JPH0322522B2 - - Google Patents

Info

Publication number
JPH0322522B2
JPH0322522B2 JP60242632A JP24263285A JPH0322522B2 JP H0322522 B2 JPH0322522 B2 JP H0322522B2 JP 60242632 A JP60242632 A JP 60242632A JP 24263285 A JP24263285 A JP 24263285A JP H0322522 B2 JPH0322522 B2 JP H0322522B2
Authority
JP
Japan
Prior art keywords
steam drum
pressure steam
pressure
low
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60242632A
Other languages
Japanese (ja)
Other versions
JPS62106202A (en
Inventor
Yoshio Koizumi
Tsuneo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60242632A priority Critical patent/JPS62106202A/en
Publication of JPS62106202A publication Critical patent/JPS62106202A/en
Publication of JPH0322522B2 publication Critical patent/JPH0322522B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はコンバインドサイクル発電プラントに
係り、特にプラントの急速な立上げ要求に応じて
当該ユニツトの排熱回収熱交換器への高温水の供
給を可能にし、起動時間の短縮を図るようにした
コンバインドサイクル発電プラントに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a combined cycle power generation plant, and particularly to a system for supplying high-temperature water to an exhaust heat recovery heat exchanger of the unit in response to demands for rapid start-up of the plant. The present invention relates to a combined cycle power generation plant capable of reducing start-up time.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

コンバインドサイクル発電プラントは近年の電
力需給面での要求、即ち大幅かつ急速な負荷調整
が可能であつて、さらに部分負荷においても高い
熱効率の維持が可能であることという要求を満た
すプラントとして開発されたものであり、この点
への配慮からガスタービン、排熱回収熱交換器、
蒸気ターピンおよび発電機より構成されるユニツ
トと一つ一つは出力が小さく抑えらえ、この小出
力のユニツトを複数基集めて一つの発電プラント
としてまとめられることが多い。このコンバイン
ドサイクル発電プラントが電力需要の変化に素早
く応じられるのは、ガスタービンの起動停止が容
易である点が大きく寄与している。このガスター
ビンの特性が充分に生かされるにはユニツトを構
成している他の機器がそれに呼応したものである
か、否かの点が重要なポイントであり、排熱回収
熱交換器はこのような場合にまず問題となる機器
である。以下、ここで用いられる排熱回収熱交換
器について説明する。
Combined cycle power plants have been developed to meet the recent demands on the power supply and demand side, that is, to be able to make large and rapid load adjustments, and to be able to maintain high thermal efficiency even at partial loads. In consideration of this point, gas turbines, exhaust heat recovery heat exchangers,
The output of each unit consisting of a steam turpin and a generator is kept small, and multiple units with low output are often combined into one power generation plant. The ability of this combined cycle power plant to quickly respond to changes in power demand is largely due to the ease with which the gas turbine can be started and stopped. In order to make full use of the characteristics of this gas turbine, it is important to check whether the other equipment that makes up the unit is compatible with it, and the exhaust heat recovery heat exchanger is This is the first device that becomes a problem in such cases. The exhaust heat recovery heat exchanger used here will be explained below.

すなわち、この種の排熱回収熱交換器は第4図
に示すように、低圧蒸気ドラム1、低圧節炭器2
および低圧蒸発器3よりなる低圧系統と、高圧蒸
気ドラム4、高圧節炭器5、高圧常発器6および
高圧過熱器7よりなる高圧系統とを備え、ガスタ
ービン排ガス8は順次高圧系統および低圧系統に
導かれる。一般に排熱回収熱交換器は缶水循環方
式により、強制循環形と自然循環形とに区別され
るが、第4図は強制循環形の一例を示している。
給水ポンプ9を出た給水は低圧節炭器2で加熱さ
れて低圧蒸気ドラム1に導かれる。低圧蒸気ドラ
ム1の缶水は低圧循環ポンプ10を介して低圧蒸
気器3に送られ、ここで一部が蒸発した後、低圧
蒸気ドラム1に戻る。低圧蒸気ドラム1に戻つた
蒸気と水の二相流はまず第1段湿分分離器11に
入り、蒸気と水に分離され、水は缶水となる。一
方、蒸気は缶水表面を流れた後、第2段湿分分離
器12に入り、ここで最終的に湿分を除去され、
低圧主蒸気官13を経て、図示しない蒸気タービ
ンの低圧段に導かれる。また、低圧蒸気ドラム1
の缶水の一部は移送ポンプ14に導かれて昇圧さ
れ、高圧節炭器5に送られて再度加熱された後、
高圧蒸気ドラム4に入る。高圧蒸気ドラム4の缶
水は高圧循環ポンプ15を介して高圧蒸発器6に
送られ、ここで一部が蒸発して蒸気と水の二相流
となつて、高圧蒸気ドラム4に戻る。この二相流
は低圧蒸気ドラム1の場合と同様に、第1段湿分
分離器16、第2段湿分分離器17を通つて蒸気
と水とに分離され、蒸気は高圧過熱器7へ送られ
る。また、水は缶水と合流する。高圧過熱器7へ
送られた蒸気はここで過熱蒸気となり、高圧主蒸
気管18を介して図示しない蒸気タービンの高圧
段に導かれる。蒸気タービンで仕事を終えた蒸気
は図示しない復水器で復水となり、再び給水ポン
プ9で低圧節炭器2へ送られる。なお、自然循環
形の場合は循環力を循環ポンプではなく、伝熱管
内流体の密度差によつている点が異なるのみで、
缶水の流れは強制循環形とほぼ同じである。
That is, this type of exhaust heat recovery heat exchanger has a low pressure steam drum 1, a low pressure energy saver 2, as shown in FIG.
and a low-pressure system consisting of a low-pressure evaporator 3, and a high-pressure system consisting of a high-pressure steam drum 4, a high-pressure economizer 5, a high-pressure regular generator 6, and a high-pressure superheater 7. Guided by lineage. Generally, exhaust heat recovery heat exchangers are classified into forced circulation type and natural circulation type depending on the can water circulation method, and FIG. 4 shows an example of the forced circulation type.
The feed water coming out of the water pump 9 is heated by the low pressure economizer 2 and guided to the low pressure steam drum 1. The canned water in the low-pressure steam drum 1 is sent to the low-pressure steamer 3 via the low-pressure circulation pump 10, where it is partially evaporated, and then returned to the low-pressure steam drum 1. The two-phase flow of steam and water returned to the low-pressure steam drum 1 first enters the first stage moisture separator 11, where it is separated into steam and water, and the water becomes canned water. On the other hand, after the steam flows on the surface of the can water, it enters the second stage moisture separator 12, where the moisture is finally removed.
It passes through a low-pressure main steam official 13 and is guided to a low-pressure stage of a steam turbine (not shown). In addition, low pressure steam drum 1
A portion of the canned water is led to the transfer pump 14 and boosted in pressure, and sent to the high pressure economizer 5 where it is heated again.
Enters high pressure steam drum 4. The canned water in the high-pressure steam drum 4 is sent to the high-pressure evaporator 6 via the high-pressure circulation pump 15, where a portion is evaporated to become a two-phase flow of steam and water, which returns to the high-pressure steam drum 4. As in the case of the low-pressure steam drum 1, this two-phase flow is separated into steam and water through the first-stage moisture separator 16 and the second-stage moisture separator 17, and the steam is sent to the high-pressure superheater 7. Sent. Also, the water merges with the canned water. The steam sent to the high-pressure superheater 7 becomes superheated steam here, and is led to a high-pressure stage of a steam turbine (not shown) via a high-pressure main steam pipe 18. The steam that has completed its work in the steam turbine becomes condensed water in a condenser (not shown), and is again sent to the low-pressure economizer 2 by the water supply pump 9. In the case of the natural circulation type, the only difference is that the circulation force is not based on the circulation pump but on the density difference of the fluid inside the heat transfer tube.
The flow of canned water is almost the same as in the forced circulation type.

ところで、この種の排熱回収熱交換器では起動
時に低圧および高圧蒸気ドラム1,14に発生す
る熱応力を軽減しなければならないことからウオ
ーミング運転が実施される。この運転方法は移送
ポンプ出口弁19を全閉した状態にて低圧および
高圧循環ポンプ10,15を運転し、低圧および
高圧系統にそれぞれ設けられている再循環水管2
0,21を通して缶水を低圧節炭器2と低圧蒸発
器3に、また高圧節炭器5と高圧蒸発器6にそれ
ぞれ送給し、低出力で運転されるガスタービンの
排ガス8の熱で一定の温度まで暖めるもので、缶
水がそれぞれ低圧および高圧系統を循環すること
により低圧および高圧蒸気ドラム1,14がウオ
ーミングされる。なお、このウオーミングの最中
に発生した蒸気は図示しないタービンバイパス系
統を用いて復水器に回収される。また蒸気の発生
により低圧および高圧蒸気ドラム1,14の水位
が低下すると、給水ポンプ9が働いて低圧蒸気ド
ラム1内に給水が導かれ、一方高圧蒸気ドラム1
4に対しては移送ポンプ14を働かせて缶水の低
圧系統から高圧系統への移動を行ない水位の回復
が図られる。
By the way, in this type of exhaust heat recovery heat exchanger, a warming operation is performed because thermal stress generated in the low pressure and high pressure steam drums 1, 14 at the time of startup must be reduced. In this operating method, the low pressure and high pressure circulation pumps 10 and 15 are operated with the transfer pump outlet valve 19 fully closed, and the recirculation water pipes 2 provided in the low pressure and high pressure systems respectively are operated.
0 and 21 to the low pressure economizer 2 and low pressure evaporator 3, and to the high pressure economizer 5 and high pressure evaporator 6, respectively. The low-pressure and high-pressure steam drums 1, 14 are warmed by circulating canned water through the low-pressure and high-pressure systems, respectively. Note that the steam generated during this warming is recovered to a condenser using a turbine bypass system (not shown). Furthermore, when the water levels in the low-pressure and high-pressure steam drums 1 and 14 decrease due to the generation of steam, the water supply pump 9 operates to introduce water into the low-pressure steam drum 1, while the high-pressure steam drum 1
4, the transfer pump 14 is activated to move the canned water from the low pressure system to the high pressure system to restore the water level.

しかしながら、こうした排熱回収熱交換器のウ
オーミング運転において、起動初期には排熱回収
熱交換器に導かれる排ガス8の温度がそれ程高く
なく、缶水の温度が上がるまでに多くの時間が掛
がり、ウオーミングが長引くという問題がある。
第5図は上述したウオーミング運転を適用した場
合の起動特性の一例を示している。第5図から明
らかなように高圧系統の圧力は早い時期から上昇
し、短時間で基準値まで達するのに対して、低圧
系統の圧力は立ち上がりが極めて遅く、基準値に
達するまでに長時間を要する。前述したように低
圧系統には発生した蒸気の補給水として低温の給
水が流れ込んでいるため、尚更低圧系統のウオー
ミング時間は長くなる。
However, in the warming operation of such an exhaust heat recovery heat exchanger, the temperature of the exhaust gas 8 led to the exhaust heat recovery heat exchanger is not so high in the initial stage of startup, and it takes a long time for the temperature of the canned water to rise. , there is a problem that warming takes a long time.
FIG. 5 shows an example of startup characteristics when the above-mentioned warming operation is applied. As is clear from Figure 5, the pressure in the high-pressure system rises from an early stage and reaches the standard value in a short time, whereas the pressure in the low-pressure system rises extremely slowly and takes a long time to reach the standard value. It takes. As mentioned above, since low-temperature feed water flows into the low-pressure system as make-up water for the generated steam, the warming time of the low-pressure system becomes even longer.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記従来技術の問題点を解消
し、負荷変化に対する順応性をより優れたものと
することのできるコンバインドサイクル発電プラ
ントを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a combined cycle power plant that can overcome the problems of the prior art described above and has better adaptability to load changes.

〔発明の概要〕[Summary of the invention]

本発明は一つのユニツトの排熱回収熱交換器の
高圧蒸気ドラムおよび低圧蒸気ドラムの缶水を隣
接した別のユニツトの各々高圧蒸気ドラムおよび
低圧蒸気ドラムに供給するための連絡管を設け、
コールドスタート時、運転中の別のユニツトの排
熱回収熱交換器の高圧蒸気ドラムおよび低圧蒸気
ドラムの缶水を、起動しようとするユニツトの排
熱回収熱交換器の高圧蒸気ドラムおよび低圧蒸気
ドラムにそれぞれ供給するようにしたことを特徴
とするものである。
The present invention provides a connecting pipe for supplying canned water from the high pressure steam drum and low pressure steam drum of the waste heat recovery heat exchanger of one unit to the high pressure steam drum and the low pressure steam drum of another adjacent unit, respectively,
During a cold start, the canned water in the high-pressure steam drum and low-pressure steam drum of the waste heat recovery heat exchanger of another unit that is in operation is transferred to the high-pressure steam drum and low-pressure steam drum of the waste heat recovery heat exchanger of the unit that is about to start up. It is characterized in that it is supplied to each of the following.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面を用いてより詳細に説明す
る。
Hereinafter, the present invention will be explained in more detail using the drawings.

第1図は強制循環形排熱回収熱交換器を用いた
コンバインドサイクル発電プラントにおける本発
明の一実施例を示す系統図である。第1図におい
て、第4図と同一符号で示されている部分は第4
図と同一部分であるからその説明を省略する。但
し、第1図において起動しようとしているユニツ
トをAユニツトとし、その構成要素には符号の末
尾にAを付けている。また、前記ユニツトと隣接
して既に運転中であるユニツトはBユニツトと
し、その構成要素には符号の末尾にBを付けてい
る。第1図の従来プラントと異なる点は、運転中
のBユニツトの排熱回収熱交換器の高圧蒸気ドラ
ム4Bおよび低圧蒸気ドラム1Bの底部から起動
しようとしているAユニツトの排熱回収熱交換器
の高圧蒸気ドラム4A内の第1段湿分分離器16
Aおよび低圧蒸気ドラム1A内の第1段湿分分離
器11Aに至る連絡管22,23を各々設け、さ
らに該連絡管22,23の経路内にBユニツト側
から順に止め弁24,25、圧力調節弁26,2
7および止め弁28,29を設けている点にあ
る。
FIG. 1 is a system diagram showing an embodiment of the present invention in a combined cycle power generation plant using a forced circulation type exhaust heat recovery heat exchanger. In Fig. 1, parts indicated by the same reference numerals as in Fig. 4 are
Since the parts are the same as those shown in the figure, their explanation will be omitted. However, in FIG. 1, the unit that is about to be activated is referred to as A unit, and its constituent elements are given an A at the end of their reference numerals. Further, a unit already in operation adjacent to the above-mentioned unit is referred to as a B unit, and its constituent elements are given a B at the end of the reference numeral. The difference from the conventional plant in Fig. 1 is that the high pressure steam drum 4B of the waste heat recovery heat exchanger of the B unit which is in operation and the waste heat recovery heat exchanger of the A unit which is about to be started from the bottom of the low pressure steam drum 1B. First stage moisture separator 16 in high pressure steam drum 4A
Communication pipes 22 and 23 leading to the first stage moisture separator 11A in the A and low pressure steam drums 1A are provided, respectively, and stop valves 24 and 25, pressure Control valve 26,2
7 and stop valves 28 and 29 are provided.

本発明は上記の如く構成したものであり、Aユ
ニツトのコールドスタート時のウオーミングにお
いて、運転中のBユニツトの排熱回収熱交換器の
高圧蒸気ドラム4Bおよび低圧蒸気ドラム1Bの
缶水を各々圧力調節弁26,27にて圧力が高圧
蒸気ドラム4Aおよび低圧蒸気ドラム1Aのウオ
ーミング完了圧力、例えば15atgおよび2.5atgに
なるまで減圧した後、起動中のAユニツトの排熱
回収熱交換器の高圧蒸気ドラム4A内の第1段湿
分分離器16Aおよび低圧蒸気ドラム1A内の第
1段湿分分離器11Aに各々給水する。そして、
高圧蒸気ドラム4Aおよび低圧蒸気ドラム1Aの
器内圧力がウオーミング完了圧力に達したなら
ば、各々止め弁24,25を閉として運転中の高
圧蒸気ドラム4Bおよび低圧蒸気ドラム1Bの缶
水の供給を停止する。なお、連絡管22,23に
はそれぞれ2つの止め弁24,28および25,
29が設けられているが、これは圧力調節弁26
および27の補修、点検の際に缶水の流れをしや
断するためのものである。
The present invention is constructed as described above, and during warming at the time of a cold start of the A unit, the canned water in the high pressure steam drum 4B and the low pressure steam drum 1B of the exhaust heat recovery heat exchanger of the B unit in operation is reduced to pressure. After the pressure is reduced by the control valves 26 and 27 until it reaches the warming completion pressure of the high-pressure steam drum 4A and the low-pressure steam drum 1A, for example, 15 atg and 2.5 atg, the high-pressure steam of the exhaust heat recovery heat exchanger of the A unit that is being started is released. Water is supplied to the first stage moisture separator 16A in the drum 4A and the first stage moisture separator 11A in the low pressure steam drum 1A, respectively. and,
When the internal pressures of the high-pressure steam drum 4A and the low-pressure steam drum 1A reach the warming completion pressure, the stop valves 24 and 25 are closed to stop the supply of canned water to the high-pressure steam drum 4B and the low-pressure steam drum 1B that are in operation. Stop. The communication pipes 22 and 23 are provided with two stop valves 24, 28 and 25, respectively.
29 is provided, which is a pressure regulating valve 26
This is to stop the flow of canned water during repairs and inspections.

かくして、本発明はウオーミング中のAユニツ
トの排熱回収熱交換器の高圧蒸気ドラム4Aおよ
び低圧蒸気ドラム1Aに、運転中のBユニツトの
排熱回収熱交換器の高圧蒸気ドラム4Bおよび低
圧蒸気ドラム1Bの缶水を、各々高圧蒸気ドラム
4Aおよび低圧蒸気ドラム1Aのウオーミング完
了圧力まで減圧した後に供給することにより、高
圧蒸気ドラム4Aおよび低圧蒸気ドラム1Aの器
内圧力の上昇を第2図に示す起動特性のように早
めることができ、高圧系統および低圧系統のウオ
ーミング時間を短縮し、コールドスタート時のコ
ンバインドサイクル発電プラントの起動時間を短
縮することができ、これによりプラント全体の負
荷変化に対する順応性を高めることが可能であ
る。
Thus, the present invention applies the high-pressure steam drum 4A and low-pressure steam drum 1A of the exhaust heat recovery heat exchanger of unit A during warming to the high-pressure steam drum 4B and low-pressure steam drum 1A of the exhaust heat recovery heat exchanger of unit B during operation. FIG. 2 shows the increase in internal pressure of the high-pressure steam drum 4A and the low-pressure steam drum 1A by supplying canned water of 1B after reducing the pressure to the warming completion pressure of the high-pressure steam drum 4A and the low-pressure steam drum 1A, respectively. The start-up characteristics can be accelerated, reducing the warming time of high-pressure and low-pressure systems, and the start-up time of a combined cycle power plant during cold starts, thereby increasing the adaptability of the entire plant to load changes. It is possible to increase the

上記実施例は本発明を強制循環形排熱回収熱交
換器に適用した場合のものであるが、次に第3図
を用いて自然循環形排熱回収熱交換器に適用した
場合の実施例について説明する。自然循環形排熱
回収熱交換器を用いたプラントにおける本発明の
構成は第1図に示した強制循環形排熱回収熱交換
器に適用した場合と同じで、運転中のBユニツト
と排熱回収熱交換器の高圧蒸気ドラム4Bおよび
低圧蒸気ドラム1Bの底部より、起動中のAユニ
ツトの排熱回収交換器の高圧蒸気ドラム4Aの第
1段湿分分離器16Aおよび低圧蒸気ドラム1A
内の第1段湿分分離器11Aに至る連絡管22お
よび23を各々設け、さらに該連絡管22および
23の経路内に、Bユニツト側から順に止め弁2
4および25、圧力調節弁26および27、止め
弁28および29を設ける。各構成要素の機能は
前述した第1図と同じであるので説明を省略す
る。
The above embodiment is a case where the present invention is applied to a forced circulation type waste heat recovery heat exchanger, but next, using FIG. 3, an example when the present invention is applied to a natural circulation type waste heat recovery heat exchanger. I will explain about it. The configuration of the present invention in a plant using a natural circulation type waste heat recovery heat exchanger is the same as the case where it is applied to the forced circulation type waste heat recovery heat exchanger shown in Fig. 1. From the bottom of the high pressure steam drum 4B and low pressure steam drum 1B of the recovery heat exchanger, the first stage moisture separator 16A and the low pressure steam drum 1A of the high pressure steam drum 4A of the waste heat recovery exchanger of unit A during startup are detected.
Connecting pipes 22 and 23 leading to the first stage moisture separator 11A are provided respectively, and stop valves 2 are installed in the paths of the connecting pipes 22 and 23 in order from the B unit side.
4 and 25, pressure regulating valves 26 and 27, and stop valves 28 and 29 are provided. The functions of each component are the same as those in FIG. 1 described above, so the explanation will be omitted.

本実施例によれば、ウオーミング中のAユニツ
トの排熱回収熱交換器を高圧蒸気ドラム4Aおよ
び低圧蒸気ドラム1Aに、運転中のBユニツトの
排熱回収熱交換器の高圧蒸気ドラム4Bおよび低
圧蒸気ドラム1Bの缶水を各々高圧蒸気ドラム4
Aおよび低圧蒸気ドラム1Aのウオーミング完了
圧力まで減圧した後に供給することにより、高圧
蒸気ドラム4Aおよび低圧蒸気ドラム1Aの器内
圧力の上昇を早めることができ、高圧系統および
低圧系統ウオーミング時間を短縮し、コールドス
タート時のコンバインドサイクル発電プラントの
起動時間を短縮することができ、これによりプラ
ント全体の負荷変化に対する順応性を高めること
が可能である。
According to this embodiment, the exhaust heat recovery heat exchanger of the A unit during warming is connected to the high pressure steam drum 4A and the low pressure steam drum 1A, and the exhaust heat recovery heat exchanger of the B unit during operation is connected to the high pressure steam drum 4B and the low pressure steam drum 1A. Transfer canned water from steam drum 1B to high pressure steam drum 4.
By supplying the steam after reducing the pressure to the warming completion pressure of A and the low pressure steam drum 1A, it is possible to hasten the rise in the internal pressure of the high pressure steam drum 4A and the low pressure steam drum 1A, shortening the high pressure system and low pressure system warming time. , it is possible to shorten the start-up time of a combined cycle power plant at the time of a cold start, and thereby it is possible to increase the adaptability of the entire plant to load changes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、一つのユニツト
と排熱回収熱交換器の高圧蒸気ドラムおよび低圧
蒸気ドラムの缶水を隣接した別のユニツトの各々
高圧蒸気ドラムおよび低圧蒸気ドラムに供給する
ための連絡管を設け、コールドスタート時に、運
転中の別のユニツトの排熱回収熱交換器の高圧蒸
気ドラムおよび低圧蒸気ドラムの缶水を起動しよ
うとするユニツトの排熱回収熱交換器の高圧蒸気
ドラムおよび低圧蒸気ドラムにそれぞれ供給する
ようにしているので、排熱回収熱交換器のウオー
ミング時間が大幅に短縮され、コンバインドサイ
クル発電プラントの起動時間が短かくなつて負荷
変化に対する順応性について優れたものとするこ
とができる。
As explained above, the present invention provides a system for supplying canned water from a high pressure steam drum and a low pressure steam drum of one unit and an exhaust heat recovery heat exchanger to the high pressure steam drum and low pressure steam drum, respectively, of another adjacent unit. The high pressure steam drum of the waste heat recovery heat exchanger of the unit in which the high pressure steam drum and low pressure steam drum of the waste heat recovery heat exchanger of another unit in operation are to be started with a connecting pipe and the canned water of the waste heat recovery heat exchanger of another unit in operation at the time of a cold start. and low-pressure steam drum, the warming time of the waste heat recovery heat exchanger is significantly shortened, and the start-up time of the combined cycle power plant is shortened, resulting in excellent adaptability to load changes. It can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るもので強制循環形排熱回
収熱交換器に適用した場合の実施例を示すコンバ
インドサイクル発電プラントの系統図、第2図は
本発明における排熱回収熱交換器のウオーミング
時の起動特性図、第3図は本発明を自然循環形排
熱回収熱交換器に適用した場合の実施例を示すコ
ンバインドサイクル発電プラントの系統図、第4
図は従来の強制循環形排熱回収熱交換器の一例を
示す系統図、第5図は従来の排熱回収熱交換器に
おけるウオーミング時の起動特性図である。 1,1A,1B……低圧蒸気ドラム、3,3A
……低圧蒸発器、4,4A,4B……高圧蒸気ド
ラム、6,6A……高圧蒸発器、9,9A……給
水ポンプ、11,11A,16,16A……第1
段湿分分離器、12,12A,17,17A……
第2段湿分分離器、14,14A……移送ポン
プ、19,19A……移送ポンプ出口弁、22,
23……連絡管、24,25,28,29……止
め弁、26,27……圧力調節弁。
Fig. 1 is a system diagram of a combined cycle power generation plant showing an embodiment of the present invention applied to a forced circulation type waste heat recovery heat exchanger, and Fig. 2 is a system diagram of a combined cycle power generation plant according to the present invention when applied to a forced circulation type waste heat recovery heat exchanger. Fig. 3 is a diagram of startup characteristics during warming; Fig. 3 is a system diagram of a combined cycle power generation plant showing an embodiment in which the present invention is applied to a natural circulation type waste heat recovery heat exchanger;
The figure is a system diagram showing an example of a conventional forced circulation type exhaust heat recovery heat exchanger, and FIG. 5 is a starting characteristics diagram during warming in the conventional exhaust heat recovery heat exchanger. 1, 1A, 1B...Low pressure steam drum, 3, 3A
...Low pressure evaporator, 4,4A,4B...High pressure steam drum, 6,6A...High pressure evaporator, 9,9A...Water pump, 11,11A,16,16A...1st
Stage moisture separator, 12, 12A, 17, 17A...
Second stage moisture separator, 14, 14A... Transfer pump, 19, 19A... Transfer pump outlet valve, 22,
23... Communication pipe, 24, 25, 28, 29... Stop valve, 26, 27... Pressure regulating valve.

Claims (1)

【特許請求の範囲】[Claims] 1 互いに隣接する複数のユニツトの各々に排熱
回収熱交換器を設けてなるコンバインドサイクル
発電プラントにおいて、一つのユニツトの排熱回
収熱交換器の高圧蒸気ドラムおよび低圧蒸気ドラ
ムの缶水を隣接した別のユニツトの各々高圧蒸気
ドラムおよび低圧蒸気ドラムに供給する連絡管を
設け、コールドスタート時、運転中の別のユニツ
トの排熱回収熱交換器の高圧蒸気ドラムおよび低
圧蒸気ドラムの缶水を起動しようとするユニツト
の排熱回収熱交換器の高圧蒸気ドラムおよび低圧
蒸気ドラムにそれぞれ供給するように構成したこ
とを特徴とするコンバインドサイクル発電プラン
ト。
1. In a combined cycle power plant in which a plurality of adjacent units are each equipped with an exhaust heat recovery heat exchanger, the canned water of the high-pressure steam drum and low-pressure steam drum of the exhaust heat recovery heat exchanger of one unit is Connecting pipes are provided to supply the high-pressure steam drum and low-pressure steam drum of each separate unit, and at a cold start, the canned water of the high-pressure steam drum and low-pressure steam drum of the waste heat recovery heat exchanger of the other unit in operation is started. What is claimed is: 1. A combined cycle power generation plant characterized in that the power is supplied to a high pressure steam drum and a low pressure steam drum of a waste heat recovery heat exchanger of a unit in which the power is to be generated.
JP60242632A 1985-10-31 1985-10-31 Combined cycle power plant Granted JPS62106202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242632A JPS62106202A (en) 1985-10-31 1985-10-31 Combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242632A JPS62106202A (en) 1985-10-31 1985-10-31 Combined cycle power plant

Publications (2)

Publication Number Publication Date
JPS62106202A JPS62106202A (en) 1987-05-16
JPH0322522B2 true JPH0322522B2 (en) 1991-03-27

Family

ID=17091938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242632A Granted JPS62106202A (en) 1985-10-31 1985-10-31 Combined cycle power plant

Country Status (1)

Country Link
JP (1) JPS62106202A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179308A (en) * 1981-04-28 1982-11-04 Mitsubishi Heavy Ind Ltd Boiler change-over system for cold starting and stopping of combined plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179308A (en) * 1981-04-28 1982-11-04 Mitsubishi Heavy Ind Ltd Boiler change-over system for cold starting and stopping of combined plant

Also Published As

Publication number Publication date
JPS62106202A (en) 1987-05-16

Similar Documents

Publication Publication Date Title
CA2437442C (en) Combined cycle plant
CN105953208A (en) Boiler starting and separating bypass steam utilization device and method
US6519927B2 (en) Method for operating a combined cycle power plant, and combined cycle power plant
US5477683A (en) Method and device during starting and low-load operation of a once-through boiler
JPH10306708A (en) Combined cycle generating plant
CN109763869B (en) Heat accumulation coupling steam extraction integrated system for cascade utilization of combined cycle energy and operation method thereof
JPH05248604A (en) Waste heat recovery boiler
CN114934825A (en) Carbon dioxide energy storage system and method coupled with coal electric machine set
JPS60138214A (en) Gas turbine composite cycle power generating plant
JPH0322522B2 (en)
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPS5993907A (en) Quick starting device for combined-cycle power generation plant
JPS6160242B2 (en)
CN205782812U (en) A kind of boiler startup separation reject steam utilizes device
JPH05209503A (en) Compound generating plant having steam drum
JP3065794B2 (en) Feed water heating device
Borush et al. Topping with a natural gas-fired combined cycle unit of a coal-fired cogeneration power plant with cross connections
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPS63194110A (en) Once-through boiler
JPH0233845B2 (en) JOKITAABIN PURANTONONTENHOHO
JP2764825B2 (en) Power plant and start-up method thereof
JPS6212363B2 (en)
JPH08121112A (en) Single-shaft combined-cycle power generating equipment
JP3300079B2 (en) Water supply system and exhaust heat recovery boiler for combined cycle plant
CN117803911A (en) Heating system for realizing deep decoupling of machine furnace and operation method