powder (average particle size 20 μm) was mixed with 3 parts of β-spodumene powder (average particle size 50 fim),
Silica sol (Snowtex-X) is used as an inorganic binder.
Knead while gradually adding L. (manufactured by Yasusan Kagaku) to form a clay-like mixture. After molding this into a width of 6 cm, length of 5 cm, and thickness of 1 am, it was dried in a dryer (60°C), and then treated in an atmospheric firing oven at 1200°C for 2 hours to obtain a far-infrared radiator. Ta.

得られた遠赤外線放射体にマイクロ波(発信周波数2.
45GHz、高周波出力5 o ow)を1分間照射し
た後の温度を表面温度計にて測定したところ120℃で
あった。
Microwave (transmission frequency 2.
After irradiation with 45 GHz, high frequency output (5 o ow) for 1 minute, the temperature was measured with a surface thermometer and found to be 120°C.

4 比較例5 β−スポジューメン粉末(平均粒径30  )戸m に無機バインダーとしてシリカゾル(スノーテックス−
XL、8産化学製)を除々に加えながら混練し粘土状に
する。これを幅6om長さ5 cm厚さ1 cmに成形
した後、乾燥器(6G’C)で乾燥させさらに大気雰囲
気の焼成炉にて1200°c2時間処理し焼成体を得た
4 Comparative Example 5 β-spodumene powder (average particle size 30 mm) was added with silica sol (Snowtex) as an inorganic binder.
XL (manufactured by Yasusan Kagaku) is gradually added and kneaded to form a clay-like mixture. This was molded into a width of 6 ohm, length of 5 cm, and thickness of 1 cm, dried in a drier (6G'C), and further treated in a firing oven at 1200°C for 2 hours in an atmospheric atmosphere to obtain a fired body.

得られた焼成体にマイクロ波(発信周波数2,46GH
z %高周波出力s o ow)を1分間照射した後の
温度を表面温度計にて測定したところ65℃であった。
Microwave (transmission frequency 2,46GH) is applied to the obtained fired body.
The temperature after irradiation with z % high frequency output sow for 1 minute was measured with a surface thermometer and found to be 65°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は、本発明の遠赤外線放射体の構造を示
す説明図であり、図中(1)はマイクロ波を吸収し発熱
する材料の)は遠赤外線を放射する材料を表わす。また
第6図は、マイクロ波を吸収する材料として炭化珪素を
遠赤外線を放射する材料としてアルミナを使用した本発
明遠赤外線放射体の炭化珪素量と放射体の表面温度との
間外を表わす線図である。 第 5 図 図 00 20  40 IC 060 lz 03 60  80 (wt 010) 40  2゜ (wt’10) 00
Figures 1 to 5 are explanatory diagrams showing the structure of the far-infrared radiator of the present invention, in which (1) represents a material that absorbs microwaves and generates heat, and () represents a material that emits far-infrared rays. . Furthermore, FIG. 6 shows a line representing the difference between the amount of silicon carbide and the surface temperature of the radiator of the far-infrared radiator of the present invention, which uses silicon carbide as a material that absorbs microwaves and alumina as a material that emits far-infrared rays. It is a diagram. Figure 5 00 20 40 IC 060 lz 03 60 80 (wt 010) 40 2° (wt'10) 00

Claims (1)

【特許請求の範囲】[Claims] (1)マイクロ波を吸収し発熱する材料と遠赤外線を放
射する材料を一体化して成るマイクロ波を吸収して発熱
を伴いながら遠赤外線を放射することを特徴とする遠赤
外線放射体。
(1) A far-infrared radiator characterized by absorbing microwaves and emitting far-infrared rays while generating heat, which is made by integrating a material that absorbs microwaves and generates heat and a material that emits far-infrared rays.
JP2326190A 1990-01-31 1990-01-31 Far infrared radiator Pending JPH03226962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2326190A JPH03226962A (en) 1990-01-31 1990-01-31 Far infrared radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2326190A JPH03226962A (en) 1990-01-31 1990-01-31 Far infrared radiator

Publications (1)

Publication Number Publication Date
JPH03226962A true JPH03226962A (en) 1991-10-07

Family

ID=12105661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2326190A Pending JPH03226962A (en) 1990-01-31 1990-01-31 Far infrared radiator

Country Status (1)

Country Link
JP (1) JPH03226962A (en)

Similar Documents

Publication Publication Date Title
CN109561736A (en) A kind of heater heating smokeable material and its heating not burning fuming equipment
KR100714053B1 (en) Heat generate cooker for microwave
US3718497A (en) Heater coil support
JP2014103076A (en) Positive temperature coefficient heating element, and hot air generating and supplying apparatus
JPH03226962A (en) Far infrared radiator
KR100346884B1 (en) hair dryer with far infrared rays radiator
JPH0321501B2 (en)
KR930009893B1 (en) Process for the production ceramic
JPS60134126A (en) Far infrared ray radiant material
JPH0195227A (en) Heat generating element for microwave oven
JP2712527B2 (en) Heating device for infrared radiation
KR20030033196A (en) Ceramic pyrogen composition absorbing microwave and method for manufacturing the same
KR940000731B1 (en) Composition of far-infrared radiation ceramic
CN2267595Y (en) High efficiency infrared radiation ceramic electric heating disc
JPS62113377A (en) Far-infrared heater
JPH11118158A (en) Heating cooker
JPH054796B2 (en)
JPS6311756B2 (en)
KR900008588B1 (en) A reflector of heat insulating and method for producing there off
JPS6168380A (en) Ceramic infrared radiator and manufacture
JP3357216B2 (en) Manufacturing method of ceramic fired body using microwave
JPH0532872B2 (en)
KR20010085151A (en) The far infra red ray emissive heater and method for its preparation
JP2530163Y2 (en) Far-infrared radiation tube
JP4290968B2 (en) Microwave firing furnace