KR100443493B1 - Method for forming overcoat layer of ac plasma display panel, including steps of forming dielectric layer through printing, heating dielectric layer, and quickly cooling dielectric layer - Google Patents

Method for forming overcoat layer of ac plasma display panel, including steps of forming dielectric layer through printing, heating dielectric layer, and quickly cooling dielectric layer Download PDF

Info

Publication number
KR100443493B1
KR100443493B1 KR1019970008677A KR19970008677A KR100443493B1 KR 100443493 B1 KR100443493 B1 KR 100443493B1 KR 1019970008677 A KR1019970008677 A KR 1019970008677A KR 19970008677 A KR19970008677 A KR 19970008677A KR 100443493 B1 KR100443493 B1 KR 100443493B1
Authority
KR
South Korea
Prior art keywords
dielectric layer
forming
layer
heating
plasma display
Prior art date
Application number
KR1019970008677A
Other languages
Korean (ko)
Other versions
KR19980073423A (en
Inventor
권혁채
Original Assignee
오리온전기 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오리온전기 주식회사 filed Critical 오리온전기 주식회사
Priority to KR1019970008677A priority Critical patent/KR100443493B1/en
Publication of KR19980073423A publication Critical patent/KR19980073423A/en
Application granted granted Critical
Publication of KR100443493B1 publication Critical patent/KR100443493B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

PURPOSE: A method is provided to efficiently prevent penetration of charged particles by forming an overcoat layer having a micro structure, and achieve improved discharge characteristics by quickly cooling a dielectric layer. CONSTITUTION: A method comprises a step(100) of forming a dielectric layer through a printing method; a step(200) of heating the surface of the dielectric layer by the temperature of 450 to 550 Deg.C through a laser irradiation method; and a step(300) of forming an overcoat layer on the surface of the dielectric layer, by quickly cooling the dielectric layer by performing at least one of the process of injecting gas of 70 to 100 Deg.C, process of leaving the dielectric layer in an ordinary temperature, and the process of spraying water solution of electron emission material to the dielectric layer or dipping the dielectric layer into water solution of electron emission material.

Description

교류형 플라즈마 표시소자의 보호층 형성방법Method for forming protective layer of AC plasma display device

본 발명은 교류(AC)형 플라즈마 표시소자(PDP)의 제조에 관한 것으로, 특히 유전층을 보호하는 보호층을 형성하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the manufacture of alternating current (AC) type plasma display devices (PDPs), and more particularly to a method of forming a protective layer for protecting a dielectric layer.

기체방전현상을 화상표시에 이용하는 PDP의 가장 기본저인 구성은 직류(DC)형 PDP로서, 이는 제1도에서 그 사이에 방전기체가 충전된 두 기판(P1,P2)에 전극(E1,E2)를 교차대향시킨 구성을 가진다(B는 격벽임).The most basic configuration of a PDP that uses gas discharge for image display is a direct current (DC) type PDP, which is an electrode (E1, E2) on two substrates (P1, P2) filled with a discharge gas therebetween in FIG. Has a configuration in which they face each other (B is a bulkhead).

이러한 DC형 PDP는 그 구조 및 구동이 극히 간단하지만 방전개시가 지연되고 선택시에만 방전이 일어나므로 일반적인 주사(scan)방식으로 구동하면 듀티 타임(duty time)이 짧아 발광휘도가 낮고, 이에 따라 고해상도나 동화상 표시에는 사용이 곤란하다.Such DC type PDP is extremely simple in structure and operation, but the discharge start is delayed and discharge occurs only at the time of selection. Therefore, when driving by the general scan method, the duty time is short and the luminous intensity is low. It is difficult to use for moving picture display.

방전개시의 촉진과 방전의 유지를 위해 여러 가지 다른 방식의 PDP가 출현한 바, 그중 대표적인 것이 AC형 PDP인데 이는 어느 한 전극(예를들어 E2)상에 유전층(I)을 적층하여 구성되고, 유전층(I)을 통해 대전되어 형성되는 벽전하(wall discharge)에 의해 신속한 방전과 메모리효과를 구현하게 된다.In order to promote the discharge start and maintain the discharge, various types of PDPs have emerged. Among them, an AC type PDP is a typical one, which is formed by stacking a dielectric layer I on one electrode (for example, E2). The wall discharge formed by charging through the dielectric layer I realizes rapid discharge and memory effects.

이러한 유전층(I)을 포함하여 각 기능층(E1,E2,B)들은 원가와 공정의 편의상 후막(厚膜)방법인 인쇄에 의해 구성된다. 유전층(I)은 주로 SiO2등의 입자를 페이스트(paste)상으로 인쇄하여 소성(燒成)함으로써 구성되는 바, 완성된 유전층(I)은 도2에 확대 도시된 바와 같이 비교적 큰 입자(G)들로 구성되어 그 사이에 상당한 틈새가 형성된다.Each of the functional layers E1, E2, and B, including the dielectric layer I, is configured by printing, which is a thick film method, for cost and convenience of processing. The dielectric layer I is mainly formed by printing and firing particles such as SiO 2 onto a paste. The finished dielectric layer I is relatively large as shown in FIG. 2. And a significant gap is formed between them.

그런데 PDP는 방전소자인 바, 방전공간내의 하전입자들의 유전층(I)의 틈새를 통해 전극(E2; 특히 음극)을 스퍼터링(sputtering) 하여 손상시키는 문제가 있다.However, since the PDP is a discharge device, there is a problem of sputtering and damaging the electrode E2 (particularly the cathode) through the gap of the dielectric layer I of the charged particles in the discharge space.

이에 따라 유전층(I)상에는 MgO등의 증착(deposition)에 의해 보호층(overcoat layer;T)을 형성해주게 된다. MgO로 된 보호층(T)은 또한 방전개시전압을 낮춰 주는 역할을 수행하게 된다.Accordingly, an overcoat layer (T) is formed on the dielectric layer (I) by deposition of MgO or the like. The protective layer T made of MgO also serves to lower the discharge start voltage.

그러나 이러한 보호층(T)이 증착등 박막방법에 의해 형성됨에 따라 PDP의 시설 및 제조원가가 크게 상승될 뿐만아니라, MgO 보호층(T)은 오염되기 쉬워 고청정 환경을 요구하며 취성(脆性)을 가져 크랙(crack)이 발생되기 쉬운 등 여러 가지 문제가 있다.However, as the protective layer (T) is formed by a thin film method such as vapor deposition, not only the facility and manufacturing cost of the PDP is greatly increased, but also the MgO protective layer (T) is prone to contamination, requiring a high clean environment and brittleness. There are a variety of problems such as cracks are likely to occur.

이와 같은 종래의 문제점을 감안하여 본 발명의 목적은 박막방법에 의존하지 않고 보호층을 형성하는 방법을 제공하는 것이다.In view of such a conventional problem, an object of the present invention is to provide a method for forming a protective layer without depending on the thin film method.

도 1은 AC형 PDP의 기본적 구성을 보이는 단면도.1 is a cross-sectional view showing the basic configuration of an AC PDP.

도 2는 유전층상의 보호층의 구성을 보이는 부분확대 단면도.2 is a partially enlarged cross-sectional view showing the configuration of a protective layer on a dielectric layer.

도 3은 본 발명 방법의 흐름도.3 is a flow chart of the method of the present invention.

도 4는 이에 따른 본 발명의 한 실시예의 흐름을 보이는 순차적 단면도들.Figure 4 is a sequential cross-sectional view showing the flow of one embodiment of the present invention accordingly.

도 5는 본 발명의 다른 실시예의 작용을 보이는 개념도이다.5 is a conceptual diagram showing the operation of another embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

Pl,P2 : 기판Pl, P2: Substrate

E1,E2 : 전극E1, E2: electrode

I : 유전층(dielectric layer)I: dielectric layer

T : 보호층(overcoat layer)T: overcoat layer

G : (유전층의) 입자G: Particles (of the dielectric layer)

G' : (보호층의) 미세입자G ': microparticles (of protective layer)

M : 전자방출물질M: electron emitting material

Ne: 방전기체Ne: discharge gas

상술한 목적의 달성을 위대 본 발명에 의한 방법은 후막방법에 의대 유전층을 형성하여, 이 유전층의 표면을 고온으로 가열한 뒤, 이를 급냉(急冷)시키는 것을 특징으로 한다.The method according to the present invention for achieving the above object is characterized by forming a medical dielectric layer in a thick film method, heating the surface of the dielectric layer to a high temperature, and then quenching it.

본 발명의 다른 특징에 의하면 이러한 급냉은 유전층의 표면가열후 전자방출 물질의 수용액의 분사 또는 침지(浸漬)로 냉각시킴으로써 이루어진다.According to another feature of the invention, such quenching is accomplished by cooling the surface of the dielectric layer by spraying or dipping the aqueous solution of the electron-emitting material.

[실시예]EXAMPLE

[실시예 1]Example 1

이하 첨부된 도면을 참조하여 본 발명의 한 바람직한 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도3의 단계(100)에서 전극(도1의 E2)상에는 인쇄등 일반적인 후막방법에 의해 유전층(I)이 형성된다. 유전층(I)은 후막방법으로 형성되므로 그 입자(G)의 입경이 상당히 크며 입자(G)간에 틈새가 형성된 엉성한 구조가 된다.In step 100 of FIG. 3, a dielectric layer I is formed on an electrode (E2 in FIG. 1) by a general thick film method such as printing. Since the dielectric layer (I) is formed by a thick film method, the particle size of the particles (G) is considerably large, and a rough structure is formed in which a gap is formed between the particles (G).

여기서 유전층(I)은 주로 흑색안료가 포함된 SiO2를 주성분으로 조성되는 바, 입자(G)는 SiO2입자나 안료 또는 PbO2등의 입자가 되고, 소성에 의해 이들 입자(G)는 서로 그 표면의 일부가 부착되어 있는 상태이다.Here, the dielectric layer (I) is mainly composed of SiO 2 containing a black pigment as a main component, the particles (G) are SiO 2 particles, pigments or particles such as PbO 2 , and these particles (G) are mutually by firing A part of the surface is attached.

다음 도3의 단계(200) 및 도 4b와 같이 유전층(I)의 표면을 소정의 온도로 가열하게 된다. 여기서 가열온도는 유전층(I)의 주성분인 SiO2의 재결정(再結晶) 온도 이상인 450℃ 내지 550℃ 정도인 것이 바람직하며, 표면가열이므로 소성로 등과 같은 분위기 가열이 아닌 복사열에 의한 가열인 것이 바람직하다.Next, as shown in FIG. 3 and FIG. 4B, the surface of the dielectric layer I is heated to a predetermined temperature. In this case, the heating temperature is preferably about 450 ° C. to 550 ° C., which is equal to or higher than the recrystallization temperature of SiO 2 , which is the main component of the dielectric layer (I). .

여기서 표면가열의 수단으로 바람직한 방법은 레이저광(光)의 조사(照射)인 바, 레이저 열원은 고밀도의 에너지를 한정된 면적에 순간적으로 집중인가할 수 있어 바람직하다.The preferred method for the surface heating means is irradiation of laser light, and the laser heat source is preferable because it can instantly concentrate high-density energy in a limited area.

다음 도3의 단계(300) 및 도 4c와 같이 가열된 유전층(I)의 표면을 소정 냉매(A)에 의해 급냉시키게 된다.Next, the surface of the heated dielectric layer I as shown in FIG. 3 and FIG. 4C is quenched by a predetermined refrigerant A. Referring to FIG.

그러면 도4d와 같이 유전층(I)의 표면 주위의 입자(G)가 조밀한 미세입자(G')로 재결정되어 유전층(I)상에 치밀한 구조의 보호층 (T)을 형성하게된다.Then, as shown in FIG. 4D, the particles G around the surface of the dielectric layer I are recrystallized into dense fine particles G ′ to form a dense protective layer T on the dielectric layer I.

여기서 표면가열 및 급냉에 의해 입자(G)가 미세입자(G')로 변화되는 것은 결정의 크기, 즉 입경이 용융상태로부터의 냉각속도가 빠를수록 작아지기 때문이다. 또한 재결정되는 입자(G)는 주로 SiO2입자가 된다.The reason why the particles (G) are changed to the fine particles (G ') by surface heating and quenching is because the size of the crystal, that is, the particle size decreases as the cooling rate from the molten state increases. In addition, particles (G) that is recrystallized mainly SiO 2 particles.

한편 표면가열후 급냉에 사용되는 냉매(A)는 복사열에 의한 경우 기판(도1의 P1,P2)도 어느 정도 가열된 상태일 것이므로 냉매(A)와의 온도차가 너무 크면 기판(Pl,P2)에 손상이 발생될 우려가 있다. 그러므로 냉매(A)는 70∼100℃ 정도로 가열된 공기나 불활성기체인 것이 적절하다.On the other hand, the refrigerant (A) used for quenching after surface heating will be heated to some extent in the case of radiant heat, so if the temperature difference with the refrigerant (A) is too large, the substrate (P1, P2) Damage may occur. Therefore, the refrigerant A is appropriately air or inert gas heated to about 70 to 100 ° C.

한편 레이저조사에 의한 표면 가열시에는 그 가열범위가 미세하게 한정되어 기판(P1,P2)까지 전열(傳熱)되지 않게 되므로 이 경우에는 가열 후, 상온에 그대로 방치하여도 기판(P1,P2)에 손상이 발생되지 않게 되며 상온방치 자체가 급냉이 된다.On the other hand, when the surface is heated by laser irradiation, the heating range is minutely limited so that it is not transferred to the substrates P1 and P2. In this case, the substrates P1 and P2 may be left at room temperature after heating. No damage occurs and the room temperature itself is quenched.

이상과 같이 본 발명에 의하면 유전층 자체로서 그 표면에 보호층을 형성하게 되므로 그 공정이 매우 간단하고 공정원자가 낮으며 주위 환경에 대한 요구 조건도 완화되게 된다.As described above, according to the present invention, since the protective layer is formed on the surface of the dielectric layer itself, the process is very simple, the process atoms are low, and the requirements for the surrounding environment are also relaxed.

[실시예 2]Example 2

한편 본 발명의 다른 특징을 구현하는 방법은 역시 도3에 도시된 바와 같이 후막공정에 의한 유전층 (도1의 I)의 형성후(단계 100), 이 유전층(I)의 표면을 가열한 뒤(단계 200), 이를 급냉시켜(단계 300) 유전층(I) 표면에 치밀한 구조의 보호층(T)를 형성하는 과정으로 이루어진다.On the other hand, a method for implementing another feature of the present invention is also shown in Figure 3 after the formation of the dielectric layer (I in Figure 1) by the thick film process (step 100), after heating the surface of the dielectric layer (I) ( Step 200), it is quenched (step 300) to form a protective layer (T) of dense structure on the surface of the dielectric layer (I).

이러한 방법은 기본적으로 전술한 실시예1의 방법과 유사한바, 본 발명의 다른 특징에 의하면 이 급냉과정을 전자방출물질 수용액의 분사(噴射) 또는 침지(浸漬)에 의해 수행하게 된다.This method is basically similar to the method of Example 1 described above. According to another feature of the present invention, the quenching process is performed by spraying or dipping the aqueous solution of electron-emitting material.

전자방출물질로 사용될 수 있는 것은 Ba,Mg,La 또는 Cr 등의 금속의 단체 또는 그 산화물인 것이 바람직한 바, 이들은 은도나 외부전하의 충격 등에 의해 쉽게 전자를 방출하는 물질들이다.It can be used as the electron emitting material is preferably a single metal or an oxide thereof of a metal such as Ba, Mg, La or Cr, these are materials that easily emit electrons by the impact of silver or external charge.

이러한 전자방출물질의 수용액를 가열한 유전층(I)상에 분사 또는 침지하게 되면 유전층(I)의 표면에 있는 입자(G)들이 급냉되어 미세입자로 재결정되는 동시에, 이 미세입자들간의 틈새에 전자방출물질 수용액이 침투하여 함침된다.When the aqueous solution of the electron-emitting material is sprayed or immersed on the heated dielectric layer (I), the particles (G) on the surface of the dielectric layer (I) are quenched and recrystallized into fine particles, and at the same time, electrons are released in the gaps between the fine particles. Impregnated with aqueous solution of material.

유전층(I)을 건조시키고 나면 유전층(I)의 표면에는 그 사이의 틈새에 전자 방출물질이 잔류하는 미세입자들로된 보호층(T)이 형성된다.After the dielectric layer (I) is dried, a protective layer (T) is formed on the surface of the dielectric layer (I) made of fine particles in which an electron emission material remains in a gap therebetween.

여기서 전자방출물질은 보호층(T)의 틈새를 차단하여 전극(E2)의 스퍼터링을 방지하는 동시에, 도 5와 같은 작용으로 방전특성을 향상 시키게 된다.Here, the electron-emitting material prevents sputtering of the electrode E2 by blocking the gap of the protective layer T, and at the same time, improves discharge characteristics by the same action as in FIG. 5.

도 5에서, 방전공간내의 Ne 또는 Ar등의 방전기체(Ne)는, 유전층 (I)의 표면(실제로는 보호층(T)의 표면)에 대전된 전하에 의한 이온화(ionization)와 여기(excitation) 및 페닝(penning) 등 여러 가지 기구(mechanism)를 통해 1차적으로 전자를 방출한 뒤, 이를 전자 및 이온들이 다시 전하(電荷)등과 연쇄방응하여 다량의 전자방출, 즉 방전을 일으키게 된다.In Fig. 5, the discharge gas Ne such as Ne or Ar in the discharge space is ionized and excited by charges charged on the surface of the dielectric layer I (actually the surface of the protective layer T). After first emitting electrons through various mechanisms such as) and penning, the electrons and ions are reacted with charges again to generate a large amount of electrons, that is, discharges.

이때 유전층(I) 표면의 보호층(T)에 함침된 전자방출물질(M)은 이온 및 전자등의 전하에 의해 여기되어 다량의 2차 전자를 방출하게 된다.At this time, the electron-emitting material M impregnated in the protective layer T on the surface of the dielectric layer I is excited by electric charges such as ions and electrons to emit a large amount of secondary electrons.

이에 따라 PDP의 방전개시전압이 저하되어 신속한 방전개시가 가능할 뿐 아니라 방전강도도 향상된다.As a result, the discharge start voltage of the PDP is lowered, which enables rapid discharge start and also improves the discharge strength.

이와 같이 본 발명에 의하면 유전층 자체로 그 표면에 보호층을 형성하면서 이에 우수한 전기적 특성을 부여함으로써 고선응의 AC형 PDP를 낮은 제조원가로 구현하게 된다.As described above, according to the present invention, a protective layer is formed on the surface of the dielectric layer itself, thereby imparting excellent electrical characteristics, thereby implementing a high linear AC type PDP at low manufacturing cost.

그러면 가열된 유전층 표면의 입자가 금냉되어 입경(粒經)이 미세하게 재형성, 즉 미세입자로 재결정 됨으로써 치밀한 구조를 형성함으로써 하전입자의 침투를 효율적으로 방지할 수 있게 되며, 본 발명의 다른 특징인 구현시에는 이와 동시에 미세입자간의 틈새에 전자방출 물질이 함침(含寢)되어 2차 전차방출 등 방전특성을 향상시킬 수 있게 된다.Then, the particles on the surface of the heated dielectric layer are quenched so that the particle size is finely reshaped, that is, recrystallized into fine particles to form a dense structure, thereby effectively preventing the penetration of charged particles. At the same time, the electron-emitting material is impregnated into the gap between the fine particles, thereby improving discharge characteristics such as secondary tank emission.

Claims (2)

교류형 플라즈마의 유전층상에 보호층을 형성하는 방법에 있어서,In the method of forming a protective layer on the dielectric layer of the alternating plasma, 상기 유전층을 후막방법으로 형성하고,The dielectric layer is formed by a thick film method, 상기유전층의 표면을 450℃ 내지 550℃의 소정온도로 레이저 조사에 의해 가열한 뒤,After heating the surface of the dielectric layer to a predetermined temperature of 450 ℃ to 550 ℃ by laser irradiation, 이를 70~100℃의 기체분사로 급냉하는 단계, 상온방치하여 급냉하는 단계 및 상기 유전층에 대한 전자방출물질의 수용액의 분사 또는 침지에 의한 급냉단계 중 적어도 하나를 실시하여 상기 유전층의 표면에 조밀한 구조의 보호층을 형성하는 것을 특징으로 하는 교류형 플라즈마 표시소자의 보호층 형성방법.At least one of the step of quenching by gas injection at 70 to 100 ° C., quenching by standing at room temperature, and quenching by spraying or immersing an aqueous solution of electron-emitting material on the dielectric layer to form a dense surface of the dielectric layer. A protective layer forming method for an alternating current plasma display device, characterized by forming a protective layer having a structure. 제1항에 있어서, 급냉단계가 상기 유전층에 대한 전자방출물질의 수용액의 분사 또는 침지에 의한 급냉단계인 경우, 상기 전자방출물질이 Ba, Mg, La 또는 Cr 중의 적어도 어느 하나의 단체 또는 그 산화물인 것을 특징으로 하는 교류형 플라즈마 표시소자의 보호층 형성방법.The method of claim 1, wherein when the quenching step is a quenching step by spraying or immersing an aqueous solution of the electron-emitting material on the dielectric layer, the electron-emitting material is at least one of Ba, Mg, La, or Cr, or an oxide thereof. A protective layer forming method for an alternating current plasma display device, characterized in that.
KR1019970008677A 1997-03-14 1997-03-14 Method for forming overcoat layer of ac plasma display panel, including steps of forming dielectric layer through printing, heating dielectric layer, and quickly cooling dielectric layer KR100443493B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970008677A KR100443493B1 (en) 1997-03-14 1997-03-14 Method for forming overcoat layer of ac plasma display panel, including steps of forming dielectric layer through printing, heating dielectric layer, and quickly cooling dielectric layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970008677A KR100443493B1 (en) 1997-03-14 1997-03-14 Method for forming overcoat layer of ac plasma display panel, including steps of forming dielectric layer through printing, heating dielectric layer, and quickly cooling dielectric layer

Publications (2)

Publication Number Publication Date
KR19980073423A KR19980073423A (en) 1998-11-05
KR100443493B1 true KR100443493B1 (en) 2004-10-14

Family

ID=37357662

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970008677A KR100443493B1 (en) 1997-03-14 1997-03-14 Method for forming overcoat layer of ac plasma display panel, including steps of forming dielectric layer through printing, heating dielectric layer, and quickly cooling dielectric layer

Country Status (1)

Country Link
KR (1) KR100443493B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192630A (en) * 1993-12-27 1995-07-28 Oki Electric Ind Co Ltd Gas discharge display panel and its protective film forming method
JPH07230766A (en) * 1994-02-18 1995-08-29 Oki Electric Ind Co Ltd Gas discharge display panel and its protecting film forming method
JPH08153470A (en) * 1994-11-29 1996-06-11 Oki Electric Ind Co Ltd Protective film of gas discharge panel and method for forming it
KR19980069494A (en) * 1997-02-28 1998-10-26 엄길용 Method for forming protective layer of AC plasma display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192630A (en) * 1993-12-27 1995-07-28 Oki Electric Ind Co Ltd Gas discharge display panel and its protective film forming method
JPH07230766A (en) * 1994-02-18 1995-08-29 Oki Electric Ind Co Ltd Gas discharge display panel and its protecting film forming method
JPH08153470A (en) * 1994-11-29 1996-06-11 Oki Electric Ind Co Ltd Protective film of gas discharge panel and method for forming it
KR19980069494A (en) * 1997-02-28 1998-10-26 엄길용 Method for forming protective layer of AC plasma display device

Also Published As

Publication number Publication date
KR19980073423A (en) 1998-11-05

Similar Documents

Publication Publication Date Title
KR100894064B1 (en) A MgO protecting layer comprising electron emission promoting material , method for preparing the same and plasma display panel comprising the same
CA1145384A (en) Crt with means for suppressing arcing therein
US6013309A (en) Protection layer of plasma display panel and method of forming the same
KR100443493B1 (en) Method for forming overcoat layer of ac plasma display panel, including steps of forming dielectric layer through printing, heating dielectric layer, and quickly cooling dielectric layer
JPH07201280A (en) Secondary electron emitting material for plasma display
KR100186542B1 (en) Color plasma display panel and its manufacturing method
KR100813834B1 (en) Method of manufacturing display device comprising oxidized porous silicon material-based electron emission source
KR19980069494A (en) Method for forming protective layer of AC plasma display device
JP3884814B2 (en) Manufacturing apparatus and method for organic EL light emitting device
KR19980069493A (en) Method for forming protective layer of AC plasma display device
US7915153B2 (en) Passivation film and method of forming the same
KR910007698B1 (en) Method of manufacturing the crt
KR100266210B1 (en) Plasma display panel
KR100186541B1 (en) Color Plasma Display Panel
KR100281072B1 (en) Paste for manufacturing thin film of protecting layer in A.C Plasma Display Panel
JP2002212715A (en) Method for forming thin film and method for manufacturing plasma display panel
KR100502464B1 (en) Structure and Formation Method of Plasma Display Device
KR19990030734A (en) Manufacturing Method of Plasma Display Panel
KR100239471B1 (en) Protection layer of pdp and manufacturing method thereof
JPS58154200A (en) X-ray exposure apparatus
KR100502332B1 (en) Plasma display panel
KR19990034465A (en) Method for forming protective layer of AC plasma display device
JPH06325713A (en) Metal ion source
JPS61276966A (en) High-frequency sputtering method for electrifiable material
KR100189613B1 (en) Plasma display panel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130620

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee