JPS6121731A - Preparation of coal liquefying catalyst - Google Patents

Preparation of coal liquefying catalyst

Info

Publication number
JPS6121731A
JPS6121731A JP14141884A JP14141884A JPS6121731A JP S6121731 A JPS6121731 A JP S6121731A JP 14141884 A JP14141884 A JP 14141884A JP 14141884 A JP14141884 A JP 14141884A JP S6121731 A JPS6121731 A JP S6121731A
Authority
JP
Japan
Prior art keywords
iron
sulfur
catalyst
aqueous solution
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14141884A
Other languages
Japanese (ja)
Other versions
JPS6333421B2 (en
Inventor
Yoichi Yamada
洋一 山田
Yoshihiro Kudo
義弘 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP14141884A priority Critical patent/JPS6121731A/en
Publication of JPS6121731A publication Critical patent/JPS6121731A/en
Publication of JPS6333421B2 publication Critical patent/JPS6333421B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain a highly active fine coal liquefying catalyst, by mixing sulfur with the solid separated from a slurry mixture consisting of a sulfur ion- containing alkaline aqueous solution and an iron ion-containing acidic aqueous solution before reacting both of them at 200-700 deg.C. CONSTITUTION:A sulfur ion-containing alkaline aqueous solution containing sodium sulfide, ammonium sulfide or potassium sulfide in concn. of 0.1-4mol as a sulfur ion is prepared while an iron ion-containing acidic aqueous solution containing iron acetate, iron sulfate or iron nitrate in concn. of 0.1-4mol as an iron ion and adjusted to pH 2-7 is prepared and both solution are mixed to form a slurry. From this slurry, a fine solid with a particle size of 0.5-2mum is obtained by solid-liquid separation and sulfur is mixed with said solid while the resulting mixture is reacted at 200-700 deg.C to prepare a coal liquefying catalyst.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石炭液化用触媒の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing a catalyst for coal liquefaction.

(従来の技術) 石炭を粉砕して加熱し、必要に芯じて水素を加えてガス
および固形物を含む液化物を得る方法は長年研究され、
多くの技術が知られている。近年、燃料油資源等の問題
や化学品の多様化から、石炭液化技術の開発は非常に盛
んであり、多くの新しい技術が開発されつつある。
(Prior art) The method of obtaining a liquefied product containing gas and solids by crushing and heating coal and adding hydrogen as necessary has been researched for many years.
Many techniques are known. In recent years, due to problems such as fuel oil resources and the diversification of chemical products, the development of coal liquefaction technology has been very active, and many new technologies are being developed.

しかし、良質の燃料油やガソリンあるいは化学原料油を
効率良く得るた、めには、まだ多くの問題点もかかえて
いる。例えば、高価な触媒または公害上望ましくない触
媒の添加が必要であった)、石炭を液化する時に要する
水素が多量であったり、反応中に炭化物が生成したりす
ることである。
However, there are still many problems in order to efficiently obtain high-quality fuel oil, gasoline, or chemical feedstock oil. For example, it required the addition of expensive or pollutantly undesirable catalysts), the large amount of hydrogen required to liquefy the coal, and the formation of char during the reaction.

なかでも石炭反応器中の反応条件、特にそのうち触媒の
選択は、液化油の品質を決めるための重要な因子の一つ
である。このためその化学種や物理的形状をかえた多種
の触媒が、添加方法も含めて開発されてきた。
Among them, the reaction conditions in the coal reactor, especially the selection of the catalyst, are one of the important factors for determining the quality of liquefied oil. For this reason, a wide variety of catalysts with different chemical species and physical shapes, including methods of addition, have been developed.

従来公知である石炭液化の触媒は非常に多いが、代表的
なものとして、塩化物では塩化亜鉛、塩化スズ、塩化ア
ルミ、塩化ニッケル、塩化鉄等が、硫化物では硫化スズ
、硫化モリブデン、硫化鉛、硫化銅、硫化亜鉛、硫化ニ
ッケル、硫化鉄等が、酸化物では酸化ニッケル、シリカ
、アルミナ、酸化鉄、酸化コバルト、酸化チタン等があ
り、また、それらの混合物あるいはまた赤泥や鉱石など
の使用が知られている。
There are a large number of catalysts for coal liquefaction that have been known in the past, but typical chlorides include zinc chloride, tin chloride, aluminum chloride, nickel chloride, iron chloride, etc., and sulfides include tin sulfide, molybdenum sulfide, and sulfide. Lead, copper sulfide, zinc sulfide, nickel sulfide, iron sulfide, etc.; oxides include nickel oxide, silica, alumina, iron oxide, cobalt oxide, titanium oxide, etc.; and mixtures thereof, red mud, ores, etc. is known to be used.

以上の触媒群を大別すると3群にわけられる。The above catalyst groups can be roughly divided into three groups.

第一群は塩化物系で、石炭液化反応にすぐれた触媒効果
を示す。なかでも高濃度で用いる溶融塩法などにおいて
、軽質油の生成に富み、発生ガス量が少なく、良好な液
化成績を示すことが報告されている。しかしながら、水
沫を実用化してい〈上では、塩化水素ガスが共存するこ
とから、装置材質上大きな制約を受ける。
The first group is chloride-based, which exhibits excellent catalytic effects in coal liquefaction reactions. Among them, it has been reported that in the molten salt method used at high concentrations, light oil is produced abundantly, the amount of gas generated is small, and good liquefaction results are shown. However, when water droplets are put into practical use, hydrogen chloride gas coexists, which imposes major restrictions on the material of the equipment.

第二群は、重質油水添々どKよく使われるCo 。The second group is Co, which is often used in heavy oil hydrogenation.

Mo、 Ni、 Wなどの高価な金属群である。これら
の触媒は、水素化活性は高いが被毒を受けやすく、触媒
寿命が短かいという欠点をもつ。ま友、触媒が高価であ
るために、H−Coal法の沸騰床の如く、触媒を反応
器内にとどめる工夫、あるいはDow法の如く、触媒を
非常に低濃度で使い、かつ大半を再使用循環するプロセ
ス等が提案されている。しかしながら、いずれも未だ完
成の域に達していない。
A group of expensive metals such as Mo, Ni, and W. Although these catalysts have high hydrogenation activity, they have the drawbacks of being susceptible to poisoning and having a short catalyst life. Well, since the catalyst is expensive, there are ways to keep the catalyst in the reactor, such as in the boiling bed of the H-Coal method, or to use the catalyst at a very low concentration, and reuse most of it, as in the Dow method. Circulating processes and the like have been proposed. However, none of them have reached the stage of completion yet.

第三群は鉄化合物である。これは安価で使い捨て触媒と
して用いられる場合が多い。使用されている鉄化合、物
の種類も多いが、なかでも水酸化鉄、赤泥、鉄鉱石、硫
酸鉄等が代表的である。これらの鉄化合物は、硫黄が共
存すると活性が飛躍的に増大する。したがって、硫黄含
有量の少ない石炭においては、硫黄を添加して使用する
ことも提案されている。
The third group is iron compounds. This is inexpensive and is often used as a disposable catalyst. There are many types of iron compounds used, but the most representative ones include iron hydroxide, red mud, iron ore, and iron sulfate. The activity of these iron compounds increases dramatically when sulfur coexists. Therefore, it has been proposed to add sulfur to coal that has a low sulfur content.

また、天然の黄鉄鉱(Fe51 ;パイライト)の触媒
活性などもよく知られておシ、合成パイライトの試作方
法も種々検討されてきた。
Furthermore, the catalytic activity of natural pyrite (Fe51; pyrite) is well known, and various methods for producing synthetic pyrite have been studied.

従来、このような触°媒は、硫化ナトリウム水溶液と硫
酸鉄水溶液を室温あるいはそれ以下の温度で反応せしめ
、その生成スラリー全濾過あるいは遠心分離することに
よυ、水中に溶解残存しているNa+、 Fe”、 S
O4” kk去脱塩した後、残スラリーに硫黄粉末を添
加し、約80Cで2〜6日間反応せしめ、生成スラリー
ヲ冷却し、濾過あるいは遠心分離を行った後、塩酸で未
反応硫化鉄を洗浄除去し、二硫化炭素等で残硫黄を除去
した後の物質を、石炭液化用触媒として用いるものであ
った。
Conventionally, such a catalyst has been developed by reacting an aqueous sodium sulfide solution and an aqueous iron sulfate solution at room temperature or lower, and then removing the remaining Na+ dissolved in the water by total filtration or centrifugation of the resulting slurry. , Fe”, S
After removing O4''k and desalting, sulfur powder is added to the remaining slurry and reacted at approximately 80C for 2 to 6 days. The resulting slurry is cooled, filtered or centrifuged, and unreacted iron sulfide is washed with hydrochloric acid. The substance after removing residual sulfur with carbon disulfide or the like was used as a catalyst for coal liquefaction.

(例えば米国・サンプイア・ナショナルラボラトリ−・
エネルギーレポート80−2795号)以上で示した湿
式合成法は、非常に粒度分布がシャープで、平均粒径が
1〜5μの微粒なパイライ)t−容易につくることがで
きる反面、全体の反応時間が非常に長く、生産効率が悪
いという欠点をもつ。
(For example, Sampuia National Laboratory in the United States
The wet synthesis method shown above (Energy Report No. 80-2795) has a very sharp particle size distribution and can easily produce fine particles with an average particle size of 1 to 5 μm, but the overall reaction time is short. The disadvantage is that the length is very long and production efficiency is poor.

一方、本発明者らが示した乾式合成法(%願昭58−2
8548号、特願昭58−39177号)等は、数時間
でパイライトを調製できるという長所をもつ反面、どう
して41袈品の粒径分布がブロードになりがちであり、
かつ微粒パイライトを製造するためには、充分微粒な原
料を用意しなければならないという欠点をもつ。
On the other hand, the dry synthesis method shown by the present inventors (%
No. 8548, Japanese Patent Application No. 58-39177) have the advantage of being able to prepare pyrite in a few hours, but on the other hand, why do the particle size distributions of the 41-ke products tend to be broad?
Another disadvantage is that in order to produce fine pyrite, a sufficiently fine raw material must be prepared.

(発明が解決しようとする問題点) 前記のように、これまでの湿式合成法および乾式合成法
には、それぞれ長所と欠点があり、両者の長所を併せ持
ち、欠点を解消した方法の出現が望まれていた。
(Problems to be Solved by the Invention) As mentioned above, the conventional wet synthesis method and dry synthesis method each have advantages and disadvantages, and it is desired that a method that combines the advantages of both methods and eliminates the disadvantages be developed. It was rare.

(問題点′t−解決するための手段) 本発明者らは、前記の要望にしたがって研究を進めたと
ころ、第1段反応で生じた0、5〜2μと非常に微小力
固形分を固液分離した後、この固形分圧硫黄を混合し、
200C以上700C未満の温度で反応させることによ
り、10分〜2時間の極めて短時間で反応を完了させ得
ることを見出し、湿式、乾式の両者の長所を併せ持ち、
欠点を解消した方法を完成するに至った。
(Problem't - Means for Solving) The present inventors conducted research in accordance with the above request, and found that the solid content was solidified by a very small force of 0.5 to 2 μ generated in the first stage reaction. After liquid separation, this solid partial pressure sulfur is mixed,
It was discovered that the reaction could be completed in an extremely short time of 10 minutes to 2 hours by carrying out the reaction at a temperature of 200C or more and less than 700C, and it combines the advantages of both wet and dry methods.
We have completed a method that eliminates the drawbacks.

すなわち、本発明は、硫黄イオンを含有するアルカリ水
溶液と鉄イオンを含有する酸性水溶液とを混合し、生成
したスラリーの固液分離を行い、得られた固形分に硫黄
を混合し、200C以上700C未満の温度で反応させ
ることを特徴とする石炭液化用触媒の製造法を提供する
ものである。
That is, in the present invention, an alkaline aqueous solution containing sulfur ions and an acidic aqueous solution containing iron ions are mixed, the resulting slurry is subjected to solid-liquid separation, sulfur is mixed with the obtained solid content, and a The present invention provides a method for producing a catalyst for coal liquefaction, which is characterized in that the reaction is carried out at a temperature lower than that of the present invention.

本発明において、硫黄イオンを含有するアルカリ水溶液
とは、例えば、硫化ナトリウム、硫化アンモニウム、硫
化カリウム、硫化カルシウムなどの水溶液、硫化水素ガ
スをアルカリ水溶液に吸収させた液などである。これら
の水溶液は、塩の溶解度および温度にもよるが、一般に
、硫黄イオン濃度で0.1〜4モル濃度で使用する。ま
た、これらの試薬の純度は工業薬品程度で充分であり、
あるいは硫fヒ水素ガスの処理工程で副生する硫黄とア
ルカリからなる塩の水溶液等をそのまま利用してもよい
。さらKは、アルカリは一種ではなく混合物でもよめ。
In the present invention, the alkaline aqueous solution containing sulfur ions is, for example, an aqueous solution of sodium sulfide, ammonium sulfide, potassium sulfide, calcium sulfide, etc., or a solution obtained by absorbing hydrogen sulfide gas into an alkaline aqueous solution. These aqueous solutions are generally used at a sulfur ion concentration of 0.1 to 4 molar, depending on the solubility of the salt and the temperature. In addition, the purity of these reagents is sufficient at the level of industrial chemicals,
Alternatively, an aqueous solution of a salt consisting of sulfur and alkali produced as a by-product in the process of treating sulfur and arsenic gas may be used as is. For SaraK, you can use a mixture of alkalis rather than just one type of alkali.

鉄イオンを含む酸性水溶液とは、例えば、酢酸鉄、硫酸
鉄、硝酸鉄、シュウ酸鉄、塩化鉄などの水溶液、鉄を無
機酸あるいは有機酸に溶解した液などである。鉄イオン
のうち第一鉄イオンと第二鉄イオンのbずれでもよめか
、強いてあげれば、第一鉄イオンが好ましい。筐た、こ
れらの塩は工業試薬でよく、あるいは他のプロセスから
の副生物でもよい。さらには、鉄鉱石°を酸に溶解した
ものでもよいし、種々の鉄塩の混合物として使用するこ
とも望ましい。この水溶液中の鉄イオンの濃度も、一般
に0.1〜4モル濃度の範囲で使用するのがよい。これ
らの水溶液の濃度は、薄すぎると経済的に不利であるし
、濃すぎると溶解度を増すため必要以上に温度を上げな
ければならない。硫黄イオン含有アルカリ水溶液と、鉄
イオン含有酸性水溶液との反応(以後1段反応と称する
)では、硫黄イオンと鉄イオンのほぼ等モル反応である
が、反応後の液のpHが2以上7未満、好ましくは4以
上6以下になるように両者の混合比を調整する。
The acidic aqueous solution containing iron ions is, for example, an aqueous solution of iron acetate, iron sulfate, iron nitrate, iron oxalate, iron chloride, or the like, or a solution in which iron is dissolved in an inorganic or organic acid. Of the iron ions, the difference in b between ferrous and ferric ions may be fine, but if forced, ferrous ions are preferred. However, these salts may be industrial reagents or may be by-products from other processes. Furthermore, iron ore dissolved in acid may be used, and it is also desirable to use a mixture of various iron salts. The concentration of iron ions in this aqueous solution is also generally preferably used within a range of 0.1 to 4 mol. If the concentration of these aqueous solutions is too thin, it is economically disadvantageous, and if the concentration is too thick, the temperature must be raised more than necessary to increase solubility. In the reaction between an alkaline aqueous solution containing sulfur ions and an acidic aqueous solution containing iron ions (hereinafter referred to as the one-stage reaction), the reaction is approximately equimolar between sulfur ions and iron ions, but the pH of the solution after the reaction is 2 or more and less than 7. The mixing ratio of both is preferably adjusted to be 4 or more and 6 or less.

この反応は瞬間的に進行し、黒色で平均粒径0.5〜2
μと非常に微小な粒子が生成する。次に、このようにし
て生じたスラリーの固液分離操作は、濾過法、遠心分離
法、重力沈降法、液体サイクロン法等の公知の固液分離
操作のいずれかの方法を一つあるいは二つ以上組合わせ
て実施することができる。しかしながら、この固液分離
の過程で、液中に溶解しているアルカリイオン、酸イオ
ン類はできるだけ除去されるのが好ましい。このために
は限外濾過膜等の利用も効果的である。得られた固形分
の含水率が特に高い場合は、熱を加えて水分を蒸発させ
てもよい。
This reaction progresses instantaneously and is black with an average particle size of 0.5 to 2.
Very small particles are generated. Next, the solid-liquid separation operation of the slurry thus generated is performed using one or two known solid-liquid separation methods such as filtration, centrifugation, gravity sedimentation, and hydrocyclone. The above methods can be implemented in combination. However, during this solid-liquid separation process, it is preferable that alkali ions and acid ions dissolved in the liquid be removed as much as possible. For this purpose, it is also effective to use an ultrafiltration membrane or the like. If the resulting solid content has a particularly high moisture content, heat may be applied to evaporate the moisture.

硫黄は粉末あるいは液状のいずれでもよい。得られた固
形分に硫黄’に混合する場合、混合比は特に限定しない
が、望ましくは固形分中の鉄に対し硫黄を原子数比で0
.5〜5の割合で混合する。
Sulfur may be in powder or liquid form. When the obtained solid content is mixed with sulfur, the mixing ratio is not particularly limited, but it is preferable that the atomic ratio of sulfur to iron in the solid content is 0.
.. Mix at a ratio of 5 to 5.

反応温度は200c未満では反応速度が遅く、700C
以上では鉄が充分に硫化した形態をとることができない
ので、200C以上700c未満であることが必要であ
るが、好ましくは200c以上500c以下である。
If the reaction temperature is less than 200C, the reaction rate will be slow, and if the reaction temperature is less than 700C.
Since iron cannot take a sufficiently sulfurized form if the iron is above, it is necessary to have a temperature of 200C or more and less than 700C, preferably 200C or more and less than 500C.

反応時間は、反応温度および原料である鉄化合物の種類
によっても異なるが、数分以上、望ましくは10分〜2
時間程度である。
The reaction time varies depending on the reaction temperature and the type of iron compound used as a raw material, but is several minutes or more, preferably 10 minutes to 2 minutes.
It takes about an hour.

本発明を実施するにあたシ、全工程が非常に低濃度の酸
素雰囲気中で行なわれることが・好ましい。
In carrying out the invention, it is preferred that all steps be carried out in an atmosphere of very low oxygen concentration.

そのためには、窒素あるいはアルゴンガス等の不活性ガ
ス雰囲気中で行うとよい。その理由は、工程中に生成す
る沈殿物や最終製品がいずれも酸化を受けやすいからで
ある。
For this purpose, it is preferable to carry out the process in an inert gas atmosphere such as nitrogen or argon gas. This is because both the precipitate produced during the process and the final product are susceptible to oxidation.

本発明の効果は、活性が高く非常に微粒な触媒を容易に
かつ短かい反応時間で安定して製造し得参 る点にあり、触媒の生産性を高めその経済的効果は大き
い。
The effect of the present invention is that a highly active and very fine catalyst can be produced easily and stably in a short reaction time, which increases the productivity of the catalyst and has a large economic effect.

本発明は、鉄の硫化物の調製方法に特色がおり、天然の
鉄の硫化物である★鉄鉱、白鉄鉱、磁硫鉄鉱などと比較
して、X線回折等によっては同じようなパターンを示す
ものもあるが、実施例でも示すように、石炭の液化反応
にかかわる触媒の活性は、本発明による調久触媒の方が
数段高い。この理由の詳細は不明であるが、おそらく表
面積や表面の状LIK由来するものではな−かと推定さ
れる。
The present invention is characterized by a method for preparing iron sulfide, which shows a similar pattern in X-ray diffraction, etc., compared to natural iron sulfides such as ironite, marcasite, and pyrrhotite. However, as shown in the Examples, the activity of the catalyst involved in the coal liquefaction reaction is several times higher in the catalyst according to the present invention. Although the details of this reason are unknown, it is presumed that it is probably due to the surface area and surface condition LIK.

ちなみに天然の黄鉄鉱の200メツシユ以下の粉砕物の
表面積は0.1〜5771′/l、多くても1oゴ/y
−以下であるのに対し、本発明方法で調製した触媒は3
0〜200m’/yである。また、本発明方法で調製し
た触媒の多くは粒径0.05〜5μと小さい。
By the way, the surface area of crushed natural pyrite of 200 mesh or less is 0.1 to 5771'/l, at most 10 mesh/y.
- The catalyst prepared by the method of the present invention has 3
It is 0 to 200 m'/y. Further, most of the catalysts prepared by the method of the present invention have a small particle size of 0.05 to 5 μm.

本発明の触媒による石炭液化反応は、一般の鉄化合物を
触媒とする時と異なシ、硫黄を別途添加する必焚けない
Unlike when a general iron compound is used as a catalyst, the coal liquefaction reaction using the catalyst of the present invention does not require the separate addition of sulfur.

以上の“ようにあらかじめ調製した触媒を用いると、単
に鉄化合物と硫黄を反応系に触媒として供給する方法に
比較して、格段にすぐれた石炭の液化性能を示す。
When a catalyst prepared in advance as described above is used, coal liquefaction performance is far superior to that of a method in which an iron compound and sulfur are simply supplied to the reaction system as a catalyst.

(発明の効果) 本発明の効果は、活性が高く非常に微粒な触媒を、容易
にかつ短かい反応時間で安定して製造できる点にあり、
触媒の生産性を高め、その経済的効果は大きい。
(Effects of the Invention) The effects of the present invention are that a highly active and extremely fine catalyst can be stably produced easily and in a short reaction time;
It increases catalyst productivity and has great economic effects.

(実施例) 以下、実施例により本発明をさらに具体的に説明するが
、本発明は、これら実施例に制限されるものではなり0 実施例 硝酸第二鉄九水塩1.65 klil’i 4 tの蒸
留水に溶解した。さらに硫化ソーダの三水塩5201を
4tの蒸留水に混ぜ、50Cに加温して溶解した。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples. Dissolved in 4 t of distilled water. Further, sodium sulfide trihydrate 5201 was mixed with 4 tons of distilled water and heated to 50C to dissolve it.

これらの2液全混合し、生成したスラリーを濾過水洗し
、得られた固形分に硫黄粉末を2401混合し、これを
石英管に入れ、窒素ガスを流通させながら110Cで1
時間乾燥処理した後、300Cまで昇温し1時間加温処
理した。途中の濾過水洗等は、窒素ガスを流通させたグ
ローブボックスの中ですべて行った。
These two liquids were completely mixed, the resulting slurry was filtered and washed with water, and the resulting solid content was mixed with sulfur powder at 240° C. This was placed in a quartz tube and heated at 110 C while flowing nitrogen gas.
After drying for an hour, the temperature was raised to 300C and heating was performed for 1 hour. All intermediate filtration, washing, etc. were performed in a glove box with nitrogen gas flowing through it.

このようにして調製した本発明の目的とする触媒と他の
代表的な鉄系化合物触媒との石炭液化反応結果を比較し
て図面に示した。
The results of the coal liquefaction reaction between the thus prepared catalyst of the present invention and other typical iron-based compound catalysts are compared and shown in the drawing.

図面は0.5tのオートクレーブで活性の評価を行った
結果である。石炭としてはイリノイA6炭を用い、水素
仕込圧80 kg/d (反応温度での圧力は約150
 kg/all )、反応時間30分、反応温度460
Cで液化反応を行った。なお、触媒量は、無水無灰炭あ
たり鉄重量で10重量斧使用した。
The figure shows the results of activity evaluation in a 0.5 t autoclave. Illinois A6 coal was used as the coal, and the hydrogen charging pressure was 80 kg/d (the pressure at the reaction temperature was approximately 150 kg/d).
kg/all), reaction time 30 minutes, reaction temperature 460
The liquefaction reaction was carried out at C. The amount of catalyst used was 10 iron weight per anhydrous ash-free coal.

溶媒には脱晶アントラセン油を用い、無水無灰炭に対し
重量にして2倍量を加えた。
Decrystallized anthracene oil was used as a solvent, and twice the amount by weight of anhydrous ash-free charcoal was added.

図面の横軸は、ヘキサン可溶分抽の全油に対する重量分
率であって、水添度合を示す尺度と考えることができる
。ここで全油とは、ヘキサン可溶分抽とアスファルテン
およびプレアスファルテンの総重量をいう。また、縦軸
は生成軽質油の仕込無水無灰炭に対する重量分率を示し
、水素化分解の度合を示す尺度とみなされる。ここでい
う軽質油とは、ヘキサ/等の炭素数5以上の物質であっ
て、かつ常圧の沸点300c以下のものをいう。
The horizontal axis of the drawing represents the weight fraction of the hexane soluble fraction extracted with respect to the total oil, which can be considered as a measure of the degree of hydrogenation. Here, the total oil refers to the total weight of the hexane soluble fraction extracted, asphaltenes, and pre-asphaltenes. The vertical axis indicates the weight fraction of the light oil produced relative to the charged anhydrous ash-free coal, which is considered as a measure of the degree of hydrocracking. The term "light oil" as used herein refers to a substance having a carbon number of 5 or more, such as hexafluoride, and having a boiling point of 300 c or less at normal pressure.

この図面は液化が軽質化の方向に進むと右上ルメなり、
結果的に・触媒活性の尺度となりうる。
In this drawing, when liquefaction progresses toward lightening, the upper right corner becomes lume,
As a result, it can serve as a measure of catalytic activity.

図面において■、■、■は、それぞれ下記の触媒を用い
た反応結果を示すものである。
In the drawings, ■, ■, and ■ indicate the reaction results using the following catalysts, respectively.

■本発明方法による調製触媒         8山産
出のパイライトを200メツシユ以下に粉砕 細粉であ
fi、325メツシユ以下のものである。この時添加し
た硫黄の量は鉄と等モルである。
■Catalyst prepared by the method of the present invention Pyrite produced from Mt. 8 is ground to 200 mesh or less. It is a fine powder of fi, 325 mesh or less. The amount of sulfur added at this time was equimolar to that of iron.

図面で明白なことは、■の本発明による調製触媒が他の
触媒と比較して、水添度合および水素化分解度合のいず
れも高く、すぐれた活性を示していることである。
What is clear from the drawings is that the catalyst prepared according to the present invention in (1) has a higher degree of hydrogenation and a higher degree of hydrogenolysis than other catalysts, and exhibits excellent activity.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明で用いる触媒および他の触媒について、石
炭液化反応における活性を比較して示した図表である。 0      20     40     60  
   80      to。 へ″+プン可5剖分j由/小油(%) 慟
The drawing is a chart showing a comparison of the activity in the coal liquefaction reaction of the catalyst used in the present invention and other catalysts. 0 20 40 60
80 to. To ``+ Punka 5 autopsy / small oil (%) 柟

Claims (1)

【特許請求の範囲】[Claims] 硫黄イオンを含有するアルカリ水溶液と鉄イオンを含有
する酸性水溶液とを混合し、生成したスラリーの固液分
離を行い、得られた固形分に硫黄を混合し、200℃以
上700℃未満の温度で反応させることを特徴とする石
炭液化用触媒の製造法。
An alkaline aqueous solution containing sulfur ions and an acidic aqueous solution containing iron ions are mixed, the resulting slurry is subjected to solid-liquid separation, sulfur is mixed with the obtained solid content, and the mixture is heated at a temperature of 200°C or more and less than 700°C. A method for producing a catalyst for coal liquefaction, which is characterized by causing a reaction.
JP14141884A 1984-07-10 1984-07-10 Preparation of coal liquefying catalyst Granted JPS6121731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14141884A JPS6121731A (en) 1984-07-10 1984-07-10 Preparation of coal liquefying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14141884A JPS6121731A (en) 1984-07-10 1984-07-10 Preparation of coal liquefying catalyst

Publications (2)

Publication Number Publication Date
JPS6121731A true JPS6121731A (en) 1986-01-30
JPS6333421B2 JPS6333421B2 (en) 1988-07-05

Family

ID=15291542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14141884A Granted JPS6121731A (en) 1984-07-10 1984-07-10 Preparation of coal liquefying catalyst

Country Status (1)

Country Link
JP (1) JPS6121731A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7278595B2 (en) 2001-09-03 2007-10-09 Seishin Enterprise Co., Ltd. Particle feed apparatus for jet mill
US7754645B2 (en) 2004-09-10 2010-07-13 Chevron U.S.A. Inc. Process for preparing hydroprocessing bulk catalysts
US7947623B2 (en) 2004-09-10 2011-05-24 Oleg Mironov Hydroprocessing bulk catalyst and uses thereof
US9687823B2 (en) 2012-12-14 2017-06-27 Chevron U.S.A. Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7278595B2 (en) 2001-09-03 2007-10-09 Seishin Enterprise Co., Ltd. Particle feed apparatus for jet mill
US7754645B2 (en) 2004-09-10 2010-07-13 Chevron U.S.A. Inc. Process for preparing hydroprocessing bulk catalysts
US7947623B2 (en) 2004-09-10 2011-05-24 Oleg Mironov Hydroprocessing bulk catalyst and uses thereof
US9687823B2 (en) 2012-12-14 2017-06-27 Chevron U.S.A. Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units

Also Published As

Publication number Publication date
JPS6333421B2 (en) 1988-07-05

Similar Documents

Publication Publication Date Title
EP0042471B1 (en) Catalyst and method for producing the catalyst
KR100427005B1 (en) Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use
EP2824200A1 (en) Process for the comprehensive recovery of metal cobalt, ruthenium and aluminum from waste catalyst co-ru/al2o3 in fischer-tropsch synthesis
WO1999038802A1 (en) Method of manufacturing pseudo-boehmite
JPH11169714A (en) Catalyst for steam reforming of methanol
EP0241149A2 (en) Value recovery from spent alumina-base catalysts
JPH06122519A (en) Hydrated amorphous ferric oxide particle powder and its production
CN112570038B (en) Reduced bulk catalyst and method for preparing same
JP3632071B2 (en) Carbon monoxide hydrogenation using sulfide catalyst
US3274121A (en) Trilithium phosphate isomerization catalyst
US4533527A (en) Tungsten recovery from carbides
CN106607051A (en) Catalyst for one-step preparation of low-carbon olefin from synthetic gas and preparation method thereof
JPS6121731A (en) Preparation of coal liquefying catalyst
CN110975884A (en) Preparation method of transition metal-containing catalyst for preparing benzaldehyde by selectively oxidizing toluene
US3935128A (en) Copper chromite catalyst and the process for producing it
JPS5839193B2 (en) Coal liquefaction method
Pradel et al. Ferric hydroxide oxide from the goethite process: characterization and potential use
CN112619652B (en) Catalyst for preparing low-carbon olefin from synthesis gas and preparation method thereof
JPS63102B2 (en)
US3475328A (en) Treatment of hydrocarbons and catalysts therefor
JP3128292B2 (en) Method for producing catalyst for coal liquefaction
CN1048919C (en) Regeneration method of catalyst for synthesizing 1, 4-butynediol from formaldehyde and acetylene in slurry bed reaction
JPH05103988A (en) Production of coal liquefaction catalyst
JPS59155495A (en) Coal liquefaction
JPH05103989A (en) Production of high-activity catalyst for coal liquefaction

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees