JPS6333421B2 - - Google Patents

Info

Publication number
JPS6333421B2
JPS6333421B2 JP14141884A JP14141884A JPS6333421B2 JP S6333421 B2 JPS6333421 B2 JP S6333421B2 JP 14141884 A JP14141884 A JP 14141884A JP 14141884 A JP14141884 A JP 14141884A JP S6333421 B2 JPS6333421 B2 JP S6333421B2
Authority
JP
Japan
Prior art keywords
iron
catalyst
sulfur
reaction
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14141884A
Other languages
Japanese (ja)
Other versions
JPS6121731A (en
Inventor
Yoichi Yamada
Yoshihiro Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP14141884A priority Critical patent/JPS6121731A/en
Publication of JPS6121731A publication Critical patent/JPS6121731A/en
Publication of JPS6333421B2 publication Critical patent/JPS6333421B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石炭液化用触媒の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a catalyst for coal liquefaction.

(従来の技術) 石炭を粉砕して加熱し、必要に応じて水素を加
えてガスおよび固形物を含む液化物を得る方法は
長年研究され、多くの技術が知られている。近
年、燃料油資源等の問題や化学品の多様化から、
石炭液化技術の開発は非常に盛んであり、多くの
新しい技術が開発されつつある。
(Prior Art) A method for obtaining a liquefied product containing gas and solids by pulverizing and heating coal and adding hydrogen as necessary has been studied for many years, and many techniques are known. In recent years, due to problems such as fuel oil resources and the diversification of chemical products,
The development of coal liquefaction technology is very active, and many new technologies are being developed.

しかし、良質の燃料油やガソリンあるいは化学
原料油を効率良く得るためには、まだ多くの問題
点もかかえている。例えば、高価な触媒または公
害上望ましくない触媒の添加が必要であつたり、
石炭を液化する時に要する水素が多量であつた
り、反応中に炭化物が生成したりすることであ
る。
However, many problems still exist in order to efficiently obtain high-quality fuel oil, gasoline, or chemical feedstock oil. For example, it may require the addition of expensive or pollutantly undesirable catalysts;
The problem is that a large amount of hydrogen is required to liquefy coal, and that carbide is generated during the reaction.

なかでも石炭反応器中の反応条件、特にそのう
ち触媒の選択は、液化油の品質を決めるための重
要な因子の一つである。このためその化学種が物
理的形状をかえた多種の触媒が、添加方法も含め
て開発されてきた。
Among them, the reaction conditions in the coal reactor, especially the selection of the catalyst, are one of the important factors for determining the quality of liquefied oil. For this reason, various types of catalysts in which the chemical species have different physical forms have been developed, including the methods of addition.

従来公知である石炭液化の触媒は非常に多い
が、代表的なものとして、塩化物では塩化亜鉛、
塩化スズ、塩化アルミ、塩化ニツケル、塩化鉄等
が、硫化物では硫化スズ、硫化モリブデン、硫化
鉛、硫化銅、硫化亜鉛、硫化ニツケル、硫化鉄等
が、酸化物では酸化ニツケル、シリカ、アルミ
ナ、酸化鉄、酸化コバルト、酸化チタン等があ
り、また、それらの混合物あるいはまた赤泥や鉱
石などの使用が知られている。
There are many catalysts for coal liquefaction that have been known in the past, but the typical ones include zinc chloride, zinc chloride,
Tin chloride, aluminum chloride, nickel chloride, iron chloride, etc.; sulfides include tin sulfide, molybdenum sulfide, lead sulfide, copper sulfide, zinc sulfide, nickel sulfide, iron sulfide, etc.; oxides include nickel oxide, silica, alumina, Examples include iron oxide, cobalt oxide, titanium oxide, etc., and the use of mixtures thereof, red mud, ore, etc. is also known.

以上の触媒群を大別すると3群にわけられる。
第一群は塩化物系で、石炭液化反応にすぐれた触
媒効果を示す。なかでも高濃度で用いる溶融塩法
などにおいて、軽質油の生成に富み、発生ガス量
が少なく、良好な液化成績を示すことが報告され
ている。しかしながら、本法を実用化していく上
では、塩化水素ガスが共存することから、装置材
質上大きな制約を受ける。
The above catalyst groups can be roughly divided into three groups.
The first group is chloride-based, which exhibits excellent catalytic effects in coal liquefaction reactions. Among them, it has been reported that in the molten salt method used at high concentrations, light oil is produced abundantly, the amount of gas generated is small, and good liquefaction results are shown. However, in putting this method into practical use, there are major restrictions on the material of the equipment due to the coexistence of hydrogen chloride gas.

第二群は、重質油水添などによく使われるCo、
Mo、Ni、Wなどの高価な金属群である。それら
の触媒は、水素化活性は高いが被毒を受けやす
く、触媒寿命が短かいという欠点をもつ。また、
触媒が高価であるために、H−Coal法の沸騰床
の如く、触媒を反応器内にとどめる工夫、あるい
はDow法の如く、触媒を非常に低濃度で使い、
かつ大半を再使用循環するプロセス等が提案され
ている。しかしながら、いずれも未だ完成の域に
達していない。
The second group consists of Co, which is often used for heavy oil hydrogenation, etc.
It is a group of expensive metals such as Mo, Ni, and W. Although these catalysts have high hydrogenation activity, they have the drawbacks of being susceptible to poisoning and having a short catalyst life. Also,
Because the catalyst is expensive, there are methods to keep the catalyst in the reactor, such as the boiling bed of the H-Coal method, or to use the catalyst at a very low concentration, such as the Dow method.
A process has also been proposed in which most of the waste is reused and recycled. However, none of them have reached the stage of completion yet.

第三群は鉄化合物である。これは安価で使い捨
て触媒として用いられる場合が多い。使用されて
いる鉄化合物の種類も多いが、なかでも水酸化
鉄、赤泥、鉄鉱石、硫酸鉄等が代表的である。こ
れらの鉄化合物は、硫黄が共存すると活性が飛躍
的に増大する。したがつて、硫黄含有量の少ない
石炭においては、硫黄を添加して使用することも
提案されている。
The third group is iron compounds. This is inexpensive and is often used as a disposable catalyst. There are many types of iron compounds used, among which iron hydroxide, red mud, iron ore, iron sulfate, etc. are representative. The activity of these iron compounds increases dramatically when sulfur coexists. Therefore, it has been proposed to add sulfur to coal that has a low sulfur content.

また、天然の黄鉄鉱(FeS2;パイライト)の
触媒活性などもよく知られており、合成パイライ
トの試作方法も種々検討されてきた。
Furthermore, the catalytic activity of natural pyrite (FeS 2 ; pyrite) is well known, and various methods for producing synthetic pyrite have been investigated.

従来、このような触媒は、硫化ナトリウム水溶
液と硫酸鉄水溶液を室温あるいはそれ以下の温度
で反応せしめ、その生成スラリーを過あるいは
遠心分離することにより、水中に溶解残存してい
るNa+、Fe2+、SO4 2-を除去脱塩した後、残スラ
リーに硫黄粉末を添加し、約80℃で2〜6日間反
応せしめ、生成スラリーを冷却し、過あるいは
遠心分離を行つた後、塩酸で未反応硫化鉄を洗浄
除去し、二硫化炭素等で残硫黄を除去した後の物
質を、石炭液化用触媒として用いるものであつ
た。(例えば米国・サンデイア・ナシヨナルラボ
ラトリー・エネルギーレポート80−2793号) 以上で示した湿式合成法は、非常に粒度分布が
シヤープで、平均粒径が1〜5μの微粒なパイラ
イトを容易につくることができる反面、全体の反
応時間が非常に長く、生産効率が悪いという欠点
をもつ。
Conventionally, such catalysts are made by reacting an aqueous sodium sulfide solution with an aqueous iron sulfate solution at room temperature or lower, and filtering or centrifuging the resulting slurry to remove Na + and Fe 2 remaining dissolved in water. After removing and desalting SO 4 2- , sulfur powder was added to the remaining slurry and reacted at about 80°C for 2 to 6 days. The resulting slurry was cooled, filtered or centrifuged, and then treated with hydrochloric acid . The material after washing away unreacted iron sulfide and removing residual sulfur with carbon disulfide or the like was used as a catalyst for coal liquefaction. (For example, Sandea National Laboratory Energy Report No. 80-2793 in the United States) The wet synthesis method described above can easily produce fine pyrite with a very sharp particle size distribution and an average particle size of 1 to 5 μm. However, it has the disadvantage that the overall reaction time is extremely long and production efficiency is low.

一方、本発明者らが示した乾式合成法(特開昭
59−155495号公報、特開昭59−166586号公報)等
は、数時間でパイライトを調製できるという長所
をもつ反面、どうしても製品の粒径分布がブロー
ドになりがちであり、かつ微粒パイライトを製造
するためには、充分微粒な原料を用意しなければ
ならないという欠点をもつ。
On the other hand, the dry synthesis method shown by the present inventors (Japanese Patent Application Laid-open No.
59-155495, JP-A-59-166586), etc., have the advantage of being able to prepare pyrite in a few hours, but on the other hand, the particle size distribution of the product tends to be broad, and it is difficult to produce fine pyrite. In order to do this, it has the disadvantage that sufficiently fine raw materials must be prepared.

(発明が解決しようとする問題点) 前記のように、これまでの湿式合成法および乾
式合成法には、それぞれ長所と欠点があり、両者
の長所を併せ持ち、欠点を解消した方法の出現が
望まれていた。
(Problems to be Solved by the Invention) As mentioned above, the conventional wet synthesis method and dry synthesis method each have advantages and disadvantages, and it is desired that a method that combines the advantages of both methods and eliminates the disadvantages be developed. It was rare.

(問題点を解決するための手段) 本発明者らは、前記の要望にしたがつて研究を
進めたところ、第1段反応で生じた0.5〜2μと非
常に微小な固形分を固液分離した後、この固形分
に硫黄を混合し、200℃以上700℃未満の温度で反
応させることにより、10分〜2時間の極めて短時
間で反応を完了させ得ることを見出し、湿式、乾
式の両者の長所を併せ持ち、欠点を解消した方法
を完成するに至つた。
(Means for solving the problem) The present inventors conducted research in accordance with the above-mentioned request, and found that the very small solid content of 0.5 to 2μ generated in the first stage reaction was separated into solid and liquid. After that, we discovered that by mixing sulfur with this solid content and causing the reaction at a temperature of 200°C or higher and lower than 700°C, the reaction could be completed in an extremely short time of 10 minutes to 2 hours. We have completed a method that combines the advantages of the above and eliminates the disadvantages.

すなわち、本発明は、硫黄イオンを含有するア
ルカリ水溶液と鉄イオンを含有する酸性水溶液と
を混合し、生成したスラリーの固液分離を行い、
得られた固形分に硫黄を混合し、200℃以上700℃
未満の温度で反応させることを特徴とする石炭液
化用触媒の製造法を提供するものである。
That is, the present invention mixes an alkaline aqueous solution containing sulfur ions and an acidic aqueous solution containing iron ions, performs solid-liquid separation of the resulting slurry,
Mix sulfur with the obtained solid content and heat at 200℃ or higher to 700℃
The present invention provides a method for producing a catalyst for coal liquefaction, which is characterized in that the reaction is carried out at a temperature lower than that of the present invention.

本発明において、硫黄イオンを含有するアルカ
リ水溶液とは、例えば、硫化ナトリウム、硫化ア
ンモニウム、硫化カリウム、硫化カルシウムなど
の水溶液、硫化水素ガスをアルカリ水溶液に吸収
させた液などである。これらの水溶液は、塩の溶
解度および温度にもよるが、一般に、硫黄イオン
濃度で0.1〜4モル濃度で使用する。また、これ
らの試薬の純度は工業薬品程度で充分であり、あ
るいは硫化水素ガスの処理工程で副生する硫黄と
アルカリからなる塩の水溶液等をそのまま利用し
てもよい。さらには、アルカリは一種ではなく混
合物でもよい。
In the present invention, the alkaline aqueous solution containing sulfur ions is, for example, an aqueous solution of sodium sulfide, ammonium sulfide, potassium sulfide, calcium sulfide, etc., or a solution obtained by absorbing hydrogen sulfide gas into an alkaline aqueous solution. These aqueous solutions are generally used at a sulfur ion concentration of 0.1 to 4 molar, depending on the solubility of the salt and the temperature. Further, the purity of these reagents is sufficient to be at the level of industrial chemicals, or an aqueous solution of a salt consisting of sulfur and alkali, which is a by-product in the process of treating hydrogen sulfide gas, may be used as is. Furthermore, the alkali may be a mixture instead of just one type.

鉄イオンを含む酸性水溶液とは、例えば、酢酸
鉄、硫酸鉄、硝酸鉄、シユウ酸鉄、塩化鉄などの
水溶液、鉄を無機酸あるいは有機酸に溶解した液
などである。鉄イオンのうち第一鉄イオンと第二
鉄イオンのいずれでもよいが、強いてあげれば、
第一鉄イオンが好ましい。また、これらの塩は工
業試薬でよく、あるいは他のプロセスからの副生
物でもよい。さらには、鉄鉱石を酸に溶解したも
のでもよいし、種々の鉄塩の混合物として使用す
ることも望ましい。この水溶液中の鉄イオンの濃
度も、一般に0.1〜4モル濃度の範囲で使用する
のがよい。これらの水溶液の濃度は、薄すぎると
経済的に不利であるし、濃すぎると溶解度を増す
ため必要以上に温度を上げなければならない。硫
黄イオン含有アルカリ水溶液と、鉄イオン含有酸
性水溶液との反応(以後1段反応と称する)で
は、硫黄イオンと鉄イオンのほぼ等モル反応であ
るが、反応後の液のPHが2以上7未満、好ましく
は4以上6以下になるように両者の混合比を調整
する。
The acidic aqueous solution containing iron ions is, for example, an aqueous solution of iron acetate, iron sulfate, iron nitrate, iron oxalate, iron chloride, or a solution in which iron is dissolved in an inorganic or organic acid. Of the iron ions, either ferrous or ferric ions may be used, but if forced,
Ferrous ions are preferred. These salts may also be industrial reagents or by-products from other processes. Furthermore, it is also desirable to use iron ore dissolved in acid or as a mixture of various iron salts. The concentration of iron ions in this aqueous solution is also generally preferably used within a range of 0.1 to 4 mol. If the concentration of these aqueous solutions is too thin, it is economically disadvantageous, and if the concentration is too thick, the temperature must be raised more than necessary to increase solubility. In the reaction between an alkaline aqueous solution containing sulfur ions and an acidic aqueous solution containing iron ions (hereinafter referred to as the 1-stage reaction), the sulfur ions and iron ions are reacted in approximately equimolar amounts, but the pH of the liquid after the reaction is 2 or more and less than 7. The mixing ratio of both is preferably adjusted to be 4 or more and 6 or less.

この反応は瞬間的に進行し、黒色で平均粒径
0.5〜2μと非常に微小な粒子が生成する。次に、
このようにして生じたスラリーの固液分離操作
は、過法、遠心分離法、重力沈降法、液体サイ
クロン法等の公知の固液分離技術のいずれかの方
法を一つあるいは二つ以上組合わせて実施するこ
とができる。しかしながら、この固液分離の過程
で、液中に溶解しているアルカリイオン、酸イオ
ン類はできるだけ除去されるのが好ましい。この
ためには限外過膜等の利用も効果的である。得
られた固形分の含水率が特に高い場合は、熱を加
えて水分を蒸発させてもよい。
This reaction progresses instantaneously, and the black color indicates the average particle size.
Very small particles of 0.5 to 2μ are generated. next,
The solid-liquid separation operation of the slurry thus generated can be performed by using one or a combination of two or more known solid-liquid separation techniques such as filtration, centrifugation, gravity sedimentation, and hydrocyclone methods. It can be implemented by However, during this solid-liquid separation process, it is preferable that alkali ions and acid ions dissolved in the liquid be removed as much as possible. For this purpose, the use of an ultrafiltration membrane or the like is also effective. If the resulting solid content has a particularly high moisture content, heat may be applied to evaporate the moisture.

硫黄は粉末あるいは液状のいずれでもよい。得
られた固形分に硫黄を混合する場合、混合比は特
に限定しないが、望ましくは固形分中の鉄に対し
硫黄を原子数比で0.5〜3の割合で混合する。
Sulfur may be in powder or liquid form. When sulfur is mixed into the obtained solid content, the mixing ratio is not particularly limited, but preferably the atomic ratio of sulfur to iron in the solid content is 0.5 to 3.

反応温度は200℃未満では反応速度が遅く、700
℃以上では鉄が充分に硫化した形態をとることが
できないので、200℃以上700℃未満であることが
必要であるが、好ましくは200℃以上500℃以下あ
る。
If the reaction temperature is less than 200°C, the reaction rate will be slow, and the reaction temperature will be lower than 700°C.
Since iron cannot take a sufficiently sulfurized form at temperatures higher than .degree. C., the temperature must be 200.degree. C. or higher and lower than 700.degree. C., preferably 200.degree. C. or higher and 500.degree. C. or lower.

反応時間は、反応温度および原料である鉄化合
物の種類によつても異なるが、数分以上、望まし
くは10分〜2時間程度である。
The reaction time varies depending on the reaction temperature and the type of iron compound used as a raw material, but is several minutes or more, preferably about 10 minutes to 2 hours.

本発明を実施するにあたり、全工程が非常に低
濃度の酸素雰囲気中で行なわれることが好まし
い。そのためには、窒素あるいはアルゴンガス等
の不活性ガス雰囲気中で行うとよい。その理由
は、工程中に生成する沈殿物や最終製品がいずれ
も酸化を受けやすいからである。
In practicing the invention, it is preferred that all steps be carried out in a very low oxygen atmosphere. For this purpose, it is preferable to carry out the process in an inert gas atmosphere such as nitrogen or argon gas. This is because both the precipitate produced during the process and the final product are susceptible to oxidation.

本発明の効果は、活性が高く非常に微粒な触媒
を容易にかつ短かい反応時間で安定して製造し得
る点にあり、触媒の生産性を高めその経済的効果
は大きい。
The effect of the present invention is that a catalyst with high activity and very fine particles can be easily and stably produced in a short reaction time, and the productivity of the catalyst is increased, resulting in a large economic effect.

本発明は、鉄の硫化物の調製方法に特色があ
り、天然の鉄の硫化物である黄鉄鉱、白鉄鉱、磁
硫鉄鉱などと比較して、X線回折等によつては同
じようなパターンを示すものもあるが、実施例で
も示すように、石炭の液化反応にかかわる触媒の
活性は、本発明による調製触媒の方が数段高い。
この理由の詳細は不明であるが、おそらく表面積
や表面の状態に由来するものではないかと推定さ
れる。ちなみに天然の黄鉄鉱の200メツシユ以下
の粉砕物の表面積は0.1〜5m2/g、多くても10
m2/g以下であるのに対し、本発明方法で調製し
た触媒は30〜200m2/gである。また、本発明方
法で調製した触媒の多くは粒径0.05〜5μと小さ
い。
The present invention is characterized by a method for preparing iron sulfides, and compared to natural iron sulfides such as pyrite, marcasite, and pyrrhotite, similar patterns are observed by X-ray diffraction, etc. However, as shown in the examples, the activity of the catalyst involved in the coal liquefaction reaction is much higher in the catalyst prepared according to the present invention.
Although the details of this reason are unknown, it is presumed that it probably originates from the surface area and surface condition. By the way, the surface area of crushed natural pyrite of 200 mesh or less is 0.1 to 5 m 2 /g, at most 10
m 2 /g or less, whereas the catalyst prepared by the method of the present invention has an area of 30 to 200 m 2 /g. Further, most of the catalysts prepared by the method of the present invention have a small particle size of 0.05 to 5 μm.

本発明の触媒による石炭液化反応は、一般の鉄
化合物を触媒とする時と異なり、硫黄を別途添加
する必要はない。
The coal liquefaction reaction using the catalyst of the present invention does not require the separate addition of sulfur, unlike when a general iron compound is used as a catalyst.

以上のようにあらかじめ調製した触媒を用いる
と、単に鉄化合物と硫黄を反応系に触媒として供
給する方法に比較して、格段にすぐれた石炭の液
化性能を示す。
When the catalyst prepared in advance as described above is used, the coal liquefaction performance is significantly superior to that of a method in which an iron compound and sulfur are simply supplied to the reaction system as a catalyst.

(発明の効果) 本発明の効果は、活性が高く非常に微粒な触媒
を、容易にかつ短かい反応時間で安定して製造で
きる点にあり、触媒の生産性を高め、その経済的
効果は大きい。
(Effects of the Invention) The effects of the present invention are that a highly active and very fine catalyst can be produced easily and stably in a short reaction time, which increases the productivity of the catalyst and has an economical effect. big.

(実施例) 以下、実施例により本発明をさらに具体的に説
明するが、本発明は、これら実施例に制限される
ものではない。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例 硝酸第二鉄九水塩1.65Kgを4の蒸留水に溶解
した。さらに硫化ソーダの三水塩520gを4の
蒸留水に混ぜ、50℃に加温して溶解した。これら
の2液を混合し、生成したスラリーを過水洗
し、得られた固形分に硫黄粉末を240g混合し、
これを石英管に入れ、窒素ガスを流通させながら
110℃で1時間乾燥処理した後、300℃まで昇温し
1時間加温処理した。途中の過水洗等は、窒素
ガスを流通させたグローブボツクスの中ですべて
行つた。
Example 1.65 kg of ferric nitrate nonahydrate was dissolved in 4 distilled water. Furthermore, 520 g of trihydrate of sodium sulfide was mixed with the distilled water from step 4, and dissolved by heating to 50°C. These two liquids were mixed, the resulting slurry was washed with water, and 240g of sulfur powder was mixed with the resulting solid content.
Put this into a quartz tube and while flowing nitrogen gas
After drying at 110°C for 1 hour, the temperature was raised to 300°C and heated for 1 hour. All intermediate washing, etc., was carried out in a glove box with nitrogen gas flowing through it.

このようにして調製した本発明の目的とする触
媒と他の代表的な鉄系化合物触媒との石炭液化反
応結果を比較して図面に示した。
The results of the coal liquefaction reaction between the thus prepared catalyst of the present invention and other typical iron-based compound catalysts are compared and shown in the drawing.

図面は0.5のオートクレーブで活性の評価を
行つた結果である。石炭としてはイリノイNo.6炭
を用い、水素仕込圧80Kg/cm2(反応温度での圧力
は約150Kg/cm2)、反応時間30分、反応温度460℃
で液化反応を行つた。なお、触媒量は、無水無灰
炭あたり鉄重量で10重量%使用した。溶媒には脱
晶アントラセン油を用い、無水無灰炭に対し重量
にして2倍量を加えた。
The figure shows the results of activity evaluation in a 0.5 autoclave. Illinois No. 6 coal was used as the coal, hydrogen charging pressure was 80 Kg/cm 2 (pressure at reaction temperature was approximately 150 Kg/cm 2 ), reaction time was 30 minutes, and reaction temperature was 460°C.
A liquefaction reaction was carried out. The amount of catalyst used was 10% by weight of iron per anhydrous ash-free coal. Decrystallized anthracene oil was used as a solvent, and twice the amount by weight of anhydrous ash-free charcoal was added.

図面の横軸は、ヘキサン可溶分油の全油に対す
る重量分率であつて、水添度合を示す尺度と考え
ることができる。ここで全油とは、ヘキサン可溶
分油とアスフアルテンおよびプレアスフアルテン
の総重量をいう。また、縦軸は生成軽質油の仕込
無水無灰炭に対する重量分率を示し、水素化分解
の度合を示す尺度とみなされる。ここでいう軽質
油とは、ヘキサン等の炭素数5以上の物質であつ
て、かつ常圧の沸点300℃以下のものをいう。
The horizontal axis of the drawing represents the weight fraction of hexane-soluble oil relative to the total oil, which can be considered as a measure of the degree of hydrogenation. Here, the total oil refers to the total weight of hexane-soluble oil, asphaltene, and pre-asphaltene. The vertical axis indicates the weight fraction of the light oil produced relative to the charged anhydrous ash-free coal, which is considered as a measure of the degree of hydrocracking. The light oil referred to here refers to a substance having a carbon number of 5 or more, such as hexane, and a boiling point of 300° C. or less at normal pressure.

この図面は液化が軽質化の方向に進むと右上り
となり、結果的に触媒活性の尺度となりうる。
This diagram becomes upward-sloping to the right as liquefaction progresses in the direction of lightening, and as a result, it can be used as a measure of catalytic activity.

図面において、、は、それぞれ下記の触
媒を用いた反応結果を示すものである。
In the drawings, and indicate the reaction results using the following catalysts, respectively.

本発明方法による調製触媒 鉱物パイライト 電解鉄粉+硫黄 上記の鉱物パイライトとは、岡山県の棚原鉱
山産出のパイライトを200メツシユ以下に粉砕し
たものである。の電解鉄粉とは市販の電解鉄粉
であり、325メツシユ以下のものである。この時
添加した硫黄の量は鉄と等モルである。
Catalyst prepared by the method of the present invention Mineral pyrite Electrolyzed iron powder + sulfur The above-mentioned mineral pyrite is pyrite produced at Tanahara Mine in Okayama Prefecture, which has been crushed to 200 mesh or less. Electrolytic iron powder is commercially available electrolytic iron powder with a mesh size of 325 mesh or less. The amount of sulfur added at this time was equimolar to that of iron.

図面で明白なことは、の本発明による調製触
媒が他の触媒と比較して、水添度合および水素化
分解度合のいずれも高く、すぐれた活性を示して
いることである。
It is clear from the figures that the catalyst prepared according to the invention has both a high degree of hydrogenation and a high degree of hydrogenolysis and exhibits excellent activity compared to other catalysts.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明で用いる触媒および他の触媒につ
いて、石炭液化反応における活性を比較して示し
た図表である。
The drawing is a chart showing a comparison of the activity in the coal liquefaction reaction of the catalyst used in the present invention and other catalysts.

Claims (1)

【特許請求の範囲】[Claims] 1 硫黄イオンを含有するアルカリ水溶液と鉄イ
オンを含有する酸性水溶液とを混合し、生成した
スラリーの固液分離を行い、得られた固形分に硫
黄を混合し、200℃以上700℃未満の温度で反応さ
せることを特徴とする石炭液化用触媒の製造法。
1. Mix an alkaline aqueous solution containing sulfur ions and an acidic aqueous solution containing iron ions, perform solid-liquid separation of the resulting slurry, mix sulfur with the resulting solid content, and heat at a temperature of 200°C or more and less than 700°C. 1. A method for producing a catalyst for coal liquefaction, which comprises reacting with:
JP14141884A 1984-07-10 1984-07-10 Preparation of coal liquefying catalyst Granted JPS6121731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14141884A JPS6121731A (en) 1984-07-10 1984-07-10 Preparation of coal liquefying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14141884A JPS6121731A (en) 1984-07-10 1984-07-10 Preparation of coal liquefying catalyst

Publications (2)

Publication Number Publication Date
JPS6121731A JPS6121731A (en) 1986-01-30
JPS6333421B2 true JPS6333421B2 (en) 1988-07-05

Family

ID=15291542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14141884A Granted JPS6121731A (en) 1984-07-10 1984-07-10 Preparation of coal liquefying catalyst

Country Status (1)

Country Link
JP (1) JPS6121731A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562643B2 (en) 2001-09-03 2004-09-08 株式会社セイシン企業 Jet mill crushing material supply device
US20060058174A1 (en) 2004-09-10 2006-03-16 Chevron U.S.A. Inc. Highly active slurry catalyst composition
WO2009058861A2 (en) 2007-10-31 2009-05-07 Chevron U.S.A. Inc. Hydroprocessing bulk catalyst and uses thereof
US9687823B2 (en) 2012-12-14 2017-06-27 Chevron U.S.A. Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units

Also Published As

Publication number Publication date
JPS6121731A (en) 1986-01-30

Similar Documents

Publication Publication Date Title
EP0042471B1 (en) Catalyst and method for producing the catalyst
EP0131685B1 (en) Synthetic expanded layered minerals and process for producing them
US4721606A (en) Recovery of metal values from spent catalysts
US4382068A (en) Method for selective recovery of molybdenum and vanadium values from spent catalysts
EP0118209A2 (en) Process for preparing a catalyst
WO1999038802A1 (en) Method of manufacturing pseudo-boehmite
US4081408A (en) Catalyst composition
US2369432A (en) Desulphurization catalysts
US2326706A (en) Manufacture of catalysts
JPH06122519A (en) Hydrated amorphous ferric oxide particle powder and its production
JP3632071B2 (en) Carbon monoxide hydrogenation using sulfide catalyst
US3274121A (en) Trilithium phosphate isomerization catalyst
JPS6333421B2 (en)
EP0307869B1 (en) Process for producing ammonia and sulfur dioxide
CN110975884B (en) Preparation method of transition metal-containing catalyst for preparing benzaldehyde by selectively oxidizing toluene
EP0106456A1 (en) Tungsten recovery
JP3366997B2 (en) Novel method for preventing pollution of used purification catalyst and complete recovery of various metal components of the catalyst
US2398919A (en) Process for catalytic desulphurization
JPS63102B2 (en)
US3558272A (en) Treatment of thiosulfate-containing solutions with hydrogen in the presence of a nickel sulfide catalyst
CA1210746A (en) Recovering metal compounds from used catalysts obtained from hydroprocessing hydrocarbon feedstocks
Pradel et al. Ferric hydroxide oxide from the goethite process: characterization and potential use
US3475328A (en) Treatment of hydrocarbons and catalysts therefor
JP3128292B2 (en) Method for producing catalyst for coal liquefaction
JPS63103B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees