JPH032233B2 - - Google Patents

Info

Publication number
JPH032233B2
JPH032233B2 JP3440086A JP3440086A JPH032233B2 JP H032233 B2 JPH032233 B2 JP H032233B2 JP 3440086 A JP3440086 A JP 3440086A JP 3440086 A JP3440086 A JP 3440086A JP H032233 B2 JPH032233 B2 JP H032233B2
Authority
JP
Japan
Prior art keywords
nickel
iron
chromium
solution
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3440086A
Other languages
Japanese (ja)
Other versions
JPS62192588A (en
Inventor
Fumio Mitsuyama
Kunihiko Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP3440086A priority Critical patent/JPS62192588A/en
Publication of JPS62192588A publication Critical patent/JPS62192588A/en
Publication of JPH032233B2 publication Critical patent/JPH032233B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は塩化第2鉄水溶液を用いてステンレス
材をエツチングする分野等で得られる塩化鉄水溶
液主として塩化第2鉄水溶液の精製、再生に関す
るもので、特に塩化鉄水溶液中のクロム、ニツケ
ルの除去方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to the purification and regeneration of iron chloride aqueous solutions, mainly ferric chloride aqueous solutions, obtained in the field of etching stainless steel materials using ferric chloride aqueous solutions. In particular, it relates to a method for removing chromium and nickel from an aqueous iron chloride solution.

〔従来の技術〕[Conventional technology]

塩化第2鉄水溶液を用いてステンレス材をエツ
チングする際、これら材料中のニツケル、クロム
が塩化第2鉄水溶液中に多量に存在するようにな
るとエツチング能力が低下し使用できなくなるた
め、従来は塩化第2鉄エツチング廃液に鉄材を加
えて除去する方法(特開昭59−121123)等が提案
されている。本発明はこれらの改良法に関するも
のである。
When etching stainless steel materials using a ferric chloride aqueous solution, if a large amount of nickel and chromium in these materials were present in the ferric chloride aqueous solution, the etching ability would decrease and the material would become unusable. A method has been proposed in which iron material is added to the ferric etching waste solution (Japanese Patent Laid-Open No. 121123/1983). The present invention relates to these improvements.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

ステンレス材を塩化第2鉄水溶液でエツチング
した廃液中には多量のクロム、ニツケルが存在す
る。従来の技術では廃液中にクロム、ニツケル含
有量を経済的に微量にし廃液を再利用することが
できなかつた。従来の技術ではいづれも工業的に
は今一歩と考えられ実際にはエツチングに使用さ
れた廃液は再利用されず廃棄されているのが実状
のようである。
A large amount of chromium and nickel are present in the waste solution obtained by etching stainless steel materials with an aqueous ferric chloride solution. With conventional techniques, it has not been possible to economically reduce the chromium and nickel contents in the waste liquid and reuse the waste liquid. All of the conventional techniques are considered to be a step backwards from an industrial perspective, and in reality, the waste liquid used for etching is not reused and is discarded.

本発明は省資源の立場から塩化第2鉄エツチン
グ廃液中のクロム、ニツケルを経済的に除去し、
廃液の再利用を可能とすることを目的とするもの
である。
The present invention economically removes chromium and nickel from ferric chloride etching waste liquid from the standpoint of resource conservation.
The purpose is to enable the reuse of waste liquid.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は多量にクロム、ニツケルを含む塩化鉄
水溶液よりこれらの重金属を除去する方法に関す
るものである。
The present invention relates to a method for removing these heavy metals from an iron chloride aqueous solution containing large amounts of chromium and nickel.

ステンレス材を使用した場合のエツチング液の
エツチング機構において、ステンレス中のクロム
およびニツケルが溶出する反応は、下記の反応式
で示すことができる。
In the etching mechanism of an etching solution when stainless steel material is used, the reaction in which chromium and nickel are eluted from stainless steel can be expressed by the following reaction formula.

Cr+3FeCl3→CrCl3+3FeCl2 Ni+2FeCl3→NiCl2+2FeCl2 本発明者等は種々検討の結果、金属鉄と塩化第
2鉄を反応させることによつて塩化第2鉄溶液と
する際に金属鉄として鉄材を用いることにより最
初にクロムをほぼ完全に近い状態まで除去するこ
とが可能であり、ついでクロムを除去後に液に金
属鉄として鉄粉を加えるときは、ニツケルをほぼ
完全に近い状態にまで除去可能であることを見出
し本発明を完成するに至つた。ステンレス材を塩
化第2鉄でエツチングした廃液に鉄材を加える
と、まず第一に次式に示す通り塩化第2鉄が塩化
第1鉄に完全に変化すると共に、塩化第2鉄液中
に含まれる酸分も鉄材により消費される。
Cr+3FeCl 3 →CrCl 3 +3FeCl 2 Ni+2FeCl 3 →NiCl 2 +2FeCl 2As a result of various studies, the inventors found that when making a ferric chloride solution by reacting metallic iron with ferric chloride, By using an iron material, it is possible to first remove chromium almost completely, and then when adding iron powder as metallic iron to the liquid after removing chromium, it is possible to remove nickel almost completely. We have discovered that this is possible and have completed the present invention. When iron material is added to the waste solution obtained by etching stainless steel material with ferric chloride, first of all, the ferric chloride is completely converted to ferrous chloride as shown in the following equation, and at the same time, the ferric chloride contained in the ferric chloride solution is The acid content is also consumed by the iron material.

Fe+2FeCl3→3FeCl2 Fe+2HCl→FeCl2+H2 この時塩化第1鉄溶液中のクロムは主に水酸化
クロムとなつて沈澱する。ニツケルについては一
部金属ニツケルの沈澱となるが殆んどがこの段階
では溶液状態のまま存在する。従つてこの塩化第
1鉄溶液を過することによりクロムをほぼ完全
に近い状態に除去できる。使用する鉄材は如何な
る形状のものでもよくたとえば鉄片、鉄塊、棒状
鉄、粉状鉄、鉄粉などのいずれをも使用できる
が、それらの中でも表面積の比較的大きい鉄片が
反応性も大きく経済的である。通常鉄材は、塩化
第2鉄を塩化第1鉄に変化させるに必要な鉄の理
論量より過剰に用いられ、反応温度は50〜100℃
の範囲で行うのが好ましく、より好ましくは50〜
90℃の範囲である。又この工程における溶液のPH
は通常1〜3となる。反応時間は液量、鉄材の種
類、反応温度により異るが出来るだけ長時間反応
させるのが好ましい。反応雰囲気は窒素雰囲気で
も空気雰囲気でもかまわない。次に塩化第1鉄酸
分液中のクロム沈澱物を過操作により除去す
る。こゝで、クロム沈澱物を系から除去しない
と、クロム沈澱形成工程において相当量の鉄粉を
使用し、クロム沈澱物の形成後もなお所定量の鉄
粉が残留するようにしても、理由は不詳である
が、ニツケルを充分に除去することはできない。
これに対してクロムを除去した塩化第2鉄液に鉄
粉を存在させればニツケルを主に金属ニツケルと
鉄粉との混合物として取り除くことができる。こ
の工程における塩化第1鉄液のPHは通常1.5以上
に上げるのがよい。この時の鉄粉の作用について
は明らかでないが以下のことが考えられる。
Fe+2FeCl 3 →3FeCl 2 Fe+2HCl→FeCl 2 +H 2 At this time, chromium in the ferrous chloride solution mainly becomes chromium hydroxide and precipitates. Some of the nickel precipitates as metallic nickel, but most of it remains in solution at this stage. Therefore, by passing this ferrous chloride solution, chromium can be almost completely removed. The iron material used can be of any shape, such as iron pieces, iron ingots, bar iron, powdered iron, iron powder, etc., but iron pieces with a relatively large surface area are highly reactive and economical. It is. Normally, iron material is used in excess of the theoretical amount of iron required to convert ferric chloride to ferrous chloride, and the reaction temperature is 50 to 100℃.
It is preferable to carry out in the range of , more preferably 50 to
It is in the range of 90℃. Also, the pH of the solution in this process
is usually 1 to 3. Although the reaction time varies depending on the amount of liquid, the type of iron material, and the reaction temperature, it is preferable to allow the reaction to take place for as long as possible. The reaction atmosphere may be a nitrogen atmosphere or an air atmosphere. Next, the chromium precipitate in the ferrous chloride acid solution is removed by overoperation. Therefore, if the chromium precipitate is not removed from the system, even if a considerable amount of iron powder is used in the chromium precipitate formation process and a predetermined amount of iron powder remains even after the chromium precipitate is formed, there will be no reason why. Although the details are unknown, nickel cannot be removed sufficiently.
On the other hand, if iron powder is present in the ferric chloride solution from which chromium has been removed, nickel can be removed mainly as a mixture of metallic nickel and iron powder. The pH of the ferrous chloride solution in this step is usually preferably raised to 1.5 or higher. Although the effect of iron powder at this time is not clear, the following may be considered.

1 極微量の遊離酸との反応によるPHの上昇によ
り水酸化ニツケルが生成。
1 Nickel hydroxide is generated due to an increase in pH due to reaction with a very small amount of free acid.

2 鉄とのイオン化傾向の差による金属鉄表面へ
のニツケルの析出。
2. Nickel is deposited on the surface of metallic iron due to the difference in ionization tendency with iron.

次にニツケル除去の操作条件について詳細に説
明する。塩化第1鉄溶液に添加する鉄粉は細かい
ものがよく粗いとニツケル除去効率が悪い。鉄粉
の細かさは100メツシユ以上好ましくは150メツシ
ユ以上のものである。ここで「100メツシユ以上」
とは「100メツシユの網目を通過する粒度」のこ
とである。反応温度は常温から100℃が好ましく、
より好ましくは40〜90℃である。
Next, the operating conditions for removing nickel will be explained in detail. The iron powder added to the ferrous chloride solution should be fine, but if it is coarse, the nickel removal efficiency will be poor. The fineness of the iron powder is 100 mesh or more, preferably 150 mesh or more. Here, "100 meshes or more"
is the "particle size that passes through a 100-mesh mesh." The reaction temperature is preferably from room temperature to 100°C.
More preferably it is 40-90°C.

鉄粉の添加量はニツケルの含有量、反応時間に
左右されるがニツケルに対し1倍モル以上、好ま
しくは3〜7倍モルが適当である。反応の雰囲気
は窒素雰囲気でも空気雰囲気でもニツケルの除去
率には差は殆んどないが、反応液をエアーレーシ
ヨンすると一部フエライト化した鉄にニツケルが
取り込まれるので好ましい。以上の条件で行うと
反応液のPHは1以上好ましくは1.5〜4にするこ
とができる。反応時間は80℃の場合1時間以上が
好ましく、より好ましくは2〜8時間である。得
られた反応後を過することにより塩化第1鉄水
溶液中のニツケルを取り除くことができる。過
の際は反応液の温度が高い程過性は良い。ニツ
ケルを除去した塩化第1鉄は次の反応により塩素
化し塩化第2鉄溶液として再利用することができ
る。
The amount of iron powder to be added depends on the nickel content and reaction time, but is suitably at least 1 mole, preferably 3 to 7 moles, relative to nickel. There is almost no difference in the removal rate of nickel whether the reaction atmosphere is a nitrogen atmosphere or an air atmosphere, but air rationing of the reaction solution is preferable because nickel is incorporated into the partially ferritized iron. When carried out under the above conditions, the pH of the reaction solution can be adjusted to 1 or more, preferably 1.5 to 4. The reaction time is preferably 1 hour or more at 80°C, more preferably 2 to 8 hours. Nickel in the ferrous chloride aqueous solution can be removed by passing the resulting reaction mixture. During the filtration, the higher the temperature of the reaction solution, the better the filtration performance. The ferrous chloride from which nickel has been removed can be chlorinated by the following reaction and reused as a ferric chloride solution.

2FeCl2+Cl2→2FeCl3 次に本発明の実施例について説明する。 2FeCl 2 +Cl 2 →2FeCl 3 Next, examples of the present invention will be described.

実施例 1 塩化第2鉄と塩化第1鉄の組成がそれぞれ25%
と15%の混合液中にクロム3100ppm、ニツケル
9600ppmを含む液を調整した。この時のPHは1.2
であつた。この液500gに鉄片を61.5g仕込み80
℃で48時間加熱撹拌した。48時間後のPHは1.45で
あつた。48時間後に溶液を取り出して定量紙
5Bで過した。液液中のクロム、ニツケルの含
有量はそれぞれ7.5ppm、6420ppmであつた。次
にこの液400gに200メツシユの電解鉄粉20gを
添加し80℃で6時間反応させた。反応液を5B定
量紙で過した。液中のクロム、ニツケルの
含有量はそれぞれ≒0ppm、45ppmであつた。こ
の液のPHは3.2であつた。
Example 1 Composition of ferric chloride and ferrous chloride is 25% each
3100ppm of chromium and nickel in a 15% mixture of
A solution containing 9600ppm was prepared. The pH at this time is 1.2
It was hot. Add 61.5g of iron to 500g of this liquid and add 80
The mixture was heated and stirred at ℃ for 48 hours. The pH after 48 hours was 1.45. After 48 hours, remove the solution and write it on quantitative paper.
I spent time at 5B. The contents of chromium and nickel in the liquid were 7.5 ppm and 6420 ppm, respectively. Next, 20 g of 200 mesh electrolytic iron powder was added to 400 g of this liquid, and the mixture was reacted at 80° C. for 6 hours. The reaction solution was filtered through 5B quantitative paper. The contents of chromium and nickel in the liquid were approximately 0 ppm and 45 ppm, respectively. The pH of this liquid was 3.2.

実施例 2 クロム2980ppm、ニツケル11000ppmを含む塩
化第1鉄溶液1500gに200メツシユの電解鉄粉45
gを添加し80℃で4時間反応させ反応終了後反応
液を5B定量紙で過した。液液中のクロム、
ニツケルはそれぞれ9.3ppm、4340ppmであつた。
次にこの液600gを取り先に使用したと同一の
鉄粉18gを添加し80℃で6時間反応させ、反応液
を5B定量紙で同様に過した。得られた液
中のクロム、ニツケルの含有量はそれぞれ≒
0ppm、42ppmとなつた。
Example 2 200 meshes of electrolytic iron powder 45 in 1500 g of ferrous chloride solution containing 2980 ppm chromium and 11000 ppm nickel
After the reaction was completed, the reaction solution was filtered through 5B quantitative paper. Chromium in liquid,
Nickel was 9.3ppm and 4340ppm, respectively.
Next, to 600 g of this liquid, 18 g of the same iron powder used earlier was added and reacted at 80°C for 6 hours, and the reaction liquid was passed through 5B quantitative paper in the same manner. The content of chromium and nickel in the obtained liquid is ≒
It became 0ppm and 42ppm.

比較例 ニツケル11640ppm、クロム1056ppmを含む塩
化第1鉄溶液600gに200メツシユの電解鉄粉30g
を添加し窒素雰囲下に80℃で6時間反応させた。
反応液を5B定量紙にて過し液中のニツケ
ル、クロムの含有量を測定した。ニツケル、クロ
ムの含有量はそれぞれ1569ppm,≒0ppmであつ
た。尚反応液中のニツケル含有量は反応時間2時
間も6時間もほぼ同じ数値であつた。
Comparative example: 30 g of 200 mesh electrolytic iron powder in 600 g of ferrous chloride solution containing 11,640 ppm of nickel and 1,056 ppm of chromium.
was added and reacted at 80°C for 6 hours under nitrogen atmosphere.
The reaction solution was filtered through 5B quantitative paper, and the content of nickel and chromium in the solution was measured. The nickel and chromium contents were 1569 ppm and ≒0 ppm, respectively. The nickel content in the reaction solution was approximately the same whether the reaction time was 2 hours or 6 hours.

〔発明の効果〕〔Effect of the invention〕

本発明に於いて原料塩化鉄溶液中の不純物であ
るクロム、ニツケルを、該溶液に金属鉄を加えて
反応させることによりクロム、ニツケルを経済的
かつ効率よく除去することができ特にステンレス
材のエツチング原料である塩化第2鉄溶液の再生
には有用であり、再利用を容易ならしめ、産業上
大いに寄与するものである。
In the present invention, chromium and nickel, which are impurities in the raw material iron chloride solution, can be removed economically and efficiently by adding metallic iron to the solution and causing the reaction.Especially for etching stainless steel materials. It is useful for regenerating the raw material ferric chloride solution, facilitates reuse, and greatly contributes to industry.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化鉄水溶液中のクロムとニツケルを金属鉄
を用いて除去するに当り、まず鉄として鉄材を用
い塩化第2鉄を塩化第1鉄に変化させると共にク
ロムを除去し、次いで鉄として鉄粉を用いて塩化
第1鉄溶液中のニツケルを除去することを特徴と
する塩化鉄水溶液中のクロム、ニツケルの除去方
法。
1. When removing chromium and nickel from an aqueous iron chloride solution using metallic iron, first use an iron material as iron to convert ferric chloride to ferrous chloride and remove chromium, then use iron powder as iron. 1. A method for removing chromium and nickel from an aqueous iron chloride solution, the method comprising: removing nickel from a ferrous chloride solution using a ferrous chloride solution.
JP3440086A 1986-02-19 1986-02-19 Removing method for chromium and nickel contained in iron chloride aqueous solution Granted JPS62192588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3440086A JPS62192588A (en) 1986-02-19 1986-02-19 Removing method for chromium and nickel contained in iron chloride aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3440086A JPS62192588A (en) 1986-02-19 1986-02-19 Removing method for chromium and nickel contained in iron chloride aqueous solution

Publications (2)

Publication Number Publication Date
JPS62192588A JPS62192588A (en) 1987-08-24
JPH032233B2 true JPH032233B2 (en) 1991-01-14

Family

ID=12413134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3440086A Granted JPS62192588A (en) 1986-02-19 1986-02-19 Removing method for chromium and nickel contained in iron chloride aqueous solution

Country Status (1)

Country Link
JP (1) JPS62192588A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253584A (en) * 1990-03-05 1991-11-12 Toagosei Chem Ind Co Ltd Method for removing nickel in aqueous ferrous chloride solution
US20050042156A1 (en) * 2003-08-21 2005-02-24 Fritz Scholz Method of recovery of metals from etching solutions
CN112850797A (en) * 2020-10-26 2021-05-28 斯瑞尔环境科技股份有限公司 Production method of ultrapure ferric trichloride
CN117497816A (en) * 2023-09-28 2024-02-02 斯瑞尔环境科技股份有限公司 Method for preparing low-nickel ferrochrome electrolyte by utilizing sulfide impurity removal

Also Published As

Publication number Publication date
JPS62192588A (en) 1987-08-24

Similar Documents

Publication Publication Date Title
US4348224A (en) Method for producing cobalt metal powder
JPS6254843B2 (en)
US4278463A (en) Process for recovering cobalt
JPH032233B2 (en)
JP2615382B2 (en) Method for producing catalyst containing iron, potassium and cerium
US4381937A (en) Method for producing cobalt metal powder
US4036785A (en) Catalyst for reduction of nitrogen oxides in presence of ammonia
JP3102331B2 (en) Method for recovering valuable metals from waste Ni catalyst
JPS61136902A (en) Manufacture of chlorine
JP4161636B2 (en) Method for removing indium from indium-containing ferrous chloride aqueous solution
JP3104720B2 (en) Nickel removal method from nickel-containing iron chloride aqueous solution
US4150095A (en) Recovering magnetite and ammonium sulphate from ammonium jarosite
US4007037A (en) Composition and method for chemically etching copper elements
JP3824709B2 (en) Manufacturing method of high purity iron oxide powder
JP2910393B2 (en) Method for removing and recovering nickel from aqueous iron chloride solution
JPH03253584A (en) Method for removing nickel in aqueous ferrous chloride solution
JP3343964B2 (en) Continuous production of ferric chloride solution
GB2024264A (en) Aluminium alloys and preparation and use thereof
JPH06171953A (en) Production of ferric chloride solution
JP4505951B2 (en) Method for producing high purity ferric chloride aqueous solution
JPS62191428A (en) Removal of nickel from aqueous ferrous chloride
JPH07215703A (en) Method for removing selenium from selenic acid containing solution
JP2669010B2 (en) Desiliconization method in metal salt solution
CA1158018A (en) Process for production of coc1.sub.2 solution from cobaltic oxide-hydrate
JPS6121731A (en) Preparation of coal liquefying catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees