JPH0322528A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0322528A
JPH0322528A JP15808989A JP15808989A JPH0322528A JP H0322528 A JPH0322528 A JP H0322528A JP 15808989 A JP15808989 A JP 15808989A JP 15808989 A JP15808989 A JP 15808989A JP H0322528 A JPH0322528 A JP H0322528A
Authority
JP
Japan
Prior art keywords
semiconductor
heat treatment
insulating layer
region
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15808989A
Other languages
Japanese (ja)
Other versions
JP2794594B2 (en
Inventor
Toshiki Hamashima
濱嶋 俊樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP15808989A priority Critical patent/JP2794594B2/en
Publication of JPH0322528A publication Critical patent/JPH0322528A/en
Application granted granted Critical
Publication of JP2794594B2 publication Critical patent/JP2794594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the removal of the ion-implanted regions at the highest concentration even in case the parts beneath contact windows are removed by overetching process by a method wherein the first heattreatment process expanding ion implanted regions to some extent is performed before making contact windows and then the contact windows are made in an insulating film. CONSTITUTION:Before or after the formation of an insulating layer 12 such as SiO2, etc., on the whole surface, the first heat treatment process is performed e.g. in N2 atmosphere at 850 deg.C for 60 minutes meeting the requirements which will not suffice for the activation of ion implanted in the ion-implanted regions 11 but will be effective for expanding the ion-implanted regions 11 deeper than the etching depth (d) in the surface of a semiconductor substrate 21 in case of making contact windows 13. Next, the contact windows 13 are made in the insulating layer 12 corresponding to the respective regions 11 simultaneously forming recessions 25 by the depth (d) on the surface of the semiconductor substrate 21. Next, the whole surface of the insulating layer 12 is coated with semiconductor 14 e.g. polycrystal silicon and etched back so as to be buried in the contact windows 13 e.g. by low pressure CVD process so that the surface of the semiconductor 14 may be almost flush with the surface of the insulating film 12. Next, the semiconductor 14 is doped with an impurity and the second heat treatment is performed. Finally, e.g. metal wirings 26 striding over the buried in semiconductor 14 are formed after a specific pattern.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製法、特に不純物イオン注入に
よって所要の半導体領域を形成する工程を含む半導体装
置の製法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device including a step of forming a required semiconductor region by implanting impurity ions.

〔発明の概要〕[Summary of the invention]

本発明は、半導体装置の製法に係わり、不純物のイオン
注入工程と、絶縁層の形成工程と、この絶縁層の形成工
程の前または後に行う第1の熱処理工程と、この絶縁層
に対するコンタクト窓開け工程と、このコンタクト窓内
に半導体を埋込む工程と、第2の熱処理工程とを経るも
のであって、その第1の熱処理工程は、上記コンタクト
窓開けに生じるオーバーエッチの深さより深くイオン注
入領域を広げる熱処理条件によってなし、第2の熱処理
工程は、イオン注入領域が目的とする半導体装置の構或
領域としての機能を発揮するための活性化を行う熱処理
条件によってなして、上記構成領域を浅く、しかもこの
構威領域上のコンタクト窓内に埋め込まれた半導体との
オーコツクコンタクトを良好に行うことができるように
する。
The present invention relates to a method for manufacturing a semiconductor device, and includes an impurity ion implantation step, an insulating layer forming step, a first heat treatment step performed before or after the insulating layer forming step, and a contact window opening for the insulating layer. a process of embedding a semiconductor in the contact window, and a second heat treatment process, the first heat treatment process being an ion implantation process deeper than the depth of the overetch that occurs in the contact window opening. The second heat treatment step is performed under heat treatment conditions that activate the ion implantation region to function as a component region of the intended semiconductor device, thereby expanding the region. To enable good contact with a semiconductor embedded in a shallow contact window on this structure region.

〔従来の技術〕[Conventional technology]

半導体装置、特に半導体集積回路における高集積度化に
伴いその半導体回路素子の構成領域への電極配線のコン
タクトの面積も縮小化され、これに伴ってその措威領域
を覆って形成される絶縁層のコンタクト窓のアスペクト
比(厚さ/幅)が大となってくる。このようにコンタク
ト窓のアスベクト比が大となると、このコンタク1・窓
を通してこの構威領域に例えばAl電極配線を入り込ま
せてこれをオーミックにコンタク1・させることは、い
わゆるカバレージが悪るくなり、そのコンタクトを良好
に行い難くなり、信頼性の低下を来す。
As the degree of integration in semiconductor devices, especially semiconductor integrated circuits, increases, the area of contact of electrode wiring to the component area of the semiconductor circuit element is also reduced, and as a result, an insulating layer is formed to cover the area. The aspect ratio (thickness/width) of the contact window becomes large. When the aspect ratio of the contact window becomes large in this way, it is difficult to insert, for example, an Al electrode wiring into this structure area through this contact window and make it an ohmic contact, resulting in poor coverage. , it becomes difficult to make good contact, resulting in a decrease in reliability.

このような不都合を回避するものとして、絶縁層のコン
タクト窓内に例えば多結晶シリコンを埋め込んで表面の
平坦化をはかってこの埋め込み半導体上を含んで絶縁層
上に跨るAffi配線を施す構造をとるものが提案され
ている。しかし、この構造による場合、その埋め込まれ
た多結晶シリコンの導電性をはかるために多結晶シリコ
ン中にドープした不純物を活性化する熱処理が必要とな
る。
In order to avoid such inconveniences, a structure is adopted in which, for example, polycrystalline silicon is buried in the contact window of the insulating layer, the surface is flattened, and Affi wiring is provided over the insulating layer, including over the buried semiconductor. something is proposed. However, with this structure, heat treatment is required to activate impurities doped into the polycrystalline silicon in order to improve the conductivity of the buried polycrystalline silicon.

一方、半導体集積回路における高集積化に伴ってパター
ンの微細化をはかる上で、その構成領域例えばMOSト
ランジスタにおけるソース及びドレイン領域においては
、これらをより浅くする必要がある。したがってこれら
ソース及びドレイン領域の形成のためのイオン注入不純
物の活性化処理と上述したコンタクトホールに埋め込ま
れた多結晶における不純物の活性化の処理、すなわち高
温熱処理はできるだけ両者を同時に行って熱処理による
ソース及びドレイン領域の広がりを抑える。
On the other hand, in order to achieve finer patterns as semiconductor integrated circuits become more highly integrated, it is necessary to make their constituent regions, for example, the source and drain regions of MOS transistors, shallower. Therefore, the ion-implanted impurity activation process for forming these source and drain regions and the impurity activation process in the polycrystalline buried in the contact hole described above, that is, high-temperature heat treatment, should be performed simultaneously as much as possible. and suppress the expansion of the drain region.

つまり、これらソース及びドレイン領域のp−n接合の
広がりによる実効チャンネルの縮小化に基づくソース及
びドレイン間耐圧の不良の発生を回避する必要が生して
いる。
In other words, there is a need to avoid the occurrence of defects in breakdown voltage between the source and drain due to the reduction in the effective channel due to the expansion of the pn junction in the source and drain regions.

また、この種のコンタクト窓に半導体結晶を威長させ、
これにソース及びドレイン領域等の半導体領域から不純
物を拡散する方法の提案(特開昭60− 103646
号公開公報参照)もなされているが、この場合その拡散
と共に半導体領域すなわち接合の広がりも生じ、上述し
た実効チャンネルの縮小化等の問題が生しる。
In addition, by using semiconductor crystals in this type of contact window,
In addition, a proposal for a method of diffusing impurities from semiconductor regions such as source and drain regions (Japanese Patent Application Laid-Open No. 103646/1986)
However, in this case, along with the diffusion, the semiconductor region, that is, the junction, also expands, resulting in problems such as the reduction of the effective channel described above.

一方、浅い半導体領域すなわち浅い接合形成のためには
、不純物を半導体基体に導入するイオン注入の注入エネ
ルギーも下げる必要があり、その不純物の導入分布のピ
ーク位置は半導体基体表面側に片寄ることになってくる
。このため上述した絶縁層に対するコンタクト窓の形戒
に当って確実なコンタクト窓の形戒を行うべく多少オー
バーエッチを行う場合、例えばSift絶縁層に対する
RIEエッチング(反応性イオンエッチング)において
例えば60%オーハーエッヂング(60%オーバーエッ
チングとは絶縁層の厚さに相当するエッチングが終了す
るまでのジャストエッチング時間の60%程度の時間に
相当するオーバーエッチング)が行われるが、この場合
例えば第2図に示すように例えばシリコン半導体基体(
1)上のSin,絶縁層(2)に対するRIEをCHF
3ガスを用いて行うと、シリコン半導体基体(1)に対
してのエッチングが進行し、その基体表面が一部削り取
られて凹部(3)が生じることによって半導体基体表面
に形成された半導体素子の構戒領域(4)のイオン注入
の濃度分布のピーク位置部分が削り取られてしまう場合
が生しる。
On the other hand, in order to form a shallow semiconductor region, that is, a shallow junction, it is necessary to lower the implantation energy of ion implantation for introducing impurities into the semiconductor substrate, and the peak position of the impurity introduction distribution is biased toward the surface of the semiconductor substrate. It's coming. For this reason, in order to form a contact window for the above-mentioned insulating layer, if a certain amount of overetching is performed in order to form a reliable contact window, for example, 60% Hard etching (60% over-etching means over-etching corresponding to about 60% of the just etching time until the etching corresponding to the thickness of the insulating layer is completed), but in this case, for example, as shown in Fig. 2. As shown, for example, a silicon semiconductor substrate (
1) RIE on the upper Sin and insulating layer (2) using CHF
When etching is performed using 3 gases, etching progresses on the silicon semiconductor substrate (1), and a portion of the surface of the substrate is scraped off to form a recess (3), thereby etching the semiconductor element formed on the surface of the semiconductor substrate. There may be cases where the peak position of the ion implantation concentration distribution in the controlled region (4) is scraped off.

したがって、このコンタクト窓(5)内に多結晶シリコ
ン等の半導体(6)を埋め込んで、これに構威領域(4
)側から半導体(6)への不純物の拡散を行う前記特開
昭60−103646号公報に開示された方法をとった
場合でも、その埋め込まれた半導体(6)の底面からの
拡散が不充分となって側面からの不純物拡散が行われて
第3図中破線で示すように半導体(6)の被着部が実質
的に領域(4)から突き抜けたり、あるいはコンタクト
が不充分となるという結果を招来してそのコンタクトの
信頼性を低下するという不都合がある。
Therefore, a semiconductor (6) such as polycrystalline silicon is buried in this contact window (5), and a structural region (4) is embedded in this contact window (5).
) side into the semiconductor (6), even if the method disclosed in JP-A-60-103646 is used, the diffusion from the bottom of the buried semiconductor (6) is insufficient. As a result, impurity diffusion occurs from the side, and as shown by the broken line in FIG. 3, the deposited part of the semiconductor (6) substantially penetrates through the region (4), or the contact becomes insufficient. There is an inconvenience in that the reliability of the contact decreases.

因みに、第3図にオーバーエッチングと不純物濃度分布
との関係をみるに、第3図において横軸は半導体基体表
面からの深さ方向の距離をとったもので、実線曲線(3
l)は、厚さ100人のSing膜を通して20KeV
で3XIO′S/cdのドーズ量をもってBF2”をイ
オン注入した初期の濃度分布で、各破線曲線は、曲線(
31)の分布を有するものについてN2雰囲気中で11
00゜C,10秒間の熱処理を行って後の濃度分布で、
曲線(32)はオーハーエッチングを行わなかった場合
、曲線(33) , (34)及び(35)はそれぞれ
基体表面からlOO人,150人及び200入のオーハ
ーエッヂングを行った場合の濃度分布を示すものでその
オーハーエッチングが大となるほど濃度分布が低下して
いることがわかる。
Incidentally, looking at the relationship between overetching and impurity concentration distribution in Figure 3, the horizontal axis in Figure 3 is the distance in the depth direction from the semiconductor substrate surface, and the solid line curve (3
l) is 20 KeV through a 100-layer Sing film.
In the initial concentration distribution of BF2'' ion-implanted with a dose of 3XIO'S/cd, each dashed curve corresponds to the curve (
31) in an N2 atmosphere for those with a distribution of
The concentration distribution after heat treatment at 00°C for 10 seconds,
Curve (32) is the concentration distribution when no Oher etching is performed, and curves (33), (34), and (35) are the concentration distribution when Oher etching is performed from the substrate surface with 100, 150, and 200 pieces, respectively. It can be seen that the concentration distribution decreases as the Oher etching increases.

(発明が解決しようとする課題〕 本発明は、上述したように目的とする半導体装置の構威
領域に対してその構成領域を充分浅い状態に形成し、し
かもこれの上の絶縁層に穿設したアスベクト比の大きい
コンタクト窓内に半導体を埋め込んで電極配線のコンタ
クトを行うようにした半導体装置を得るに当り、その構
威領域すなわち接合を充分浅くしかも信頼性高く電極配
線の導出すなわちオーミックコンタクトをとることがで
きるようにした信頼性の高い半導体装置を得ることがで
きるようにする。
(Problems to be Solved by the Invention) As described above, the present invention is to form a constituent region sufficiently shallow with respect to the constituent region of the intended semiconductor device, and to form a perforation in an insulating layer thereon. In order to obtain a semiconductor device in which electrode wiring contacts are made by embedding a semiconductor in a contact window with a large aspect ratio, it is necessary to make the structure area, that is, the junction, sufficiently shallow and to reliably lead out the electrode wirings, that is, make ohmic contacts. To obtain a highly reliable semiconductor device that can be used in various ways.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、例えば第l図Aに示すように、目的とする半
導体装置の構或領域例えばソース及びドレイン領域を構
威するめの不純物の注入領域(1l)を構成する不純物
のイオン注入工程と、第l図Bに示すように、絶縁層(
12)の形成工程と、絶縁層(12)の形成工程の前ま
たは後に行う第1の熱処理工程と、絶縁層(12)に対
するコンタクト窓(13)を窓開けする工程と、第1図
Dに示すように、コンタクト窓(l3)内に半導体(1
4)を埋め込む工程と、第2の熱処理工程とを有して或
る。
As shown in FIG. 1A, for example, the present invention includes a step of ion-implanting impurities to form an impurity implantation region (1l) for forming a certain region of a target semiconductor device, such as a source and drain region; As shown in Figure 1B, an insulating layer (
12), a first heat treatment step performed before or after the step of forming the insulating layer (12), and a step of opening a contact window (13) for the insulating layer (12), as shown in FIG. 1D. As shown, a semiconductor (1
4) and a second heat treatment step.

そして、特に、第1の熱処理工程は不純物の活性化は行
う必要がなく、コンタクト窓(13)の窓開けに生しる
オーバーエッチングの深さより深くイオン注入を広げる
熱処理条件によってなされ、第2の熱処理工程は上記イ
オン注入領域(II)が目的とする半導体装置の構戒領
域としての機能を発揮するための不純物活性化を行う熱
処理条件によってなされる。
In particular, the first heat treatment step does not require activation of impurities, and is performed under heat treatment conditions that extend the ion implantation deeper than the depth of overetching that occurs when opening the contact window (13). The heat treatment step is performed under heat treatment conditions that activate impurities so that the ion implantation region (II) functions as a target region of the semiconductor device.

〔作用〕[Effect]

上述の本発明方法によれば、コンタクト窓(13)の窓
開けに先立ってイオン注入領域(l1)に対してその注
入不純物の活性化を充分行うには足らないが、その領域
(1l)をある程度広げる程度の第1の熱処理工程を施
して後に絶縁層(12)に対ずるコンタクl・窓(13
)の穿設工程を行うので、このコンタクト窓(13)の
窓開け工程においてオーバーエッチによってコンタクト
窓(13)下が削り取られた場合においてもイオン注入
領域(11)の濃度のピーク位置が削り取られることが
回避され、これによってこのコンタクト窓(13)内に
形成した半導体(14)とのコンクタト部における低濃
度化あるいは半導体(14)が領域(11)より最終的
に突き抜けるような不都合が回避されるのみならず、こ
の高不純物濃度の領域(11)から半導体(l4〉への
不純物の吸い上げ効果も生じ、良好なオーミックコンタ
クトがなされることとが相俟って信頼性の高い半導体装
置を得ることができる。しかもその不純物の活性化処理
を行う程度のすなわち一般に高温の熱処理は1回の熱処
理工程で行うことができるので最終的に不純物注入領域
(1l)によって構或される半導体装置の構成領域を浅
い領域として形成することができ、これによって全体の
面積の縮小化したがって集積回路においての高集積度化
、更に回路素子としての例えばMOS}ランジスクにお
ける短チャンネル効果の回避をもはかることができる。
According to the method of the present invention described above, although it is not sufficient to sufficiently activate the implanted impurities in the ion-implanted region (11) prior to opening the contact window (13), the region (11) is After applying the first heat treatment step to widen the insulation layer (12) to a certain extent, the contact l/window (13) is formed on the insulating layer (12).
), even if the bottom of the contact window (13) is scraped off due to over-etching in the process of opening the contact window (13), the peak concentration position of the ion implantation region (11) will be scraped off. This avoids problems such as low concentration in the contact area with the semiconductor (14) formed in the contact window (13) or the semiconductor (14) eventually penetrating through the region (11). Not only this, but also the effect of sucking up impurities from this high impurity concentration region (11) to the semiconductor (14) is produced, and together with good ohmic contact, a highly reliable semiconductor device is obtained. Moreover, since the heat treatment for activating the impurity, that is, the heat treatment at high temperature in general, can be performed in one heat treatment step, the final structure of the semiconductor device formed by the impurity implanted region (1l) can be improved. The region can be formed as a shallow region, which makes it possible to reduce the overall area and therefore increase the degree of integration in integrated circuits, and also to avoid short channel effects in circuit elements such as MOS transistors. .

〔実施例〕〔Example〕

第1図を参照して本発明による半導体装置の製造方法を
Mosトランジスタを得る場合に適用する一例を説明す
る。図中(21)は半導体基体で、例えば1の導電型の
例えばn型の半導体シリコン基体より威る。第l図Aに
示すように基体(21)の一生面に熱酸化等によって半
導体素子この例ではMOS}ランジスタの形成部以外の
フィールド部に厚い絶縁層(22)いわゆるtocos
を形成する。そして、この厚い絶縁層(22)の形成さ
れていないすなわち素子形成領域にゲート絶縁層(23
)を熱酸化等によって形成し、これの上にゲート電極(
24)を例?ば低比抵抗の多結晶シリコン層によって形
戒する。厚い絶縁層(22)とゲート電極(24)をマ
スクとして最終的にソース及びドレイン各領域としての
機能をなす、すなわち、MOSトランジスタの構或領域
となる不純物注入領域(11)を例えば厚さ100人の
Si02ゲート絶縁層を貫通して20KeVで、3×1
0′5/cJのドーズ量にBF2+をイオン注入してイ
オン注入領域(11〉を形成する。
An example in which the method for manufacturing a semiconductor device according to the present invention is applied to obtaining a Mos transistor will be described with reference to FIG. In the figure, (21) is a semiconductor substrate, which is more powerful than a semiconductor silicon substrate of conductivity type 1, for example, n-type. As shown in FIG. 1A, a thick insulating layer (22), so-called TOCOS, is formed on the entire surface of the substrate (21) by thermal oxidation, etc. in the field area other than the area where the semiconductor element (MOS in this example) is formed.
form. Then, the gate insulating layer (23) is formed in the element formation region where the thick insulating layer (22) is not formed.
) is formed by thermal oxidation etc., and a gate electrode (
24) as an example? For example, it is formed by a polycrystalline silicon layer with low resistivity. Using the thick insulating layer (22) and the gate electrode (24) as a mask, the impurity implanted region (11), which will eventually function as the source and drain regions, that is, the structural region of the MOS transistor, is formed to a thickness of, for example, 100 mm. 3×1 at 20 KeV through human Si02 gate insulating layer
BF2+ is ion-implanted at a dose of 0'5/cJ to form an ion-implanted region (11>).

第1図Bに示すように、例えば全面的にSiO■等の絶
縁層(l2)例えばSiO■による層間絶縁層をCVD
法によって例えば8000人程度の厚さに全面的に形成
する。そしてこの絶縁層(12)の形戒前または後に、
特に本発明においては第1の熱処理を施す。
As shown in FIG. 1B, an insulating layer (12) of SiO2, etc., and an interlayer insulating layer of SiO2, for example, are formed by CVD on the entire surface.
For example, it is formed over the entire surface to a thickness of about 8,000 people using a method. Before or after forming this insulating layer (12),
Particularly in the present invention, a first heat treatment is performed.

この第1の熱処理は例えばN2雰囲気中で850゜C6
0分間で行い、イオン注入領域(1l)の注入されたイ
オンの活性化を充分行い得ることができないものの、後
述するコンタクト窓開けに際しての半導体基体表面のエ
ッチングの深さdより深くイオン注入領域(1l)を広
げる効果を得る条件下で行われる。
This first heat treatment is carried out at 850°C6 in a N2 atmosphere, for example.
Although the implanted ions in the ion implantation region (1l) cannot be sufficiently activated by etching the ion implantation region (1l) for 0 minutes, the ion implantation region (1l) is etched deeper than the etching depth d of the semiconductor substrate surface when opening a contact window, which will be described later. 1l) is carried out under conditions that have the effect of widening.

次に、第1図Cに示すように、絶縁層(12)に対して
各領域(11)上にコンタクト窓(13)の窓開けを例
えばRIE(反応性イオンエッチング)によって行う。
Next, as shown in FIG. 1C, contact windows (13) are formed on each region (11) of the insulating layer (12) by, for example, RIE (reactive ion etching).

このRIEは例えばC113ガスによって60%オーバ
ーエッチングによって行う。この場合、そのコンタクト
窓(13)の形成と同時に半導体基体(21)の表面に
深さdだけ入り込んで例えば400人程度の深さの凹部
(25)が形成される。言い換えれば、この凹部(25
)の底部より下方に上述した第lの熱処理工程によって
イオン注入領域(11)の深さを広げておく。
This RIE is performed by 60% over-etching using C113 gas, for example. In this case, at the same time as the contact window (13) is formed, a recess (25) having a depth of about 400 mm, for example, is formed by penetrating into the surface of the semiconductor substrate (21) by a depth d. In other words, this recess (25
) The depth of the ion implantation region (11) is expanded by the first heat treatment step described above.

次に第1図Dに示すように、コンタクト窓(13〉内を
埋め込むように全面的に例えば低圧CVD(低圧化学的
気相成長法)によって全面的に半導体(l4)例えば多
結晶シリコンを被着し、エッチングバックを行って、コ
ンタクト窓(13)内に半導体(14)をその表面がほ
ぼ絶縁層(l2)の表面と一致するように埋め込む。次
にこの半導体(l4)例えば多結晶シリコンに対しての
不純物ドーピングを行い、その後第2の熱処理を行う。
Next, as shown in FIG. 1D, the entire surface is covered with a semiconductor (14), such as polycrystalline silicon, by, for example, low-pressure CVD (low-pressure chemical vapor deposition) so as to bury the inside of the contact window (13). The semiconductor (14) is deposited and etched back to embed the semiconductor (14) in the contact window (13) so that its surface almost coincides with the surface of the insulating layer (12).Next, this semiconductor (14), for example, polycrystalline silicon Impurity doping is performed on the substrate, and then a second heat treatment is performed.

この第2の熱処理は11 コンタクト窓(13)に埋め込まれた半導体(14)に
おける不純物の活性化とイオン注入領域(l1)におけ
る不純物の活性化とを同時に行い得る例えば1100”
CIO分間のR T A (Rapid Therma
l Annealing)によりなされる。その後例え
ば金属配線例えばAI!.配線(26)を、埋め込み半
導体(14)に跨って所定のパターンに形成して、各領
域(l1)からの配線導出を行う。このようにして領域
(l1)によって所定の機能すなわちソース及びドレイ
ンとしての機能を有する領域の形成がなされると共にこ
れにそれぞれコンタクトされた導電性を有する半導体(
14)の例では半導体シリコンを介して配線(26)の
電気的導出がなされる。
This second heat treatment can simultaneously activate the impurity in the semiconductor (14) embedded in the contact window (13) and the impurity in the ion implantation region (l1).
RTA (Rapid Therma) for CIO minutes
l Annealing). After that, for example, metal wiring, for example, AI! .. A wiring (26) is formed in a predetermined pattern across the buried semiconductor (14), and the wiring is led out from each region (l1). In this way, the region (l1) forms a region having a predetermined function, that is, a source and a drain, and the conductive semiconductor (
In the example 14), the wiring (26) is electrically led out through semiconductor silicon.

尚、上述した例においては本発明をMOSトランジスタ
を得る場合について説明したが、その他各種の半導体素
子を有する半導体装置を得る場合に本発明を適用するこ
とができる。
In the above example, the present invention has been described for the case of obtaining a MOS transistor, but the present invention can be applied to the case of obtaining a semiconductor device having various other semiconductor elements.

〔発明の効果〕〔Effect of the invention〕

上述の本発明方法によれば、コンクク1・窓(l3)l
2 の窓開けに先立ってイオン注入領域(l1)に対してそ
の注入不純物の活性化を充分行うには足らないが、その
領域(l1〉をある程度広げる程度の第1の熱処理工程
を施して後に絶縁層(l2)に対するコンタクト窓(l
3)の穿設工程を行うので、このコンタクト窓(13)
の窓開け工程においてオーバーエッチによってコンタク
ト窓(13)下が削り取られた場合においてもイオン注
入領域(l1)の濃度のピーク位置が削り取られること
が回避され、これによってこのコンタクト窓(13)内
に形成した半導体(14)とのコンクタト部における低
濃度化あるいは半導体(l4)が領域(1l)より最終
的に付抜けるような不都合が回避されるのみならず、こ
の高不純物濃度の領域(11)から半導体(14)への
不純物の吸い上げ効果も生じ、良好なオー5ツタコンタ
クトがなされることが相俟って信頼性の高い半導体装置
を得ることができる。しかもその不純物の活性化処理を
行う程度のすなわち一般に高温の熱処理は1回の熱処理
工程で行うことができるので最終的に不純物注入領域(
11)によって構威される半導体装置の構或領域を浅い
領域として形成することができ、これによって全体の面
積の縮小化したがって集積回路においての高集積度化、
更に回路素子としての例えばMOS+−ランジスタにお
ける短ヂャンネル効果の回避をもはかることができる。
According to the above-mentioned method of the present invention, Konkuku 1/Window (l3)l
2. Prior to opening the window in step 2, the ion implanted region (l1) is subjected to a first heat treatment step which is sufficient to expand the region (l1) to some extent, although it is not sufficient to sufficiently activate the implanted impurity. Contact window (l) to insulating layer (l2)
Since the drilling process of 3) is performed, this contact window (13)
Even if the bottom of the contact window (13) is scraped off due to over-etching in the window opening process, the peak concentration position of the ion implantation region (l1) is prevented from being scraped off. Not only is it possible to avoid problems such as lowering the concentration in the contact area with the formed semiconductor (14) or the semiconductor (l4) eventually passing through the region (1l), but also to avoid this high impurity concentration region (11). The effect of sucking up impurities from the semiconductor (14) to the semiconductor (14) is also produced, and good over-the-wall contact is achieved, which together make it possible to obtain a highly reliable semiconductor device. Moreover, since the heat treatment for activating the impurity, that is, the heat treatment at high temperature in general, can be performed in one heat treatment process, the impurity implanted region (
11) It is possible to form a certain region of the structure of a semiconductor device as a shallow region, thereby reducing the overall area and therefore increasing the degree of integration in integrated circuits.
Furthermore, it is possible to avoid short channel effects in circuit elements such as MOS+- transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−Dは本発明製法の一例の各工程の略線的断面
図、第2図はイオン注入領域の濃度分布図、第3図は従
来の半導体装置の要部の説明図である。 (21)は半導体基体、(11)は不純物注入領域、(
23)はゲート絶縁層、(13)はコンタクト窓、(l
4)はコンタクト窓内の埋め込み半導体である。
1A to 1D are schematic cross-sectional views of each step of an example of the manufacturing method of the present invention, FIG. 2 is a concentration distribution diagram of an ion implantation region, and FIG. 3 is an explanatory diagram of main parts of a conventional semiconductor device. . (21) is a semiconductor substrate, (11) is an impurity implanted region, (
23) is a gate insulating layer, (13) is a contact window, (l
4) is a buried semiconductor within the contact window.

Claims (1)

【特許請求の範囲】 不純物のイオン注入工程と、 絶縁層の形成工程と、 該絶縁層の形成工程の前または後に行う第1の熱処理工
程と、 該絶縁層に対するコンタクト窓開け工程と、該コンタク
ト窓内に半導体を埋込む工程と、第2の熱処理工程とを
有し、 上記第1の熱処理工程は、上記コンタクト窓開けに生じ
るオーバーエッチの深さより深くイオン注入領域を広げ
る熱処理条件によってなされ、上記第2の熱処理工程は
、上記イオン注入領域が目的とする半導体装置の構成領
域としての機能を発揮するための不純物活性化を行う熱
処理条件によってなされる ことを特徴とする半導体装置の製法。
[Claims] An impurity ion implantation step, an insulating layer forming step, a first heat treatment step performed before or after the insulating layer forming step, a contact window opening step for the insulating layer, and the contact. a step of embedding a semiconductor in the window; and a second heat treatment step; the first heat treatment step is performed under heat treatment conditions that extend the ion implantation region deeper than the depth of the overetch that occurs in the contact window opening; A method for manufacturing a semiconductor device, wherein the second heat treatment step is performed under heat treatment conditions that activate impurities so that the ion implantation region functions as a component region of the intended semiconductor device.
JP15808989A 1989-06-20 1989-06-20 Semiconductor device manufacturing method Expired - Fee Related JP2794594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15808989A JP2794594B2 (en) 1989-06-20 1989-06-20 Semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15808989A JP2794594B2 (en) 1989-06-20 1989-06-20 Semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JPH0322528A true JPH0322528A (en) 1991-01-30
JP2794594B2 JP2794594B2 (en) 1998-09-10

Family

ID=15664059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15808989A Expired - Fee Related JP2794594B2 (en) 1989-06-20 1989-06-20 Semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP2794594B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130309A (en) * 1994-10-31 1996-05-21 Ricoh Co Ltd Semiconductor device and its manufacture
US6716740B2 (en) * 2001-10-09 2004-04-06 Taiwan Semiconductor Manufacturing Co., Ltd. Method for depositing silicon oxide incorporating an outgassing step
JP2007088432A (en) * 2005-08-23 2007-04-05 Semiconductor Energy Lab Co Ltd Transistor and display device using the same, electronic equipment, and semiconductor device
US8435892B2 (en) 2005-08-23 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device comprising the step of doping semiconductor film through contact hole

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130309A (en) * 1994-10-31 1996-05-21 Ricoh Co Ltd Semiconductor device and its manufacture
US6716740B2 (en) * 2001-10-09 2004-04-06 Taiwan Semiconductor Manufacturing Co., Ltd. Method for depositing silicon oxide incorporating an outgassing step
JP2007088432A (en) * 2005-08-23 2007-04-05 Semiconductor Energy Lab Co Ltd Transistor and display device using the same, electronic equipment, and semiconductor device
US8435892B2 (en) 2005-08-23 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device comprising the step of doping semiconductor film through contact hole

Also Published As

Publication number Publication date
JP2794594B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US5389575A (en) Self-aligned contact diffusion barrier method
US6218251B1 (en) Asymmetrical IGFET devices with spacers formed by HDP techniques
JP3505493B2 (en) Method for manufacturing semiconductor device
EP0421507B1 (en) Method of manufacturing a bipolar transistor
US6339245B1 (en) Nitride overhang structure for the silicidation of transistor electrodes with shallow junctions
US5849622A (en) Method of forming a source implant at a contact masking step of a process flow
KR100271265B1 (en) Self-aligned pocl3 process flow for submicron microelectronics applications using amorphized polysilicon
US4888297A (en) Process for making a contact structure including polysilicon and metal alloys
US6362033B1 (en) Self-aligned LDD formation with one-step implantation for transistor formation
JPH0322528A (en) Manufacture of semiconductor device
EP0104079B1 (en) Integrated circuit contact structure
JPH07283400A (en) Semiconductor device and its manufacture
US6221745B1 (en) High selectivity mask oxide etching to suppress silicon pits
JP3288246B2 (en) Semiconductor device and method of manufacturing semiconductor device
KR0170436B1 (en) Method of manufacturing mosfet
EP0817247A1 (en) Process for the fabrication of integrated circuits with contacts self-aligned to active areas
JP3482201B2 (en) Semiconductor device and manufacturing method thereof
KR100347149B1 (en) Manufacturing method for semiconductor device
JPH03155640A (en) Manufacture of mos type semiconductor device
KR20000000869A (en) Method for manufacturing semiconductor device
JP2004342908A (en) Semiconductor device and manufacturing method thereof
KR100274979B1 (en) Method for forming contact of semiconductor device
KR100281100B1 (en) Semiconductor device and manufacturing method
JP3886316B2 (en) Manufacturing method of semiconductor device
JPH05291573A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees