JPS6177234A - Manufacture of cathode-ray tube - Google Patents

Manufacture of cathode-ray tube

Info

Publication number
JPS6177234A
JPS6177234A JP19823884A JP19823884A JPS6177234A JP S6177234 A JPS6177234 A JP S6177234A JP 19823884 A JP19823884 A JP 19823884A JP 19823884 A JP19823884 A JP 19823884A JP S6177234 A JPS6177234 A JP S6177234A
Authority
JP
Japan
Prior art keywords
glass bulb
ray tube
electron gun
cathode ray
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19823884A
Other languages
Japanese (ja)
Other versions
JPH0250581B2 (en
Inventor
Haruhisa Fujii
藤井 治久
Masao Etsuchu
昌夫 越中
Giichi Shibuya
義一 渋谷
Wataru Imanishi
今西 渉
Mitsuyuki Shiotani
塩谷 満幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19823884A priority Critical patent/JPS6177234A/en
Publication of JPS6177234A publication Critical patent/JPS6177234A/en
Publication of JPH0250581B2 publication Critical patent/JPH0250581B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/44Factory adjustment of completed discharge tubes or lamps to comply with desired tolerances

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PURPOSE:To check slippage of electrons from their orbits while suppressing electrification of the glass bulb inside by generating discharge plasma around electron guns in a hydrogen gas atmosphere. CONSTITUTION:Electron guns are mounted inside a glass bulb of a cathode-ray tube while being evacuated followed by sealing hydrogen gas for performing discharge. In the discharge plasma in the hydrogen gas hydrogen molecules are excited or ionized while colliding with the inside of the glass bulb near the electron guns. Thereby, a reducing reaction to lead oxide, which is one of main components of the glass bulb, is caused for depositing lead on the glass bulb inside while making said inside to be low-resisting. As a result, the glass bulb inside becomes hard to be electrified thus being able to obtain the cathode-ray tube habing little slippage of the electron beams from their orbits.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ガラスバルブ内面の帯電による電子ビーム
軌道のずれを抑制するための陰極線管の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a cathode ray tube for suppressing deviation of electron beam trajectory due to charging of the inner surface of a glass bulb.

[従来の技術] 第6図は一般的な陰極線管の構造を示す概略図である。[Conventional technology] FIG. 6 is a schematic diagram showing the structure of a general cathode ray tube.

図において、(1)は低圧電極(2a) 、 (2b)
 、 (2c)、収束電極(3)、陽極(4)から構成
される電子銃、(5)はこの電子銃(1)を収納し、内
部が高真空に保たれたガラスバルブ、(6)はこのガラ
スバルブ(5)の内面に塗装された導電膜、(7)はこ
の導電膜(6)に接続された高電圧電源、(8)は1−
記低圧電極(2a) 、 (2b) 、 (2c)オよ
び収束電極(3)に電圧を供給するための制御電源、(
9)は高電界の電極部分からの電界放出電子、(lO)
は散乱電子、(11)は陰極線管本体を示す。
In the figure, (1) is a low voltage electrode (2a), (2b)
, (2c), an electron gun consisting of a focusing electrode (3) and an anode (4), (5) a glass bulb that houses this electron gun (1) and whose interior is kept in a high vacuum, (6) is a conductive film coated on the inner surface of this glass bulb (5), (7) is a high voltage power supply connected to this conductive film (6), and (8) is 1-
A control power source for supplying voltage to the low voltage electrodes (2a), (2b), (2c) and the focusing electrode (3), (
9) is the field emission electron from the high electric field electrode part, (lO)
indicates scattered electrons, and (11) indicates the cathode ray tube body.

つぎに動作について説明する。低圧電極(2a) 。Next, the operation will be explained. Low voltage electrode (2a).

(2b) 、 (2c)の部分において電子ビームを発
生し、その強さを制御する。収束電極(3)にはある−
・定の正極性電圧を、また、陽m (4)には正極性の
高電圧をそれぞれ与えて電子ビームを収束させる。
Electron beams are generated in parts (2b) and (2c), and their intensity is controlled. The focusing electrode (3) has -
- Converge the electron beam by applying a constant positive voltage and applying a positive high voltage to the positive m (4).

このとき、負極性の高電界となる収束電極(3)および
低圧電極(2c)の端部からは、第6図に示すような電
界放出電子(8)が発生する。また、電子ビームの1部
が収束電極(3)や陽極(4)に衝突し、散乱電子(1
0)も発生する。これらの電界放出電子(8)や散乱電
子(10)が多くなると、ガラスバルブ(5)の内面に
衝突してこの内面を帯電Sせ、その影響で電子ビームの
軌道がずれる。ガラスバルブ(5)の内面の帯電を抑制
するためには、ガラスバルブ内面の抵抗率を下げること
が必要である。
At this time, field emission electrons (8) as shown in FIG. 6 are generated from the ends of the focusing electrode (3) and the low voltage electrode (2c), which produce a high electric field of negative polarity. In addition, part of the electron beam collides with the converging electrode (3) and the anode (4), and the scattered electrons (1
0) also occurs. When these field emission electrons (8) and scattered electrons (10) increase, they collide with the inner surface of the glass bulb (5), charging the inner surface S, and the trajectory of the electron beam is shifted due to this influence. In order to suppress charging of the inner surface of the glass bulb (5), it is necessary to lower the resistivity of the inner surface of the glass bulb.

[発明が解決しようとする問題点] ところで、従来の陰極線管の製造方法は第5図に示すよ
うに、電子銃を組立てる工程A、組立てた電子銃を陰極
線管のガラスバルブ内に装着する工程B、ガラスバルブ
の真空排気を行なう工程C1高電圧を印加してシーズニ
ングを行なう工程F、および動作の調整、確認を行なう
工程Gとからなるが、このような方法では、ガラスバル
ブ内面の抵抗率を丁げるための処理がなんら施されてい
ないため、ガラスバルブ内面の帯電を抑えることができ
ず、電子ビーJ・の軌道がずれるのを抑制することが困
難であった。
[Problems to be Solved by the Invention] Incidentally, as shown in FIG. 5, the conventional method for manufacturing a cathode ray tube includes a step A of assembling an electron gun, and a step of mounting the assembled electron gun inside the glass bulb of the cathode ray tube. B. A step of vacuum evacuation of the glass bulb C1. A step F of seasoning by applying a high voltage, and a step G of adjusting and checking the operation. In this method, the resistivity of the inner surface of the glass bulb Since no treatment was applied to stop the glass bulb, it was not possible to suppress the charging on the inner surface of the glass bulb, and it was difficult to suppress the trajectory of the electronic bee J.

この発明は上記従来の欠点を解消するためになされたも
ので、バルブ内面の抵抗率を小さくしてガラスバルブ内
面の帯電を抑え9電子ビームの軌道がずれるのを抑制し
た陰極線管の製造方法を提供することを目的としている
This invention was made in order to eliminate the above-mentioned conventional drawbacks, and provides a method for manufacturing a cathode ray tube in which the resistivity of the inner surface of the bulb is reduced to suppress charging of the inner surface of the glass bulb, thereby suppressing deviation of the trajectory of the electron beam. is intended to provide.

[問題点を解決するための手段] この発明は、組立てた電子銃を陰極線管のガラスバルブ
内に設定して真空排気を行なった後、−1−記ガラヌバ
ルプ内に水素ガスを導入し、この水素ガス雰囲気中にお
いて]1記電子銃の周囲に放電プラズマを生成させるこ
とによりガラスバルブ内面および電子銃の電極表面を処
理し、その後H記ガラスバルブ内を再び真空まで排気し
て電子銃をガラスバルブ内に封止することを特徴とする
[Means for Solving the Problems] This invention involves setting the assembled electron gun in the glass bulb of a cathode ray tube and evacuation, and then introducing hydrogen gas into the galanus bulb described in -1- above. In a hydrogen gas atmosphere] 1) The inner surface of the glass bulb and the electrode surface of the electron gun are treated by generating discharge plasma around the electron gun, and then the inside of the glass bulb 1 is evacuated to vacuum again to remove the electron gun from the glass. It is characterized by being sealed inside the valve.

[作用] この発明においては、励起またはイオン化された水素分
子が、電子銃の近傍のガラスバルブ内面に衝突し、この
とき、ガラスバルブの主成分の1つである酸化鉛と還元
反応を生じてガラスバルブ内面に鉛を析出させ、この内
面を低抵抗化させるとともに、2次電子放出係数も低下
させる。さらに、放電プラズマ中の励起水素分子や水素
イオンが電極にも衝突し、このときの運動エネルギによ
って電極表面上の不純物を追い出し、また、電極表面」
二の酸化層と還元反応を起こして酸化層を除去し、電極
表面を清浄化する。
[Operation] In this invention, excited or ionized hydrogen molecules collide with the inner surface of the glass bulb near the electron gun, and at this time, a reduction reaction occurs with lead oxide, which is one of the main components of the glass bulb. Lead is precipitated on the inner surface of the glass bulb, lowering the resistance of this inner surface and lowering the secondary electron emission coefficient. Furthermore, excited hydrogen molecules and hydrogen ions in the discharge plasma also collide with the electrode, and the kinetic energy at this time drives out impurities on the electrode surface.
A reduction reaction occurs with the second oxide layer to remove the oxide layer and clean the electrode surface.

[実施例] 以下、この発明の実施例を図面にしたがって説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明による陰極線管の製造工程の−・例を
示している。第5図の従来のものと比べると、ガラスバ
ルブの真空排気後に水素ガスを封入して放電を行なう工
程りと、その後に再び真空排気を行なう工程Eとが新た
に付加されている。
FIG. 1 shows an example of a manufacturing process for a cathode ray tube according to the present invention. Compared to the conventional device shown in FIG. 5, a step of filling hydrogen gas and performing discharge after evacuation of the glass bulb, and a step E of performing evacuation again after that are newly added.

第2図は放電を行なう工程の一例を示している。図にお
いて、(12)は水素ガスが封入された陰極線管本体(
11)の高圧端子を高電圧の線に接触させるだめの接触
子、(13)は高電圧電源である。このようにしておく
と、ベルトコンベアで陰極線管本体(11)をいくつも
流しながら、高電圧を陰極線管本体(11)の電子銃(
1)の部分に印加することができる。印加する電圧は直
流、交流、パルスのいずれであってもよい。
FIG. 2 shows an example of the process of performing discharge. In the figure, (12) is the cathode ray tube body (
A contactor (11) is used to bring the high voltage terminal into contact with a high voltage line, and (13) is a high voltage power source. By doing this, a high voltage is applied to the cathode ray tube body (11) through the electron gun (
It can be applied to part 1). The applied voltage may be direct current, alternating current, or pulsed.

電子銃(1)に高電圧が印加ぎれると、水素ガスを介し
て陽極(4)と収束電極(3)、および陽極(4)と低
圧電極(2a) 、 (2b) 、 (2c)トc7)
間で放電が発生し、放電プラズマが・生じる。水素ガス
中の放電プラズマでは、水素分子が励起またはイオン化
され、電子銃(1)の近傍のガラスバルブ内面に衝突す
る。このとき、ガラスバルブ(5)の主成分の1つであ
る酸化鉛(PbO)と還元反応を生じてガラスバルブ内
面に鉛(p b)を析出させ、この内面を低抵抗化させ
る効果がある。この結果、ガラスバルブ(5)の内面が
帯電しにくくなるので、帯電による電子ビームの軌道の
ずれの少ない信頼性の高い陰極線管を製造することがで
きる。
When high voltage is no longer applied to the electron gun (1), hydrogen gas flows between the anode (4) and the focusing electrode (3), and between the anode (4) and the low-voltage electrodes (2a), (2b), (2c). )
A discharge occurs between the two, producing discharge plasma. In the discharge plasma in hydrogen gas, hydrogen molecules are excited or ionized and collide with the inner surface of the glass bulb near the electron gun (1). At this time, a reduction reaction occurs with lead oxide (PbO), which is one of the main components of the glass bulb (5), and lead (Pb) is deposited on the inner surface of the glass bulb, which has the effect of lowering the resistance of this inner surface. . As a result, the inner surface of the glass bulb (5) is less likely to be charged, so that a highly reliable cathode ray tube with less deviation in the trajectory of the electron beam due to charging can be manufactured.

このようにして処理yれた陰極線管本体(11)は、そ
の後カラスバルブ(5)内が再び真空まで排気され、電
子銃(+)はそのままガラスバルブ(5)内に封11−
される。
The cathode ray tube body (11) treated in this way is then evacuated to vacuum again in the glass bulb (5), and the electron gun (+) is sealed inside the glass bulb (5).
be done.

なお、上記実施例においては、高電圧を陽極(4)の部
分に印加したが、陽極(4)を接地し、低圧側のピン端
子を通して収束電極(3)か低圧電極(2a) 、 (
2b) 、 (2c)に高電圧を印加してもよい。
In the above embodiment, high voltage was applied to the anode (4), but the anode (4) was grounded and connected to the converging electrode (3) or the low voltage electrode (2a) through the pin terminal on the low voltage side.
A high voltage may be applied to 2b) and (2c).

第3図はこの発明の他の実施例を示している。FIG. 3 shows another embodiment of the invention.

この実施例では、電子銃(1)に近接してガラスバルブ
外部にコイル(14)を配設し、このコイル(14)に
高周波電源(15)から高周波電流を供給して電極の周
囲で放電プラズマを発生させるようにしている。
In this embodiment, a coil (14) is disposed outside the glass bulb close to the electron gun (1), and a high frequency current is supplied to this coil (14) from a high frequency power source (15) to discharge around the electrode. It is designed to generate plasma.

第3図の場合には電子銃(1)の部分に高周波磁界を印
加することになるが、これに代えて、たとえば平行平板
電極による高周波電界や、進行波管による高周波電磁界
を印加しても同様な放電プラズマを発生させることがで
きる。
In the case of Fig. 3, a high frequency magnetic field is applied to the electron gun (1), but instead of this, for example, a high frequency electric field from parallel plate electrodes or a high frequency electromagnetic field from a traveling wave tube may be applied. A similar discharge plasma can also be generated.

ところで、以−Lの説明では、カラスバルブ内面の低抵
抗化を主眼においたが、上記方法においては、ガラスバ
ルプ内面の2次電子放出係数を低減させる効果もある。
By the way, although the following explanation focuses on lowering the resistance of the inner surface of the glass bulb, the above method also has the effect of reducing the secondary electron emission coefficient of the inner surface of the glass bulb.

一般に、表面に入射するエネルギE(e’V)の電子に
よる2次電子放出係数δは、第4図のような特性を示す
。δwaxは最大2次電子放出係数で、E lllaw
はそのときの入射電子のエネルギである。ElおよびE
2はδ=1のときのエネルギである。鉛ガラスおよび鉛
の2次電了−放出特性は第1表に示したようになる。鉛
ガラスを水素プラズマで表面処理すると鉛が析出するが
、第1表かられかるように、鉛の2次電子放出係数は鉛
ガラスのそれよりも小さいので、2次電子放出係数が低
下し、ガラスバルブ(5)の内面の帯電を抑制すること
ができる。
Generally, the secondary electron emission coefficient δ due to electrons of energy E (e'V) incident on the surface exhibits characteristics as shown in FIG. δwax is the maximum secondary electron emission coefficient, Ellaw
is the energy of the incident electron at that time. El and E
2 is the energy when δ=1. The secondary electrification-emission characteristics of lead glass and lead are shown in Table 1. When lead glass is surface-treated with hydrogen plasma, lead precipitates, but as shown in Table 1, the secondary electron emission coefficient of lead is smaller than that of lead glass, so the secondary electron emission coefficient decreases. Electrification on the inner surface of the glass bulb (5) can be suppressed.

第1表 ごらに、L配力法においては、放電プラズマ中の励起水
素分子や水素イオンが電極にも衝突し。
As shown in Table 1, in the L distribution method, excited hydrogen molecules and hydrogen ions in the discharge plasma also collide with the electrode.

このときの運動エネルギによって電極表面上の不純物を
追い出し、また、電極表面上の酸化層と還元反応を起こ
して酸化層を除去し、電極表面を清浄化する。電極表面
−ヒの不純物や酸化層は電界放出電子の発生原因となり
、電界放出電子が多いと管内放電を誘発しやすいが、電
子銃の電極表面が放電プラズマにより清浄化される結果
、電界放出電子の発生を抑制することができるので、管
内放電の少ない信頼性の高い陰極線管を製造することが
できる。
The kinetic energy at this time drives out impurities on the electrode surface, and also causes a reduction reaction with the oxide layer on the electrode surface to remove the oxide layer and clean the electrode surface. Impurities and oxide layers on the electrode surface cause field emission electrons, and when there are many field emission electrons, it is easy to induce tube discharge, but as the electrode surface of the electron gun is cleaned by discharge plasma, field emission electrons are generated. Since the occurrence of can be suppressed, a highly reliable cathode ray tube with less internal discharge can be manufactured.

[発明の効果] 以。Lのように、この発明によれば、ガラスバルブ内面
の抵抗率および2次電子放出係数が小さくなり、帯電に
よる電子ビーム軌道のずれを抑制できるとともに、電子
銃の電極表面も放電プラズマにより清浄化され、電界放
出電子の発生原因となる不純物や酸化層が減少する結果
、管内放電の少ない信頼性の高い陰極線管の製造方法を
提供することができる。
[Effects of the invention] Below. According to this invention, as shown in L, the resistivity and secondary electron emission coefficient of the inner surface of the glass bulb are reduced, and the deviation of the electron beam trajectory due to charging can be suppressed, and the electrode surface of the electron gun is also cleaned by the discharge plasma. As a result, impurities and oxide layers that cause field emission electrons are reduced, and as a result, it is possible to provide a highly reliable method of manufacturing a cathode ray tube with less internal discharge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による陰極線管の製造工程を示す図、
第2図はこの発明における放電を行なう工程の一例を示
す図、第3図は放電を行なう工程の他の例を示す図、第
4図は表面に入射する電子のエネルギEと2次電子放出
係数δとの関係を示す特性図、第5図は従来の陰極線管
の製造工程を示す図、第6図は一般的な陰極線管の構造
を示す概略断面図である。 (1)・・・電子銃、(5)・・・ガラスバルブ、(1
3)・・・高圧電源、(14)・・・コイル、(15)
・・・高周波電源。 なお1図中同一・符号は、同一または相当部分を示す。
FIG. 1 is a diagram showing the manufacturing process of a cathode ray tube according to the present invention;
FIG. 2 is a diagram showing an example of the process of performing discharge in this invention, FIG. 3 is a diagram showing another example of the process of performing discharge, and FIG. 4 is a diagram showing the energy E of electrons incident on the surface and secondary electron emission. A characteristic diagram showing the relationship with the coefficient δ, FIG. 5 is a diagram showing the manufacturing process of a conventional cathode ray tube, and FIG. 6 is a schematic sectional view showing the structure of a general cathode ray tube. (1)...Electron gun, (5)...Glass bulb, (1
3)...High voltage power supply, (14)...Coil, (15)
...High frequency power supply. Note that the same reference numerals in Figure 1 indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)組立てた電子銃を陰極線管のガラスバルブ内に設
定して真空排気を行なつた後、上記ガラスバルブ内に水
素ガスを導入し、この水素ガス雰囲気中において上記電
子銃の周囲に放電プラズマを生成させることによりガラ
スバルブ内面および電子銃の電極表面を処理し、その後
上記ガラスバルブ内を再び真空まで排気して電子銃をガ
ラスバルブ内に封止することを特徴とする陰極線管の製
造方法。
(1) After setting the assembled electron gun inside the glass bulb of the cathode ray tube and evacuation, hydrogen gas is introduced into the glass bulb, and a discharge is made around the electron gun in this hydrogen gas atmosphere. Manufacture of a cathode ray tube characterized in that the inner surface of the glass bulb and the electrode surface of the electron gun are treated by generating plasma, and then the inside of the glass bulb is evacuated again to vacuum and the electron gun is sealed within the glass bulb. Method.
(2)電子銃の陽極または収束電極または低圧電極に高
電圧を印加することにより放電プラズマを生成させる特
許請求の範囲第1項記載の陰極線管の製造方法。
(2) A method for manufacturing a cathode ray tube according to claim 1, in which discharge plasma is generated by applying a high voltage to an anode, a focusing electrode, or a low-voltage electrode of an electron gun.
(3)電子銃にガラスバルブの外部から高周波磁界また
は高周波電界を印加することにより放電プラズマを生成
させる特許請求の範囲第1項記載の陰極線管の製造方法
(3) The method for manufacturing a cathode ray tube according to claim 1, wherein discharge plasma is generated by applying a high frequency magnetic field or a high frequency electric field to the electron gun from outside the glass bulb.
JP19823884A 1984-09-20 1984-09-20 Manufacture of cathode-ray tube Granted JPS6177234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19823884A JPS6177234A (en) 1984-09-20 1984-09-20 Manufacture of cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19823884A JPS6177234A (en) 1984-09-20 1984-09-20 Manufacture of cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS6177234A true JPS6177234A (en) 1986-04-19
JPH0250581B2 JPH0250581B2 (en) 1990-11-02

Family

ID=16387798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19823884A Granted JPS6177234A (en) 1984-09-20 1984-09-20 Manufacture of cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS6177234A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430374U (en) * 1990-07-05 1992-03-11

Also Published As

Publication number Publication date
JPH0250581B2 (en) 1990-11-02

Similar Documents

Publication Publication Date Title
US20070256927A1 (en) Coating Apparatus for the Coating of a Substrate and also Method for Coating
JPS6177234A (en) Manufacture of cathode-ray tube
JP4263861B2 (en) X-ray tube and manufacturing method thereof
US11205555B2 (en) Electron emission element and method for manufacturing same
JP3064214B2 (en) Fast atom beam source
JP3504290B2 (en) Method and apparatus for generating low energy neutral particle beam
US8735866B2 (en) High-voltage electronic device
JPS6177233A (en) Manufacture of cathode-ray tube
RU2817564C1 (en) Fast atom source for dielectric etching
JPH0586018B2 (en)
JPS6177231A (en) Manufacture of cathode-ray tube
JPS63221547A (en) Ion neutralizer
JP2001226762A (en) Method of manufacturing for magnesium oxide film
JPS58154200A (en) X-ray exposure apparatus
KR100443493B1 (en) Method for forming overcoat layer of ac plasma display panel, including steps of forming dielectric layer through printing, heating dielectric layer, and quickly cooling dielectric layer
JPH0665200B2 (en) High-speed atomic beam source device
JPH0751750B2 (en) Film forming equipment
JP3095565B2 (en) Plasma chemical vapor deposition equipment
JPS63205020A (en) Manufacture of vacuum switch tube insulating container
Sudan et al. Field Emission from Vacuum‐Deposited Metallic Film and its Role in Electric Breakdown in Vacuum
JPH0517797Y2 (en)
JPH0246626A (en) Spot knocking method of electron gun mount structure
JP2812517B2 (en) Ion plating method and apparatus
JPS5924186B2 (en) sputtering equipment
JPS6177232A (en) Manufacture of cathode-ray tube