JPH0322477B2 - - Google Patents

Info

Publication number
JPH0322477B2
JPH0322477B2 JP63045343A JP4534388A JPH0322477B2 JP H0322477 B2 JPH0322477 B2 JP H0322477B2 JP 63045343 A JP63045343 A JP 63045343A JP 4534388 A JP4534388 A JP 4534388A JP H0322477 B2 JPH0322477 B2 JP H0322477B2
Authority
JP
Japan
Prior art keywords
plating
zinc
plating film
nickel
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP63045343A
Other languages
Japanese (ja)
Other versions
JPH01219188A (en
Inventor
Yukio Nishihama
Noriko Tanaka
Yasutaka Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuno Chemical Industries Co Ltd
Original Assignee
Okuno Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuno Chemical Industries Co Ltd filed Critical Okuno Chemical Industries Co Ltd
Priority to JP63045343A priority Critical patent/JPH01219188A/en
Priority to US07/313,124 priority patent/US4861442A/en
Publication of JPH01219188A publication Critical patent/JPH01219188A/en
Publication of JPH0322477B2 publication Critical patent/JPH0322477B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、亜鉛−ニツケル合金めつき浴に関す
る。 従来の技術とその課題 亜鉛−ニツケル合金めつき皮膜は、亜鉛めつき
皮膜よりも防食性能に優れていることは良く知ら
れており、近年、例えば自動車部品等の防食性能
を一層向上させるために使用されつつある。 従来亜鉛−ニツケル合金めつき法としては、例
えば、塩化物を含む酸性浴を用いて電気めつきす
る方法が提案されている(特公昭60−12343号)。
しかしながら、この方法によつて、耐食上必要と
される膜厚5μm程度のめつき皮膜を形成した場
合、該めつき皮膜は柔軟性が乏しいため、被めつ
き部品を取付ける時にかかる応力でクラツクが発
生する。このような場合には、亜鉛−ニツケル合
金めつき皮膜は、鉄素地に対する犠性防食作用が
亜鉛めつき皮膜よりも小さいこともあり、亜鉛め
つき皮膜よりも耐食性が劣ることになる。一方、
めつき膜厚が薄ければ取り付け時のクラツクの発
生はなくなるが、十分な耐食性が得られない。ま
た、電解の際、被めつき品に電流密度分布の不均
一を生じることは避けられないため、めつき膜厚
が部分的に不均一となる。例えば、電流密度のよ
り高い所には、必要以上の膜厚のめつきがつき、
取付け時のクラツクの発生を一層助長する。しか
も、めつき浴中に腐蝕性の強い塩化物が多量に含
まれているので、めつき設備が腐食し易くなる。 課題を解決するための手段 本発明者は、上記従来技術の課題に鑑みて鋭意
研究を重ねて来た。その結果、Znイオン、Niイ
オン、水酸化アルカリ、Ni錯化剤、アミノアル
コールポリマー等を含む浴にアミノ酸若しくはア
ミノ酸塩を添加した電解めつき浴を用いる場合に
は、得られる亜鉛−ニツケル合金めつき皮膜の耐
食性及び柔軟性、めつき膜厚の均一性等が著るし
く改善されることを見出し、本発明を完成した。 即ち本発明は、 Znイオン 3〜30g/、 Niイオン 0.2〜20g/、 水酸化アルカリ 20〜300g/、 アミノアルコールポリマー 0.5〜10g/ Niイオン1モルに対してNi錯化剤 1〜20モル 及び アミノ酸又はアミノ酸塩 0.01〜20g/ を含み且つPHが11以上であることを特徴とする亜
鉛−ニツケル合金めつき浴に係る。 本発明電解亜鉛−ニツケル合金めつき浴によれ
ば、耐食性及び柔軟性に優れた亜鉛−ニツケル合
金めつき皮膜が得られるので、5μm以上めつきを
施しても、被めつき部品を取り付ける時の応力に
よつてクラツクを生じることもなく、しかも良好
な耐食性が維持される。また、本発明めつき浴を
用いると、電流密度が不均一になつた場合、例え
ば、高電流密度になつた場合には、それにともな
つて電流効率が低下するので、めつき膜厚の均一
性が維持される。従つて、電流密度分布の広い複
雑な形状の物品のめつきにも適している。更に、
めつき設備に対する腐蝕性が少なくなつて、めつ
き設備の防食に必要なコストが軽減される。 本発明では、Znイオン源として、Znの酸化物、
水酸化物、無機酸塩、有機酸塩等が使用できる。
その具体例としては、例えば、酸化亜鉛、水酸化
亜鉛、硫酸亜鉛、炭酸亜鉛、硫酸亜鉛アンモニウ
ム、酢酸亜鉛、スルフアミン酸亜鉛等を挙げるこ
とができ、これらの1種又は2種以上を使用でき
る。Znイオン源の使用量は、Znイオンとして、
3〜30g/程度とするのがよい。3g/未満
では、めつきの電流効率が低下し、充分なめつき
膜厚が得られ難く、作業能率上不利であり、一方
30g/を越えると、高電流部と低電流部の電流
効率に著るしい差を生じ、均一なめつき膜厚が得
られ難くなる。 Niイオン源としては、Niの水酸化物、無機酸
塩、有機酸塩等が使用できる。その具体例として
は、例えば、水酸化ニツケル、硫酸ニツケル、炭
酸ニツケル、硫酸ニツケルアンモニウム、スルフ
アミン酸ニツケル、酢酸ニツケル、ギ酸ニツケル
等を挙げることができ、これらの1種又は2種以
上を使用できる。Ni塩の使用量は、Niイオンと
して、0.2〜20g/程度とするのがよい。0.2
g/未満では、めつき浴中のニツケル濃度の僅
かな変動でめつき皮膜中の合金比率が変化し、常
にほぼ一定の合金比率を有するめつき皮膜が得ら
れ難くなるので、浴管理が困難になる。一方20
g/を越えると、浴の汲み出しにより、亜鉛よ
りも高価なニツケルの損失が大きくなり、経済的
でない。 水酸化アルカリとしては公知のものが使用で
き、例えば、水酸化ナトリウム、水酸化カリウム
等を挙げることができる。前記水酸化アルカリの
1種又は2種以上を使用できる。水酸化アルカリ
の使用量は、20〜300g/程度とすればよい。
20g/未満では、めつき浴の電導性が悪くな
り、所定の電流を得るのに通常よりも高い電圧を
必要とし、電力の浪費を招く。一方300g/を
越えると、めつき終了後、次工程に移行する間
に、めつき皮膜の白色光沢が、一般にアルカリ焼
けと称される灰色半光沢乃至黒灰色無光沢に変化
し易くなり、良好なめつき外観が得られ難くな
る。 Niの錯化剤としては公知のものが使用でき、
例えば、クエン酸、酒石酸、ヘプトン酸、グルコ
ン酸等のオキシカルボン酸又はそれらのナトリウ
ム塩若しくはカリウム塩、エチレンジアミン、ジ
エチレントリアミン、トリエチレンテトラミン、
アミノエチルエタノールアミン、2−ヒドロキシ
エチルアミノプロピルアミン、N,N−ジメチル
1,3−ジアミノプロパン、1−アミノ−4−メ
チルピペラジン等のアミノ化合物等を挙げること
ができ、これらの1種又は2種以上を使用でき
る。Ni錯化剤の使用量は、Niイオン1モルに対
し、1〜20モル程度とすればよい。1モル未満で
は、めつき浴中のニツケルの溶解性が不充分とな
り、合金めつきに必要なニツケル濃度が維持でき
ない。一方20モルを越えると、めつき皮膜中のニ
ツケル析出量が著るしく減少し、充分な耐食性を
有するめつき皮膜が得られ難くなる。 アミノアルコールポリマーとしては公知のもの
が使用でき、例えば、少なくとも1種のアミノ化
合物とエピハロヒドリン若しくはグリセロールハ
ロヒドリンとの共重合物(重合度10〜10000程度)
等を挙げることができる。共重合は、例えば、特
公昭50−825号、特開昭50−87934号、金属表面技
術協会・第50回学術構演大会要旨集第12〜13頁
(1974年)等に記載の公知の方法に従つて、以下
のようにして行なわれる。即ち、0.05〜20部程度
の水に、0.1〜10部程度のアミノ化合物を溶解し、
20〜100℃程度の間の適当な温度下に、エピハロ
ヒドリン若しくはグリセロールハロヒドリンを滴
下して重合させればよい。 共重合の際のアミノ化合物とエピハロヒドリン
若しくはグリセロールハロヒドリンとの使用割合
は特に制限されないが、通常アミノ化合物1モル
に対して、エピハロヒドリン若しくはグリセロー
ルハロヒドリンを0.9〜2モル程度使用すればよ
い。アミノ化合物としては、例えば、ジメチルア
ミン、N,N,N′,N′−テトラメチル−1,3
−ジアミノプロパン、N,N−ジメチル−1,3
−ジアミノプロパン、N,N,N′,N′−テトラ
メチル−1,4−ジアミノブタン、イミダゾー
ル、2−メチルイミダゾール、2−アミノピリジ
ン、3−アミノピリジン、4−アミノピリジン、
ピペラジン、1−アミノエチルピペラジン、N−
アミノプロピルモルホリン、N−アミノエチルピ
ペリジン、2−アミノエタノール、ジエタノール
アミン等を挙げることができる。エピハロヒドリ
ンとしては、例えば、エピクロルヒドリン、エピ
ブロモヒドリン、エピヨードヒドリン等を挙げる
ことができ、グリセロールハロヒドリンとして
は、例えば、1,2−ジクロル−3−プロパノー
ル、1,3−ジヨード−2−プロパノール、1,
3−ジブロモ−2−プロパノール、1,3−ジク
ロル−2−プロパノール等を挙げることができ
る。前記アミノアルコールポリマーの1種又は2
種以上を使用できる。アミノアルコールポリマー
の使用量は、0.05〜10g/程度とすればよい。
0.05g/未満では、光沢の鈍い粗雑なめつきに
なり、一方10g/を越えると、素材とめつき皮
膜との密着性が低下する。 アミノ酸としては公知のものが使用でき、例え
ば、アラニン、セリン、アミノ酪酸、トレオニ
ン、バリン、ノルバリン、ロイシン、イソロイシ
ン、シトルリン、フエニルアラニン、チロシン、
ジヨードチロシン、ジオキシフエニルアラニン、
ジブロムチロシン、プロリン、オキシプロリン、
トリプトフアン、システイン、シスチン、メチオ
ニン等の中性アミノ酸、アスパラギン酸、グルタ
ミン酸等の酸性アミノ酸、アルギニン、リジン、
オキシリジン、オルニチン、カナバミン、ヒスチ
ジン等の塩基性アミノ酸等を挙げることができ
る。またアミノ酸塩としては、例えば、前記例示
アミノ酸のナトリウム塩、カリウム塩等を挙げる
ことができる。前記アミノ酸又はアミノ酸塩の1
種又は2種以上を使用できる。アミノ酸及び/又
はアミノ酸塩の使用量は、0.01〜20g/程度と
すればよい。0.01g/未満では、充分な添加効
果が得られず、めつき皮膜の光沢も不充分であ
る。一方、20g/を越えても特に問題はない
が、一層優れた効果が得られず、経済的に無益で
ある。 本発明はめつき浴には、上記必須成分の他に、
芳香族アルデヒド、シンナムアルデヒド等のアル
デヒド類を添加して、めつき皮膜の光沢、レベリ
ング等を一層向上させてもよい。前記アルデヒド
類の使用量は特に制限されないが、通常0.01〜2
g/程度とすればよい。 本発明めつき浴は、常法に従つて、上記各成分
の所定量を水に添加することにより製造できる。
かくして得られる本発明めつき浴のPHは、水酸化
アルカリを所定量含有することにより、11以上と
なつている。11未満では、亜鉛酸塩が不安定にな
り、めつき浴中の亜鉛濃度を所定の範囲に維持で
きなくなる。 本発明めつき浴を用いて電気めつきを行なうに
当つては、公知の電気めつき方法が採用できる。
また、電気めつき条件は特に制限されず、適宜選
沢すればよいが、通常、めつき温度15〜45℃程
度、平均電流密度0.5〜10A/dm2程度とすれば
よい。 本発明めつき浴は、亜鉛−ニツケル合金を施し
得る実質的に全ての素材に使用できる。その具体
例としては、例えば、軟鋼、バネ鋼、クロム鋼、
クロムモリブデン鋼、銅、七三黄銅、六四黄銅等
を挙げることができる。 発明の効果 本発明電解亜鉛−ニツケル合金めつき浴によれ
ば、耐食性及び柔軟性に優れた亜鉛−ニツケル合
金めつき皮膜が得られるので、5μm以上めつきを
施しても、被めつき部品を取り付ける時の応力に
よつてクラツクを生じることもなく、しかも良好
な耐食性が維持される。また、本発明めつき浴を
用いると、電流密度が不均一になつた場合、例え
ば、高電流密度になつた場合には、それにともな
つて電流効率が低下するので、めつき膜厚の均一
性が維持される。従つて、電流密度分布の広い複
雑な形状の物品のめつきにも適している。更に、
めつき設備に対する腐蝕性が少なくなつて、めつ
き設備の防食に必要なコストが軽減される。 実施例 以下に実施例及び比較例を挙げ、本発明をより
一層明瞭なものとする。 実施例 1 ZnO 13g/ NiSO4・6H2O 5.2g/ NaOH 140g/ ジエチレントリアミン 3.8g/ アミノアルコールポリマーA 1.2g/ チロシン 0.72g/ アミノアルコールポリマーAとしては、N,
N,N′,N′−テトラメチル−1,3−ジアミノ
プロパンの1モルとエピクロルヒドリン1モルと
の反応重合物(平均重合度500)を用いた。 50×50×0.5mmの軟鋼板に、上記組成のめつき
浴(PH12.8)を用い、めつき温度30℃、電流密度
1A/dm2、4A/dm2又は10A/dm2で10分間電
気めつきを行なつた。得られためつき皮膜は、良
好な光沢を有していた。めつき皮膜の膜厚(μm)
及びめつき皮膜中のニツケル含有率(重量%)を
第1表に示す。 次いで、上記と同じ条件で、0.5mm厚の軟鋼板
に、めつき皮膜の膜厚が5μmになるまで電気めつ
きした。得られた被めつき鋼板に以下のようにし
て応力を負荷した後、耐食性試験(JIS−Z−
2371に規定する塩水噴霧試験)に供した。即ち、
めつきを施された鋼板を90゜折り曲げて水平に戻
し、次いで前記と同じ折り曲げ位置で反対に90゜
折り曲げて水平に戻した後、めつきが施されてい
る面に塩水を噴霧し、鋼板に赤錆が発生するまで
の時間を調べた。結果を第1表に示す。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a zinc-nickel alloy plating bath. Conventional technology and its challenges It is well known that zinc-nickel alloy plating films have better anti-corrosion performance than galvanized films. It is being used. As a conventional zinc-nickel alloy plating method, for example, a method of electroplating using an acidic bath containing chloride has been proposed (Japanese Patent Publication No. 12343/1983).
However, when a plating film with a thickness of about 5 μm, which is required for corrosion resistance, is formed using this method, the plating film has poor flexibility and may crack due to the stress applied when attaching the plated parts. Occur. In such a case, the zinc-nickel alloy plating film may have a smaller sacrificial anticorrosion effect on the iron substrate than the galvanized film, resulting in inferior corrosion resistance than the galvanized film. on the other hand,
If the plating film is thin, cracks will not occur during installation, but sufficient corrosion resistance will not be achieved. Furthermore, during electrolysis, it is unavoidable that the current density distribution becomes non-uniform in the plated product, so that the plating film thickness becomes partially non-uniform. For example, in areas where the current density is higher, the plating layer may be thicker than necessary.
This further promotes the occurrence of cracks during installation. Furthermore, since the plating bath contains a large amount of highly corrosive chloride, the plating equipment becomes susceptible to corrosion. Means for Solving the Problems The present inventor has conducted extensive research in view of the problems of the prior art described above. As a result, when using an electrolytic plating bath in which amino acids or amino acid salts are added to a bath containing Zn ions, Ni ions, alkali hydroxide, Ni complexing agents, amino alcohol polymers, etc., the resulting zinc-nickel alloy It was discovered that the corrosion resistance and flexibility of the plating film, the uniformity of the plating film thickness, etc. were significantly improved, and the present invention was completed. That is, in the present invention, Zn ion 3 to 30 g/, Ni ion 0.2 to 20 g/, alkali hydroxide 20 to 300 g/, amino alcohol polymer 0.5 to 10 g/Ni complexing agent 1 to 20 mol per mol of Ni ion, and The present invention relates to a zinc-nickel alloy plating bath characterized by containing 0.01 to 20 g/amino acid or amino acid salt and having a pH of 11 or more. According to the electrolytic zinc-nickel alloy plating bath of the present invention, a zinc-nickel alloy plating film with excellent corrosion resistance and flexibility can be obtained. Cracks do not occur due to stress, and good corrosion resistance is maintained. Furthermore, when using the plating bath of the present invention, if the current density becomes non-uniform, for example, if the current density becomes high, the current efficiency will decrease accordingly, so that the plating film thickness will be uniform. gender is maintained. Therefore, it is also suitable for plating articles with complex shapes that have a wide current density distribution. Furthermore,
Corrosivity to plating equipment is reduced, reducing the cost required for corrosion protection of plating equipment. In the present invention, as a Zn ion source, Zn oxide,
Hydroxides, inorganic acid salts, organic acid salts, etc. can be used.
Specific examples include zinc oxide, zinc hydroxide, zinc sulfate, zinc carbonate, zinc ammonium sulfate, zinc acetate, zinc sulfamate, etc., and one or more of these can be used. The amount of Zn ion source used is as Zn ions.
The amount is preferably about 3 to 30 g/approximately. If it is less than 3g/, the current efficiency of plating decreases and it is difficult to obtain a sufficient plating film thickness, which is disadvantageous in terms of work efficiency.
If it exceeds 30g/, there will be a significant difference in current efficiency between the high current part and the low current part, making it difficult to obtain a uniform plating film thickness. As the Ni ion source, Ni hydroxide, inorganic acid salts, organic acid salts, etc. can be used. Specific examples thereof include nickel hydroxide, nickel sulfate, nickel carbonate, ammonium nickel sulfate, nickel sulfamate, nickel acetate, and nickel formate, and one or more of these can be used. The amount of Ni salt used is preferably about 0.2 to 20 g/Ni ion. 0.2
If the temperature is less than 1 g/g, the alloy ratio in the plating film will change due to slight fluctuations in the nickel concentration in the plating bath, making it difficult to obtain a plating film with an almost constant alloy ratio, making bath management difficult. become. while 20
If the amount exceeds 1 g/g, the loss of nickel, which is more expensive than zinc, will be large due to pumping out the bath, making it uneconomical. Known alkali hydroxides can be used, such as sodium hydroxide, potassium hydroxide, and the like. One or more of the above alkali hydroxides can be used. The amount of alkali hydroxide to be used may be about 20 to 300 g/approx.
If it is less than 20g/2, the conductivity of the plating bath will be poor, requiring a higher voltage than usual to obtain a given current, resulting in wasted power. On the other hand, if it exceeds 300g/, the white gloss of the plating film tends to change from gray semi-gloss to black-gray matte, which is generally referred to as alkali burn, during the transition to the next process after plating is completed, and it is not good. It becomes difficult to obtain a tanned appearance. Known complexing agents for Ni can be used.
For example, oxycarboxylic acids such as citric acid, tartaric acid, heptonic acid, gluconic acid, or their sodium or potassium salts, ethylenediamine, diethylenetriamine, triethylenetetramine,
Examples include amino compounds such as aminoethylethanolamine, 2-hydroxyethylaminopropylamine, N,N-dimethyl 1,3-diaminopropane, and 1-amino-4-methylpiperazine, and one or two of these More than one species can be used. The amount of the Ni complexing agent used may be approximately 1 to 20 moles per mole of Ni ions. If it is less than 1 mol, the solubility of nickel in the plating bath will be insufficient and the nickel concentration required for alloy plating cannot be maintained. On the other hand, if it exceeds 20 moles, the amount of nickel precipitated in the plating film will be significantly reduced, making it difficult to obtain a plating film with sufficient corrosion resistance. Known amino alcohol polymers can be used, such as copolymers of at least one amino compound and epihalohydrin or glycerol halohydrin (degree of polymerization of about 10 to 10,000).
etc. can be mentioned. Copolymerization can be carried out using known methods such as those described in Japanese Patent Publication No. 50-825, Japanese Patent Application Laid-Open No. 50-87934, Abstracts of the 50th Academic Conference of the Metal Surface Technology Association, pages 12-13 (1974), etc. According to the method, it is carried out as follows. That is, about 0.1 to 10 parts of an amino compound is dissolved in about 0.05 to 20 parts of water,
Epihalohydrin or glycerol halohydrin may be added dropwise at an appropriate temperature of about 20 to 100°C to polymerize. The ratio of the amino compound and epihalohydrin or glycerol halohydrin used during copolymerization is not particularly limited, but usually about 0.9 to 2 moles of epihalohydrin or glycerol halohydrin may be used per 1 mole of the amino compound. Examples of amino compounds include dimethylamine, N,N,N',N'-tetramethyl-1,3
-diaminopropane, N,N-dimethyl-1,3
-diaminopropane, N,N,N',N'-tetramethyl-1,4-diaminobutane, imidazole, 2-methylimidazole, 2-aminopyridine, 3-aminopyridine, 4-aminopyridine,
piperazine, 1-aminoethylpiperazine, N-
Examples include aminopropylmorpholine, N-aminoethylpiperidine, 2-aminoethanol, diethanolamine, and the like. Examples of epihalohydrin include epichlorohydrin, epibromohydrin, epiiodohydrin, etc., and examples of glycerol halohydrin include 1,2-dichloro-3-propanol, 1,3-diiodo-2 -propanol, 1,
Examples include 3-dibromo-2-propanol and 1,3-dichloro-2-propanol. One or two of the above amino alcohol polymers
More than one species can be used. The amount of amino alcohol polymer to be used may be about 0.05 to 10 g/approx.
If it is less than 0.05 g/l, the plating will be dull and rough, while if it exceeds 10 g/l, the adhesion between the material and the plating film will decrease. Known amino acids can be used, such as alanine, serine, aminobutyric acid, threonine, valine, norvaline, leucine, isoleucine, citrulline, phenylalanine, tyrosine,
diiodotyrosine, dioxyphenylalanine,
dibromtyrosine, proline, oxyproline,
Tryptophan, cysteine, cystine, neutral amino acids such as methionine, acidic amino acids such as aspartic acid, glutamic acid, arginine, lysine,
Examples include basic amino acids such as oxylysine, ornithine, canabamine, and histidine. Examples of amino acid salts include sodium salts and potassium salts of the above-mentioned exemplified amino acids. 1 of the above amino acids or amino acid salts
A species or two or more species can be used. The amount of amino acid and/or amino acid salt to be used may be about 0.01 to 20 g/approx. If the amount is less than 0.01 g, sufficient addition effects cannot be obtained and the gloss of the plating film is also insufficient. On the other hand, if it exceeds 20 g/min, there is no particular problem, but even better effects cannot be obtained and it is economically useless. In addition to the above-mentioned essential ingredients, the plating bath of the present invention includes:
Aldehydes such as aromatic aldehyde and cinnamaldehyde may be added to further improve the gloss, leveling, etc. of the plating film. The amount of the aldehyde used is not particularly limited, but is usually 0.01 to 2.
It may be about g/g. The plating bath of the present invention can be produced by adding predetermined amounts of each of the above components to water according to a conventional method.
The pH of the plating bath of the present invention thus obtained is 11 or more by containing a predetermined amount of alkali hydroxide. If it is less than 11, the zincate becomes unstable and the zinc concentration in the plating bath cannot be maintained within a predetermined range. When performing electroplating using the plating bath of the present invention, known electroplating methods can be employed.
Further, the electroplating conditions are not particularly limited and may be selected as appropriate, but usually the plating temperature is about 15 to 45°C and the average current density is about 0.5 to 10 A/dm2. The plating bath of the present invention can be used on virtually all materials to which zinc-nickel alloy can be applied. Specific examples include mild steel, spring steel, chrome steel,
Examples include chromium molybdenum steel, copper, 73 brass, 64 brass, and the like. Effects of the Invention According to the electrolytic zinc-nickel alloy plating bath of the present invention, a zinc-nickel alloy plating film with excellent corrosion resistance and flexibility can be obtained, so even if plating is applied to a thickness of 5 μm or more, the plated parts will remain intact. Cracks do not occur due to stress during installation, and good corrosion resistance is maintained. Furthermore, when using the plating bath of the present invention, if the current density becomes non-uniform, for example, if the current density becomes high, the current efficiency will decrease accordingly, so that the plating film thickness will be uniform. gender is maintained. Therefore, it is also suitable for plating articles with complex shapes that have a wide current density distribution. Furthermore,
Corrosivity to plating equipment is reduced, reducing the cost required for corrosion protection of plating equipment. Examples Examples and comparative examples are given below to further clarify the present invention. Example 1 ZnO 13g / NiSO 4 6H 2 O 5.2g / NaOH 140g / Diethylenetriamine 3.8g / Amino alcohol polymer A 1.2 g / Tyrosine 0.72 g / Amino alcohol polymer A includes N,
A reaction polymer (average degree of polymerization of 500) of 1 mol of N,N',N'-tetramethyl-1,3-diaminopropane and 1 mol of epichlorohydrin was used. A plating bath (PH12.8) with the above composition was used on a 50 x 50 x 0.5 mm mild steel plate at a plating temperature of 30°C and a current density.
Electroplating was carried out at 1 A/dm 2 , 4 A/dm 2 or 10 A/dm 2 for 10 minutes. The resulting dazzling film had good gloss. Thickness of plating film (μm)
Table 1 shows the nickel content (% by weight) in the plating film. Next, under the same conditions as above, a 0.5 mm thick mild steel plate was electroplated until the thickness of the plating film reached 5 μm. After applying stress to the obtained coated steel plate as follows, a corrosion resistance test (JIS-Z-
2371). That is,
The plated steel plate is bent 90 degrees and returned to the horizontal position, then reversely bent 90 degrees at the same bending position as above and returned to the horizontal position.The plated surface is then sprayed with salt water and the steel plate is The time taken for red rust to appear was investigated. The results are shown in Table 1.

【表】 実施例 2 チロシンに代えてアスパラギン酸ナトリウムを
10g/添加する以外は、実施例1と同様の操作
を行なつたところ、良好な光沢を有するめつき皮
膜が得られた。めつき皮膜の膜厚、ニツケル含有
率及び赤錆発生時間を第2表に示す。
[Table] Example 2 Sodium aspartate instead of tyrosine
When the same operation as in Example 1 was carried out except that 10 g/g was added, a plated film with good gloss was obtained. Table 2 shows the thickness of the plating film, the nickel content, and the red rust generation time.

【表】 実施例 3 チロシンに代えてオキシリジンを0.03g/添
加する以外は、実施例1と同様の操作を行なつた
ところ、良好な光沢を有するめつき皮膜が得られ
た。めつき皮膜の膜厚、ニツケル含有率及び赤錆
発生時間を第3表に示す。
[Table] Example 3 The same operation as in Example 1 was carried out except that 0.03 g of oxylysine was added instead of tyrosine, and a plated film with good gloss was obtained. Table 3 shows the thickness of the plating film, nickel content, and red rust generation time.

【表】 実施例 4 実施例1のめつき浴に、更にアニスアルデヒド
を0.03g/添加し、実施例1と同様の操作を行
なつたところ、良好な鏡面光沢を有するめつき皮
膜が得られた。めつき皮膜の膜厚、ニツケル含有
率及び赤錆発生時間を第4表に示す。
[Table] Example 4 When 0.03 g/anisaldehyde was further added to the plating bath of Example 1 and the same operation as in Example 1 was performed, a plating film with good specular gloss was obtained. Ta. Table 4 shows the thickness of the plating film, the nickel content, and the red rust generation time.

【表】 実施例 5 ZnO 25g/ NiSO4・6H2O 35.9g/ NaOH 180g/ 酒石酸水素カリウム 26.3g/ エチレンジアミン 21.9g/ アミノアルコールポリマーB 0.75g/ ヒスチジン 0.02g/ グリシン 2.8g/ アミノアルコールポリマーBとしては、2−メ
チルイミダゾールの0.5モル、N,N,N′,N′−
テトラメチル−1,3−ジアミノプロパンの1.5
モルと1,3−ジクロル−2−プロパノールの2
モルとの反応重合物(平均重合度2300)を用い
た。 上記浴(PH13.5)を使用する以外は、実施例1
と同様の操作を行なつたところ、良好な光沢を有
するめつき皮膜が得られた。めつき皮膜の膜厚、
ニツケル含有率及び赤錆発生時間を第5表に示
す。
[Table] Example 5 ZnO 25g / NiSO 4 6H 2 O 35.9g / NaOH 180g / Potassium hydrogen tartrate 26.3g / Ethylenediamine 21.9g / Amino alcohol polymer B 0.75g / Histidine 0.02g / Glycine 2.8g / Amino alcohol polymer B is 0.5 mole of 2-methylimidazole, N,N,N',N'-
1.5 of tetramethyl-1,3-diaminopropane
moles and 2 of 1,3-dichloro-2-propanol
A reaction polymer (average degree of polymerization 2300) with moles was used. Example 1 except for using the above bath (PH13.5)
When the same operation as above was carried out, a plated film with good gloss was obtained. Thickness of plating film,
The nickel content and red rust generation time are shown in Table 5.

【表】 比較例 1 特公昭60−12343号公報に記載された、下記組
成のめつき浴を使用し、めつき温度を35℃とする
以外は、実施例1と同様に操作して電気めつきを
行なつた。 ZnCl2 100g/ NiCl2・6H2O 130g/ NH4Cl 200g/ ポリオキシエチレンアルキルエーテル
1.5g/ ベンザルアセトン 0.08g/ (25%水酸化アンモニウムでPH5.7に調整) 得られためつき皮膜は、いずれの電流密度にお
いても良好な光沢を示したが、電流密度の変化に
対し、めつき皮膜の膜厚及びニツケル含有率が大
きく変動し、耐食性も著るしく劣つていた。結果
を第6表に示す。
[Table] Comparative Example 1 An electric lamp was produced in the same manner as in Example 1, except that the plating bath with the following composition and the plating temperature as described in Japanese Patent Publication No. 60-12343 was used, and the plating temperature was set at 35°C. I conducted a search. ZnCl 2 100g/ NiCl 2・6H 2 O 130g/ NH 4 Cl 200g/ Polyoxyethylene alkyl ether
1.5g/ Benzalacetone 0.08g/ (adjusted to PH5.7 with 25% ammonium hydroxide) The resulting matte film showed good gloss at any current density, but The thickness and nickel content of the plating film varied greatly, and the corrosion resistance was also significantly inferior. The results are shown in Table 6.

【表】 比較例 2 チロシンを添加しない以外は、実施例1と同様
に操作して電気めつきを行なつた。得られためつ
き皮膜は、1A/dm2の電流密度で灰色無光沢で
あり、4及び10A/dm2では非常に弱い光沢しか
示さず、いずれも実用に供し難い外観であつた。
めつき皮膜の膜厚、ニツケル含有率及び赤錆発生
時間を第7表に示す。
[Table] Comparative Example 2 Electroplating was carried out in the same manner as in Example 1 except that tyrosine was not added. The resulting dazzling film was gray and matte at a current density of 1 A/dm 2 and exhibited only very weak gloss at current densities of 4 and 10 A/dm 2 , both of which had an appearance that was difficult to put to practical use.
Table 7 shows the thickness of the plating film, the nickel content, and the red rust generation time.

【表】 第1表乃至第7表から、本発明のめつき浴を用
いた場合には、イ)電流密度の変化に対して、め
つき皮膜の膜厚及びニツケル含有率の変動が少な
いこと、並びに、ロ)従来の亜鉛−ニツケル合金
皮膜に比して、著るしく優れた応力負荷後の耐食
性を有するめつき皮膜が得られることが判る。
[Table] From Tables 1 to 7, when the plating bath of the present invention is used, a) there is little variation in the thickness and nickel content of the plating film with respect to changes in current density; and (b) it can be seen that a plated film having significantly superior corrosion resistance after stress loading can be obtained compared to conventional zinc-nickel alloy films.

Claims (1)

【特許請求の範囲】 1 Znイオン 3〜30g/、 Niイオン 0.2〜20g/、 水酸化アルカリ 20〜300g/、 アミノアルコールポリマー 0.05〜10g/、 Niイオン1モルに対しNi錯化剤 1〜20モル 及び アミノ酸又はアミノ酸塩 0.01〜20g/ を含み且つPHが11以上であることを特徴とする亜
鉛−ニツケル合金めつき浴。
[Claims] 1 Zn ion 3 to 30 g/, Ni ion 0.2 to 20 g/, alkali hydroxide 20 to 300 g/, amino alcohol polymer 0.05 to 10 g/, Ni complexing agent 1 to 20 per mole of Ni ion. A zinc-nickel alloy plating bath characterized by containing 0.01 to 20 g/mole of an amino acid or an amino acid salt and having a pH of 11 or more.
JP63045343A 1988-02-26 1988-02-26 Zinc-nickel alloy plating bath Granted JPH01219188A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63045343A JPH01219188A (en) 1988-02-26 1988-02-26 Zinc-nickel alloy plating bath
US07/313,124 US4861442A (en) 1988-02-26 1989-02-21 Zinc-nickel alloy plating bath and plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63045343A JPH01219188A (en) 1988-02-26 1988-02-26 Zinc-nickel alloy plating bath

Publications (2)

Publication Number Publication Date
JPH01219188A JPH01219188A (en) 1989-09-01
JPH0322477B2 true JPH0322477B2 (en) 1991-03-26

Family

ID=12716642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63045343A Granted JPH01219188A (en) 1988-02-26 1988-02-26 Zinc-nickel alloy plating bath

Country Status (2)

Country Link
US (1) US4861442A (en)
JP (1) JPH01219188A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2130855A1 (en) 2008-05-15 2009-12-09 Fujifilm Corporation Cellulose ester film, retardation film, polarizing plate and liquid crystal display device
WO2011118845A1 (en) 2010-03-26 2011-09-29 Fujifilm Corporation Polyester resin, and optical materials, films and image display devices using the same

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266182A (en) * 1988-03-16 1993-11-30 Kawasaki Steel Corporation Method for producing Zn-Ni alloy plated steel plate having superior press formability
JPH02141596A (en) * 1988-11-21 1990-05-30 Yuken Kogyo Kk Zincate-type zinc alloy plating bath
USRE35860F1 (en) * 1991-06-05 2001-01-02 Timken Co Corrosion-resistant zinc-nickel plated bearing races
US5417840A (en) * 1993-10-21 1995-05-23 Mcgean-Rohco, Inc. Alkaline zinc-nickel alloy plating baths
US5405523A (en) * 1993-12-15 1995-04-11 Taskem Inc. Zinc alloy plating with quaternary ammonium polymer
US5851313A (en) * 1996-09-18 1998-12-22 The Timken Company Case-hardened stainless steel bearing component and process and manufacturing the same
US6062735A (en) * 1998-05-27 2000-05-16 Reliance Electric Industrial Company Corrosion resistant antifriction bearing and method for making same
US6143160A (en) * 1998-09-18 2000-11-07 Pavco, Inc. Method for improving the macro throwing power for chloride zinc electroplating baths
JP4856802B2 (en) * 1999-03-31 2012-01-18 日本表面化学株式会社 Metal surface treatment method
JP5219011B2 (en) 1999-11-10 2013-06-26 日本表面化学株式会社 Surface treatment liquid, surface treatment agent, and surface treatment method
US6656606B1 (en) 2000-08-17 2003-12-02 The Westaim Corporation Electroplated aluminum parts and process of production
US6468411B1 (en) * 2001-07-11 2002-10-22 Taskem Inc. Brightener for zinc-nickel plating bath and method of electroplating
DE10146559A1 (en) * 2001-09-21 2003-04-10 Enthone Omi Deutschland Gmbh Process for the deposition of a zinc-nickel alloy from an electrolyte
US20050133376A1 (en) * 2003-12-19 2005-06-23 Opaskar Vincent C. Alkaline zinc-nickel alloy plating compositions, processes and articles therefrom
US7442286B2 (en) * 2004-02-26 2008-10-28 Atotech Deutschland Gmbh Articles with electroplated zinc-nickel ternary and higher alloys, electroplating baths, processes and systems for electroplating such alloys
EP1870495A1 (en) * 2006-06-21 2007-12-26 Atotech Deutschland Gmbh Aqueous alkaline, cyanide-free, bath for the galvanic deposition of Zinc and Zinc alloy layers
ES2553730T3 (en) * 2006-07-13 2015-12-11 Enthone, Incorporated Electrolyte composition and procedure for the deposition of a layer of zinc-nickel alloy on a cast iron or cast steel substrate
JP2008251075A (en) * 2007-03-29 2008-10-16 Fujifilm Corp Stamper for optical information recording medium, master for magnetic transfer and manufacturing method thereof
US20100084278A1 (en) * 2008-10-02 2010-04-08 Rowan Anthony J Novel Cyanide-Free Electroplating Process for Zinc and Zinc Alloy Die-Cast Components
US20100096274A1 (en) * 2008-10-17 2010-04-22 Rowan Anthony J Zinc alloy electroplating baths and processes
US20110220512A1 (en) * 2010-03-15 2011-09-15 Rohm And Haas Electronic Materials Llc Plating bath and method
US8262895B2 (en) * 2010-03-15 2012-09-11 Rohm And Haas Electronic Materials Llc Plating bath and method
US8268157B2 (en) * 2010-03-15 2012-09-18 Rohm And Haas Electronic Materials Llc Plating bath and method
US9550855B2 (en) * 2010-05-28 2017-01-24 The Johns Hopkins University Self-healing coatings
US8454815B2 (en) 2011-10-24 2013-06-04 Rohm And Haas Electronics Materials Llc Plating bath and method
JP6047702B2 (en) 2013-03-27 2016-12-21 日本表面化学株式会社 Zinc-nickel alloy plating solution and plating method
US10156020B2 (en) * 2015-07-22 2018-12-18 Dipsol Chemicals Co., Ltd. Zinc alloy plating method
WO2019088917A1 (en) * 2017-11-01 2019-05-09 Agency For Science, Technology And Research Imidazolium-quaternary ammonium copolymers as novel antibacterial and antifungal materials
CN108570696B (en) * 2018-04-20 2020-06-02 广东达志化学科技有限公司 High-current-density-resistant acidic zinc-nickel electroplating solution and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU524866A1 (en) * 1975-04-10 1976-08-15 Предприятие П/Я А-7697 Electrolyte for deposition of zinc-nickel alloys
US4388160A (en) * 1980-02-20 1983-06-14 Rynne George B Zinc-nickel alloy electroplating process
US4765871A (en) * 1981-12-28 1988-08-23 The Boeing Company Zinc-nickel electroplated article and method for producing the same
JPS62240788A (en) * 1986-04-14 1987-10-21 Deitsupusoole Kk Zinc-nickel alloy plating bath
JP2769614B2 (en) * 1986-06-04 1998-06-25 ディップソール 株式会社 Zinc-nickel alloy plating bath
JPS6353285A (en) * 1986-08-22 1988-03-07 Nippon Hyomen Kagaku Kk Zinc-nickel alloy plating solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2130855A1 (en) 2008-05-15 2009-12-09 Fujifilm Corporation Cellulose ester film, retardation film, polarizing plate and liquid crystal display device
WO2011118845A1 (en) 2010-03-26 2011-09-29 Fujifilm Corporation Polyester resin, and optical materials, films and image display devices using the same

Also Published As

Publication number Publication date
JPH01219188A (en) 1989-09-01
US4861442A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
JPH0322477B2 (en)
US5435898A (en) Alkaline zinc and zinc alloy electroplating baths and processes
US20100155257A1 (en) Aqueous, alkaline, cyanide-free bath for the galvanic deposition of zinc alloy coatings
US4877496A (en) Zinc-nickel alloy plating solution
US9297087B2 (en) Acidic gold alloy plating solution
JPH02141596A (en) Zincate-type zinc alloy plating bath
AU764300B2 (en) Zinc and zinc alloy electroplating additives and electroplating methods
JPH0338351B2 (en)
KR900005845B1 (en) Zinc-nickel alloy electrolyte and process
JPS581082A (en) Brightening composition for zinc alloy electroplating and use thereof
EP2350355B1 (en) Zinc alloy electroplating baths and processes
KR101046301B1 (en) Nickel flash plating solution, electric zinc steel sheet and manufacturing method thereof
JPS61163289A (en) Black electroplating bath by nickel and nickel alloy
US20030192785A1 (en) Zinc and zinc alloy electroplating additives and electroplating methods
US4021316A (en) Bath for the electrodeposition of bright tin-cobalt alloy
US3729394A (en) Composition and method for electrodeposition of zinc
JP5419021B2 (en) Zincate-type galvanizing bath
CA2073478C (en) Electroplating composition and process
KR100419655B1 (en) A METHOD FOR MANUFACTURING Zn-Ni ALLOY ELECTRODEPOSITION STEEL SHEET BY USING Zn-Ni ALLOY ELECTRODEPOSITION SOLUTION
JPH05112889A (en) Zincate-type zinc-iron alloy plating bath
JP5747359B2 (en) Zincate-type zinc-based plating bath, additive for zincate-type zinc-based plating bath, and method for producing zinc-based plated member
KR960006597B1 (en) Zn-ni alloy solution for an electroplating and the method for manufacturing a zn-ni alloy electroplating steel plate using the same
RU2285065C1 (en) Method of electrolytic deposition of iron-chromium alloy
RU1770458C (en) Electrolyte for bright galvanizing
JP2014037621A (en) Zincate type galvanizing bath, additive for zincate type galvanizing bath and method for producing galvanized member