JPH03225724A - Treating of cathode-ray tube - Google Patents

Treating of cathode-ray tube

Info

Publication number
JPH03225724A
JPH03225724A JP29640590A JP29640590A JPH03225724A JP H03225724 A JPH03225724 A JP H03225724A JP 29640590 A JP29640590 A JP 29640590A JP 29640590 A JP29640590 A JP 29640590A JP H03225724 A JPH03225724 A JP H03225724A
Authority
JP
Japan
Prior art keywords
electrode
cathode
ray tube
voltage
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29640590A
Other languages
Japanese (ja)
Other versions
JPH071677B2 (en
Inventor
Masaaki Hojo
北條 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Publication of JPH03225724A publication Critical patent/JPH03225724A/en
Publication of JPH071677B2 publication Critical patent/JPH071677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To considerably reduce gas molecule emission from the inside of metal, an electrode material, by measuring cathode activity with alternating voltage applied to one side of an acceleration electrode and a focus electrode. CONSTITUTION:A cathode body structure 1 and a bias electrode 3 are made to have the same electric potential at a negative electrode, an acceleration electrode 4 and a focus electrode 5 on a counter electrode side are made to have the same electric potential at a positive electrode, and A.C. voltage from an alternating power source 8 is applied between both the electrodes. The circuit itself of a cathode-ray tube becomes a rectification circuit by a vacuum tube and a half-wave in a positive direction to correctly flow an electron. In this case, applied voltage is decided by the peak position of a sine wave and mean current becomes 1/2, therefore the applied voltage, that is a peak value, can be increased to treat a cathode ray tube. The applying of a degassing treatment, from an electrode by a cathode activity measuring method using such an emission aging method, considerably reduces gas molecule emission from the inside of metal, an electrode material, due to an electron impact at the time of cathod activity measuring.

Description

【発明の詳細な説明】 産JL−比の千団L1ガー この発明は、エミッション特性を改善するのに有効な陰
極線管のエージングおよび陰極効率測定処理方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a cathode ray tube aging and cathode efficiency measurement processing method effective for improving emission characteristics.

従来曳伎1 一般に、陰極線管の製造工程においては、管内を真空に
し、その後に電子放射特性を安定させるため、エージン
グ処理を行い、その後に陰極効率測定を行っている。例
えば、第3図に示す従来のエージング回路や第4図に示
す従来の陰極線管の陰極効率測定における回路構成であ
る。
Conventional Hikiki 1 Generally, in the manufacturing process of cathode ray tubes, the inside of the tube is evacuated, and then an aging treatment is performed to stabilize the electron emission characteristics, and then the cathode efficiency is measured. For example, the conventional aging circuit shown in FIG. 3 and the circuit configuration for measuring the cathode efficiency of a conventional cathode ray tube shown in FIG. 4 are used.

図において、1は陰極となるスリーブを有するカソード
構体、2はカソード構体1のスリーブ内に収納されてい
るヒータ、3はバイアス電極、4は加速電極、5はフォ
ーカス電極である。
In the figure, 1 is a cathode assembly having a sleeve serving as a cathode, 2 is a heater housed in the sleeve of the cathode assembly 1, 3 is a bias electrode, 4 is an acceleration electrode, and 5 is a focus electrode.

第3図のエミッションエージング回路構成は、カソード
構体1とバイアス電極3を同電位で負極にし、また加速
電極4とフォーカス電極5を正極としこの両極に接続す
る200v〜300vの直流電源6で構成され、電子が
負極から正極に放射される構造となっている。
The emission aging circuit configuration shown in FIG. 3 includes a cathode structure 1 and a bias electrode 3 having the same potential as negative electrodes, and an accelerating electrode 4 and a focus electrode 5 as positive electrodes, and a 200V to 300V DC power supply 6 connected to these electrodes. , the structure is such that electrons are emitted from the negative electrode to the positive electrode.

また、第4図の陰極効率測定回路構成は、カソ−ド構体
1とバイアス電極3を同電位で負極に。
Further, in the cathode efficiency measuring circuit configuration shown in FIG. 4, the cathode structure 1 and the bias electrode 3 are made negative electrodes at the same potential.

加速電極4とフォーカス電極5を正極にしてこの両極に
接続する直流測定電源7で構成され、電子か負極から正
極に放射される構造となっている。
It is composed of a DC measurement power source 7 connected to the acceleration electrode 4 and the focus electrode 5 as positive electrodes, and has a structure in which electrons are emitted from the negative electrode to the positive electrode.

そして、陰極効率の測定時において、直流電源7はバイ
アス電極3に一9OVの電位を与えた時、電子放射をカ
ットオフする条件に加速電極4とフォーカス電極5を3
00V〜600v範囲で任意に設定できる構造となって
いる。
When measuring the cathode efficiency, when the DC power supply 7 applies a potential of -9OV to the bias electrode 3, the acceleration electrode 4 and the focus electrode 5 are set to 3 to cut off the electron emission.
It has a structure that can be set arbitrarily in the range of 00V to 600V.

B          ’i ところで、第3図のエージング回路では、加速電極4.
フォーカス電極5は適正電圧を200v〜300vに設
定されるが、これはエミッション測定時の電圧より低く
処理されている。例えば第4図の回路でカソード1の陰
極効率測定を行った場合、加速電極4t フォーカス電
極5に300V〜600vに加速された電子が流れ込み
、この電子衝撃(エレクトロンボンバード)により、電
極材である金属内部からガス分子が放出され、これがイ
オン化されることにより、カソードが汚染(イオンボン
バード)される。そこで、カソードはエミッションスラ
ンプ症状を生起して測定データの信頼度が著しく損なわ
れる。
B'i By the way, in the aging circuit of FIG. 3, the accelerating electrode 4.
The focus electrode 5 is set to have an appropriate voltage of 200v to 300v, which is lower than the voltage at the time of emission measurement. For example, when measuring the cathode efficiency of the cathode 1 using the circuit shown in FIG. Gas molecules are released from inside and are ionized, thereby contaminating (ion bombarding) the cathode. Therefore, the cathode causes an emission slump phenomenon, which significantly reduces the reliability of measurement data.

この問題点の解決のため、エージング時あるいは測定時
におけるガス放出を改善する必要があった。
In order to solve this problem, it was necessary to improve gas release during aging or measurement.

1の この発明は、上記の問題を解決するため、エージングや
陰極効率測定処理における電源方式の改良を含む陰極線
管の処理方法であり、電極への電圧印加をパルス方式な
ど周期的に変化する印加電圧により電流を制御し、平均
電流を軽減して維持することを特徴としている。
In order to solve the above-mentioned problems, this invention No. 1 is a cathode ray tube processing method that includes an improvement in the power supply method in aging and cathode efficiency measurement processing, and in which the voltage application to the electrodes is applied by periodically changing voltage application such as a pulse method. It is characterized by controlling the current by voltage and reducing and maintaining the average current.

すなわち、本発明はカソード構体、バイアス電極、加速
電極およびフォーカス電極を備える陰極線管の陰極効率
測定方法において、前記バイアス電極にカットオフ電圧
以上の交番する電圧を印加。
That is, the present invention provides a method for measuring cathode efficiency of a cathode ray tube including a cathode structure, a bias electrode, an accelerating electrode, and a focus electrode, in which an alternating voltage equal to or higher than a cutoff voltage is applied to the bias electrode.

または加速電極、フォーカス電極に交番する電圧を印加
することを特徴とする陰極線管のエージングや陰極効率
測定の処理方法を提供する。
Alternatively, the present invention provides a processing method for aging a cathode ray tube and measuring cathode efficiency, which is characterized by applying alternating voltages to an accelerating electrode and a focus electrode.

作l− 上記の構成によると、陰極線管のエージングや陰極効率
測定時において、加速電極、フォーカス電極への電子衝
撃を交番することにより、電極の加熱が減少し、電極材
料からのガス発生が著しく軽減され、測定データの信頼
度の低下を防止する。
According to the above configuration, when aging a cathode ray tube or measuring cathode efficiency, by alternating the electron impact on the accelerating electrode and the focus electrode, heating of the electrode is reduced and gas generation from the electrode material is significantly reduced. This reduces the risk of reducing the reliability of measurement data.

換言するさ、陰極線管のエージング時において、印加電
圧を高く設定することができ、その処理中に十分なガス
出しができる。加えてエージング処理中の電子放射、す
なわちカソードからの平均電流値が適正量を維持するこ
とができる。
In other words, the applied voltage can be set high during aging of the cathode ray tube, and sufficient gas can be vented during the aging process. In addition, the electron emission during the aging process, ie, the average current value from the cathode, can be maintained at an appropriate level.

爽胤阻 以下、この発明にかかる陰極li弧遅遅方法実施例を図
面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the cathode Li arc retarding method according to the present invention will be described with reference to the drawings.

第1図はこの発明にかかるエージング処理方法、第2図
は陰極効率測定処理方法に用いる回路構成図を示す。
FIG. 1 shows a circuit configuration diagram used in the aging processing method according to the present invention, and FIG. 2 shows a circuit configuration diagram used in the cathode efficiency measurement processing method.

第1図(a)はこの発明のエージング方法に用いる回路
構成図を示す。
FIG. 1(a) shows a circuit configuration diagram used in the aging method of the present invention.

図において、8が交番電圧の電源を有する回路構成であ
る。ここで、他の回路構成部分は、第3図と同様である
ので、同一部分には同一参照符号を付してその説明を省
略する。
In the figure, 8 is a circuit configuration having an alternating voltage power source. Here, since the other circuit components are the same as those in FIG. 3, the same parts are given the same reference numerals and the explanation thereof will be omitted.

上記構成によれば、カソード構体1とバイアス電極3を
負極で同電位とし、対向電極側の加速電極4とフォーカ
ス電極5を正極の同電位とし、この両極間に交番電源8
からの交流電圧を印加する。陰極線管の回路自体は真空
管による整流回路となり、正方向の半波となり、電子が
正極に流れる。この場合、印加電圧は、正弦波の尖頭値
で決定され、また平均電流は1/2となるため、さらに
印加電圧、すなわち尖頭値を上げて処理できる。
According to the above configuration, the cathode structure 1 and the bias electrode 3 are set to the same potential as negative electrodes, the acceleration electrode 4 and the focus electrode 5 on the opposing electrode side are set to the same potential as positive electrodes, and the alternating current power source 8 is connected between these two electrodes.
Apply an alternating voltage from The cathode ray tube circuit itself is a rectifier circuit using a vacuum tube, which generates a half wave in the positive direction, and electrons flow to the positive electrode. In this case, the applied voltage is determined by the peak value of the sine wave, and the average current is 1/2, so processing can be performed by further increasing the applied voltage, that is, the peak value.

なお、上記実施例は交番電源に交流を用いたが、いずれ
も第5図(a)(b)(c)に示すような半波または全
波状の脈流およびパルス波形の印加電圧を交番電源とし
て用いてもよい。
Although the above embodiments used alternating current as the alternating current power supply, in all cases, the applied voltage of half-wave or full-wave pulsating current and pulse waveform as shown in FIG. 5(a), (b), and (c) was It may also be used as

第1図(b)はこの発明の他の実施例の接続図である。FIG. 1(b) is a connection diagram of another embodiment of the present invention.

この実施例は、前記第1の実施例のフォーカス電極5へ
の接続は同様であり、加速電極4への接続回路には従来
と同様の直流電源を用いた。ここでも同一部分には同一
符号を付してその説明を省略する。
In this embodiment, the connection to the focus electrode 5 is the same as in the first embodiment, and the same DC power source as the conventional one is used for the connection circuit to the acceleration electrode 4. Here again, the same parts are given the same reference numerals and their explanation will be omitted.

この実施例では、加速電極4の電位が従来と同様に維持
でき、カソード構体からの電子放射が連続できることで
、フォーカス電極5への電圧印加は交番電源8で行うが
、その処理中でのガス出しを目的とした電圧に設定でき
るため、限定されずに実施することができる。
In this embodiment, the potential of the accelerating electrode 4 can be maintained as in the conventional case, and the electron emission from the cathode structure can be continued, so that the voltage application to the focus electrode 5 is performed by the alternating current power supply 8, but the gas during the process is Since the voltage can be set to the desired voltage for output, it can be implemented without any limitations.

なお、上記実施例は交番電源に交流を用いたが、第1実
施例と同様であり、いずれも第5図の(a)(b)(c
)に示すような半波または全波状の脈流およびパルス波
形の印加電圧を交番電源として用いてもよい。
Although the above embodiment uses an alternating current as an alternating current power supply, it is the same as the first embodiment, and both of them are similar to those shown in FIGS.
) A half-wave or full-wave pulsating current and an applied voltage with a pulse waveform may be used as the alternating current power supply.

陰極効率測定処理方法にかかる第2図(a)の回路構成
において、8は交番電圧電源を示し、他の回路部分は第
4図と同様であり、説明を省く。
In the circuit configuration of FIG. 2(a) related to the cathode efficiency measurement processing method, 8 indicates an alternating voltage power source, and the other circuit portions are the same as those in FIG. 4, and their explanation will be omitted.

上記構成によれば、カソード構体1とバイアス電極3を
負極で同電位とし、対向電極側の加速電極4とフォーカ
ス電極5を正極の同電位とする。
According to the above configuration, the cathode structure 1 and the bias electrode 3 are negative electrodes and have the same potential, and the acceleration electrode 4 and the focus electrode 5 on the opposing electrode side are positive electrodes and have the same potential.

この状態で最大陽極電流が流れるが、ここでは電流制御
するためにバイアス電極3にカットオフ電圧以上の電圧
をパルス波形で交番させて電子放射を制御する。
In this state, the maximum anode current flows, and here, in order to control the current, a voltage higher than the cutoff voltage is alternately applied to the bias electrode 3 in a pulse waveform to control electron emission.

交番させるパルス波形は、デユーティサイクルを1/2
〜1/20の範囲で選択設定して測定を行い、測定時の
最大陽極電流はその平均電流値にデユーティサイクルの
分母を乗じて算出する。
The alternating pulse waveform has a duty cycle of 1/2.
Measurement is performed by selecting a value in the range of 1/20 to 1/20, and the maximum anode current at the time of measurement is calculated by multiplying the average current value by the denominator of the duty cycle.

第2図(b)はこの発明の他の実施例の接続図である。FIG. 2(b) is a connection diagram of another embodiment of the present invention.

この実施例は、前述の実施例に対し、加速電極4、フォ
ーカス電極5に交番する電圧を印加する。
In this embodiment, alternating voltages are applied to the accelerating electrode 4 and the focus electrode 5 in contrast to the previous embodiment.

電圧印加は、交番電源8で行うが、300V〜600v
の範囲で任意に設定した電圧とOVを交番させる。交番
させる波形は、前述の実施例と同様である。
Voltage application is performed using an alternating power supply 8, and is 300V to 600V.
The voltage and OV are alternately set arbitrarily within the range of . The alternating waveforms are the same as in the previous embodiment.

なお、上記実施例は、加速電極4とフォーカス電極5を
交番させるが、第2図(C)に示すように加速電極のみ
を交番させてもよい。
In the above embodiment, the accelerating electrodes 4 and the focus electrodes 5 are alternated, but only the accelerating electrodes may be alternated as shown in FIG. 2(C).

髪匪盆熱果 上述の実施例に示すように、本発明のエミッションエー
ジング方法、陰極効率測定方法により、電極からのガス
出し処理をほどこすことで陰極効率測定時における電子
衝撃による電極材である金属内部からのガス分子の放出
が著しく軽減できる。
As shown in the above-mentioned examples, the emission aging method and the cathode efficiency measurement method of the present invention are used to perform a gas release process from the electrode, which results in an electrode material that is affected by electron bombardment during cathode efficiency measurement. The release of gas molecules from inside the metal can be significantly reduced.

そして、エミッションスランプの症状をおこさず、正確
な測定ができる等、実用価値が大きい。
It also has great practical value, such as being able to perform accurate measurements without causing emissions slump symptoms.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)および(b)は本発明にかかる陰極線管の
エージング処理方法に用いる回路構成図、第2図(a)
(b)および(c)は同じく陰極効率測定方法に用いる
回路構成図、第3図は従来のエージング回路構成図、第
4図は従来の測定回路構成図および第5図は交番電源の
異なる変形例の波形図である。 1・・・・・・カソード構体、 2・・・・・・ヒータ、 3・・・・・・バイアス電極、 4・・・・・・加速電極、 5・・・・・・フォーカス電極、 6・・・・・・直流電源、 7・・・・・・加速電極用測定電着5.8・・・・・・
交番電源。 第1 図 (a) (b) 1−・力y−ド゛   4−− #シもみ2−−“ヒー
タ       5−−− −y;r4yス4れ枢3−
 ・へ゛イアス礪ら3  8−−一 史令4L2゜第2
図(a) 第2図(b) 第2図(c)
FIGS. 1(a) and (b) are circuit configuration diagrams used in the cathode ray tube aging treatment method according to the present invention, and FIG. 2(a) is
(b) and (c) are circuit diagrams similarly used in the cathode efficiency measurement method, Figure 3 is a conventional aging circuit diagram, Figure 4 is a conventional measurement circuit diagram, and Figure 5 is a different modification of the alternating current power supply. FIG. 3 is an example waveform diagram. DESCRIPTION OF SYMBOLS 1...Cathode structure, 2...Heater, 3...Bias electrode, 4...Acceleration electrode, 5...Focus electrode, 6 ...DC power supply, 7...Measurement electrodeposition for accelerating electrode 5.8...
Police box power supply. Fig. 1 (a) (b) 1--Force y-Douce 4-- #Press 2--"Heater 5--- -y; r4y base 4re pivot 3-
・Heias Tan et al. 3 8--1 Shiryo 4L2゜2nd
Figure (a) Figure 2 (b) Figure 2 (c)

Claims (2)

【特許請求の範囲】[Claims] (1)カソード構体、バイアス電極、加速電極およびフ
ォーカス電極を備える陰極線管において、前記加速電極
とフォーカス電極の少なくとも一方に交番する電圧を印
加して陰極効率を測定することを特徴とする陰極線管処
理方法。
(1) In a cathode ray tube comprising a cathode structure, a bias electrode, an acceleration electrode, and a focus electrode, a cathode ray tube process characterized in that cathode efficiency is measured by applying an alternating voltage to at least one of the acceleration electrode and the focus electrode. Method.
(2)カソード構体、バイアス電極、加速電極およびフ
ォーカス電極を備える陰極線管において、前記加速電極
とフォーカス電極の少なくとも一方に交番する電圧を印
加してエージングすることを特徴とする陰極線管処理方
法。
(2) A cathode ray tube processing method comprising aging a cathode ray tube comprising a cathode structure, a bias electrode, an acceleration electrode, and a focus electrode by applying an alternating voltage to at least one of the acceleration electrode and the focus electrode.
JP2296405A 1989-11-28 1990-10-31 Cathode ray tube processing method Expired - Lifetime JPH071677B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-308164 1989-11-28
JP30816489 1989-11-28

Publications (2)

Publication Number Publication Date
JPH03225724A true JPH03225724A (en) 1991-10-04
JPH071677B2 JPH071677B2 (en) 1995-01-11

Family

ID=17977670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2296405A Expired - Lifetime JPH071677B2 (en) 1989-11-28 1990-10-31 Cathode ray tube processing method

Country Status (1)

Country Link
JP (1) JPH071677B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477834A (en) * 1987-09-18 1989-03-23 Hitachi Ltd Aging method for cathode-ray tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477834A (en) * 1987-09-18 1989-03-23 Hitachi Ltd Aging method for cathode-ray tube

Also Published As

Publication number Publication date
JPH071677B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
JPH03225724A (en) Treating of cathode-ray tube
KR920000074B1 (en) Method of aging crt
JPH0246625A (en) Spot knocking method of electron gun mount structure
JPS61259436A (en) High pressure adjustment for cathode ray tube mount
JPS6298542A (en) Ion source
JPS59157279A (en) Vapor deposition device for thin film
EP0469631A3 (en) Ion pump and vacuum pumping unit using the same
JP3135864B2 (en) Ion plasma type electron gun and its control method
JPS61208799A (en) Fast atomic beam source unit
JPH07302575A (en) Ion source for ion implantation
JP2637947B2 (en) Beam plasma type ion gun
RU1061637C (en) Method of activation of oxide cathodes of electronic equipment
JPH0750635B2 (en) Particle source
JPH0246626A (en) Spot knocking method of electron gun mount structure
JPH01248446A (en) Field emission type electron gun
JPH0145068Y2 (en)
JPH0228227B2 (en)
Curren et al. TWT efficiency enhancement with textured carbon surfaces on copper MDC electrodes
JPS6151725A (en) Field emission type cathode
JPH10289797A (en) X-ray generation device
JPH0877929A (en) Aging method of cathode-ray tube
JPS6177234A (en) Manufacture of cathode-ray tube
JPS5924186B2 (en) sputtering equipment
JPH0223973B2 (en)
JPS61288361A (en) Electron beam welding device