JPH03223192A - Sintered material bonded with silicon nitride of reaction-sintering type having excellent resistance to welding of metallic melt and its production - Google Patents

Sintered material bonded with silicon nitride of reaction-sintering type having excellent resistance to welding of metallic melt and its production

Info

Publication number
JPH03223192A
JPH03223192A JP1607990A JP1607990A JPH03223192A JP H03223192 A JPH03223192 A JP H03223192A JP 1607990 A JP1607990 A JP 1607990A JP 1607990 A JP1607990 A JP 1607990A JP H03223192 A JPH03223192 A JP H03223192A
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon
nitride
reaction
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1607990A
Other languages
Japanese (ja)
Other versions
JPH0712990B2 (en
Inventor
Tsutomu Saito
努 斉藤
Fusanosuke Iida
飯田 房之助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2016079A priority Critical patent/JPH0712990B2/en
Publication of JPH03223192A publication Critical patent/JPH03223192A/en
Publication of JPH0712990B2 publication Critical patent/JPH0712990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a sintered material bonded with silicon nitride having excellent resistance to welding of metallic melt in a low cost by forming a surface layer comprising BN, AlN or a mixture of the both together with a matrix in one body in applying a silicon nitride obtained from a reaction-sintering to a face of a sintering matrix bonded with the silicon nitride of reaction- sintering type to be brought into contact with a melt as binder. CONSTITUTION:A coating agent in which BN, AlN or a mixture of the both is dispersed in a mixing weight ratio to Si of (95:5) to (1:99) is applied onto a face of a pre-molded material of metallic silicon to be brought into contact with a melt and a resultant material is subjected to a reaction-sintering at 1100-1800 deg.C in N2 gas atmosphere to afford the objective sintered material bonded with a silicon nitride of reaction-sintering type having excellent resistance to welding of metallic melt.

Description

【発明の詳細な説明】 童栗上皇剋徂分互 本発明は、金属溶湯に接触する反応焼結型窒化けい素結
合質焼結体の耐金属溶湯鋳付き性の改善に係わるもので
あって、特にその表面に窒化けい素をバインダーとする
窒化硼素又は窒化アルミニウム或いはその混合体から成
る表層を直接又は窒化けい素単体層を介して形成した反
応焼結型窒化けい素結合質焼結体及びその製造方法に関
するものである。
[Detailed Description of the Invention] The present invention relates to improving the resistance to molten metal casting of a reactive sintered silicon nitride bonded sintered body that comes into contact with molten metal. In particular, reactive sintered silicon nitride bonded sintered bodies, in which a surface layer made of boron nitride, aluminum nitride, or a mixture thereof with silicon nitride as a binder is formed directly or through a single layer of silicon nitride; The present invention relates to a manufacturing method thereof.

従  拝゛とその間 点 金属溶湯、例えばアルミニウム、銅、亜鉛、マグネシウ
ム、などに接触する構造材として窒化けい索車体や窒化
けい素と炭化けい素との複合体等の窒化けい素質反応焼
結セラミックス体が使用されている。
Silicon nitride reactive sintered ceramics, such as nitride rope car bodies and composites of silicon nitride and silicon carbide, are used as structural materials that come into contact with molten metals, such as aluminum, copper, zinc, and magnesium. body is used.

例えば、アルミニウム溶湯用構造材として、溶解炉・保
持炉などの炉壁材、低圧鋳造装置用ストークス、注湯用
樋材、溶湯浸漬用ヒータ管、測温用熱電対の保護管、脱
ガス用ガス吹き込み管、溶湯撹拌用部材等の各種の形態
で適用されている。
For example, structural materials for molten aluminum include furnace wall materials for melting furnaces and holding furnaces, Stokes for low-pressure casting equipment, gutter materials for pouring, heater tubes for immersing molten metal, protection tubes for thermocouples for temperature measurement, and for degassing. It is applied in various forms such as gas blowing pipes and members for stirring molten metal.

この種の構造材の場合には、静的或いは動的な状態で接
する溶湯との反応性があると、溶湯がその構造材に付着
して反応腐食し、その構造材としての使用機能を喪失し
使用不能に至ると共に、反応生成物が剥離したり溶出し
たりして溶湯汚染を招くことになるので出来るだけ耐金
属溶湯鋳付き性に優れたものが必要とされる。
In the case of this type of structural material, if it is reactive with the molten metal that comes into contact with it in a static or dynamic state, the molten metal will adhere to the structural material and cause reaction corrosion, causing it to lose its function as a structural material. However, it becomes unusable, and the reaction products peel off or elute, causing contamination of the molten metal. Therefore, it is necessary to have as good a resistance to molten metal casting as possible.

而して、窒化けい素体或いはその炭化けい素との複合体
は、他のセラミックスや従来材より高温強度や耐熱衝撃
性等が優れており、反応焼結法・ホットプレス・常圧焼
結法等の各種の製造法によって製造されたものが使用さ
れて来た。しかし、その用途の拡大と共にその要求特性
としてより高レベルのものが要求され、特に耐金属溶湯
鋳付き性を改善するニーズが高まっている。
Therefore, silicon nitride bodies or their composites with silicon carbide have superior high-temperature strength and thermal shock resistance compared to other ceramics and conventional materials, and are suitable for reaction sintering, hot pressing, and pressureless sintering. Products manufactured by various manufacturing methods such as the method have been used. However, as its uses expand, higher levels of required properties are required, and in particular, there is a growing need to improve its resistance to molten metal casting.

その対応策として、窒化けい素に窒化硼素炭化けい素を
配合した複合体が、例えば特開昭56120575号公
報などに提案されているが、未だ不十分なレベルである
しコストも割高になっている。
As a countermeasure to this problem, a composite material in which boron nitride silicon carbide is blended with silicon nitride has been proposed, for example in Japanese Patent Application Laid-Open No. 56120575, but it is still at an insufficient level and the cost is relatively high. There is.

また、溶湯接触面に窒化硼素を吹付は塗布する手段、例
えば高温潤滑離型用窒化硼素スプレーにより被覆層を形
成する手段も転用されている。
In addition, a method of spraying or applying boron nitride on the molten metal contact surface, for example, a method of forming a coating layer using a boron nitride spray for high-temperature lubricated mold release, has also been used.

しかし、この場合、窒化硼素は窒化けい素質反応焼結母
体と結合しておらず単に付着しているに過ぎない為に、
短期間に剥脱してしまい、繰返して塗布する必要があり
操業管理が煩雑であった。
However, in this case, boron nitride is not bonded to the silicon nitride reaction sintered matrix and is merely attached to it.
It peels off in a short period of time and requires repeated application, making operational management complicated.

更に、窒化けい素質焼結体の表面にアルミニウム層を形
成した後に窒素ガス雰囲気下で2段昇温させて反応焼結
させる方法(例えば、特開昭63238950号公報)
によって剥脱の少ない耐食性のある表層を形成する方法
も提案されているが、製造工程が複雑で操業管理が難し
く、又形成される窒化アルミニウムの接合強度も未だ十
分といえない。また、ガラス質或いは粘土質のコーティ
ング剤を塗布する方法もあるが、使用中にガラス質成分
や粘土質成分の溶出による溶湯汚染の問題もあり好まし
くない。
Furthermore, there is a method in which an aluminum layer is formed on the surface of a silicon nitride sintered body, and then the temperature is raised in two steps in a nitrogen gas atmosphere to perform reaction sintering (for example, Japanese Patent Application Laid-Open No. 63238950).
A method of forming a corrosion-resistant surface layer with less peeling has been proposed, but the manufacturing process is complicated and operation management is difficult, and the bonding strength of the aluminum nitride formed is still not sufficient. There is also a method of applying a vitreous or clayey coating agent, but this is not preferred because it poses the problem of molten metal contamination due to elution of glassy or clayey components during use.

本発明者は、これらの問題点に鑑みながら検討した結果
、反応焼結型窒化けい素結合質焼結体の製造方式におけ
る焼結機構を活用して、少なくともその溶湯接触面に窒
化硼素や窒化アルミニウムを反応焼結による窒化けい素
バインダーにて母体と一体化した表層を形成することに
より耐金属溶湯鋳付き性を改善し得ることに想到し、第
一の本発明を提案するに至った。
As a result of consideration in view of these problems, the present inventors utilized the sintering mechanism in the production method of reaction-sintered silicon nitride bonded sintered bodies to inject boron nitride or nitride into at least the molten metal contact surface. We came up with the idea that the resistance to molten metal casting can be improved by forming a surface layer where aluminum is integrated with the base material using a silicon nitride binder by reactive sintering, and came to propose the first invention.

また、その表層の具体的形成方法として、塗布法の簡便
性を生かして所要厚さのグリーンの表層を形成し続いて
母体と表層の同時一体化による窒化反応焼結を生起させ
ることによって、反応焼結型窒化けい素結合賞焼結体の
製造コストを抑えつつ表層を形成することに想到し、第
二・第三の本発明を提案するに至った。
In addition, as a specific method for forming the surface layer, a green surface layer of the required thickness is formed by taking advantage of the simplicity of the coating method, and then a nitriding reaction and sintering is caused by simultaneous integration of the matrix and the surface layer. We came up with the idea of forming a surface layer while suppressing the manufacturing cost of a sintered silicon nitride bonded sintered body, and came to propose the second and third inventions.

主更■導戊 本願の第一の発明は、反応焼結型窒化けい素結合質焼結
母体の溶湯接触面に窒化けい素をバインダーとする窒化
硼素又は窒化アルミニウム或いはその混合体から成る表
層を直接又は窒化けい素層を介して形成して成ることを
特徴とする耐金属溶湯鋳付き性に優れた反応焼結型窒化
けい素結合質焼結体を提案するものである。
The first invention of the present application is to provide a surface layer made of boron nitride or aluminum nitride or a mixture thereof with silicon nitride as a binder on the molten metal contact surface of a reactive sintered silicon nitride bonded sintered matrix. The present invention proposes a reactive sintered silicon nitride bonded sintered body which is formed directly or via a silicon nitride layer and has excellent molten metal casting resistance.

ここで反応焼結型窒化けい素結合質焼結母体とは、反応
焼結させた窒化けい索車体又はこれに1〜90重量%の
炭化けい素を混合させた反応焼結型窒化けい素結合賞複
合体から成るものをいう。
Here, the reaction sintered silicon nitride bonded sintered matrix refers to a reaction sintered nitride rope car body or a reaction sintered silicon nitride bonded body mixed with 1 to 90% by weight of silicon carbide. An award consisting of a complex.

又、本願の第二の発明は、金属けい素子成形体の溶湯接
触面に、窒化硼素又は窒化アルミニウム或いはその混合
体を金属けい素と重量比で(95対5)乃至(1対99
)の配合比率で分散させて成るコーティング剤を被覆し
た後に、窒素ガス雰囲気下で1100〜1800℃にて
反応焼結させることを特徴とする耐金属溶湯鋳付き性に
優れた反応焼結型窒化けい素結合質焼結体の製造方法で
ある。
Further, the second invention of the present application is to apply boron nitride, aluminum nitride, or a mixture thereof to silicon metal at a weight ratio of (95:5) to (1:99) on the molten metal contact surface of the metal silicon element molded body.
) Reactive sintering type nitriding with excellent molten metal casting resistance characterized by coating with a coating agent dispersed at a blending ratio of This is a method for producing a silicon-bonded sintered body.

更に、本願の第三の発明は、金属けい素子成形体の溶融
接触面に、金属けい素を分散させて成る下地処理剤によ
る被覆に続いて、窒化硼素又は窒化アルミニウム或いは
その混合体を金属けい素と重量比で(95対5)乃至(
1対99)の配合比率で分散させて成るコーティング剤
を被覆した後、窒素ガス雰囲気下で1100〜1800
℃にて反応焼結させることを特徴とする耐金属溶湯鋳付
き性に優れた反応焼結型窒化けい素結合質焼結体の製造
方法である。
Furthermore, the third invention of the present application is to apply boron nitride, aluminum nitride, or a mixture thereof to the molten contact surface of the metal silicon element molded body, after coating the molten contact surface with a base treatment agent containing metal silicon dispersed therein. The weight ratio of (95:5) to (
After coating with a coating agent dispersed at a blending ratio of 1:99), a coating agent of 1100 to 1800
This is a method for producing a reactive sintered silicon nitride bonded sintered body having excellent resistance to molten metal casting, characterized in that reaction sintering is carried out at a temperature of .degree.

ここで金属けい素子成形体とは、金属けい索車体又は金
属けい素に1〜90重量%の炭化けい素を混合したもの
から成る金属けい素混合体100重量部に対して水3〜
20重量部、好ましくは5〜15重量部と、有機バイン
ダー、例えばメチルセルローズ・ポリビニルアルコール
・ポリアクリル酸エステル等を0.05〜5重量部、好
ましくは0.5〜3重量部とを配合して混合機などで混
練し続いて所望の形状に成形したものである。その場合
、所望の最終形状に応じて、押出成形法・金型プレス法
・振動成形法・泥漿鋳込法・ラバープレス法等の適宜の
成形手段が適用出来る。例えば、特開昭62−1326
06号公報などに開示される方法も適用される。この場
合、金属けい素及び炭化けい素は、99重量%以上の純
度で、0.1μm〜10nの粒径のものであることが望
ましい。
Here, the metal silicon element molded body refers to a metal silicon cable body or a metal silicon mixture consisting of a mixture of 1 to 90% by weight of silicon carbide to 100 parts by weight of water to 3 to 3 parts by weight of water.
20 parts by weight, preferably 5 to 15 parts by weight, and 0.05 to 5 parts by weight, preferably 0.5 to 3 parts by weight of an organic binder such as methylcellulose, polyvinyl alcohol, polyacrylic ester, etc. The mixture is kneaded using a mixer and then molded into a desired shape. In that case, appropriate shaping methods such as extrusion molding, mold pressing, vibration molding, slurry casting, rubber pressing, etc. can be applied depending on the desired final shape. For example, JP-A-62-1326
The method disclosed in Publication No. 06 and the like is also applicable. In this case, it is desirable that the metal silicon and silicon carbide have a purity of 99% by weight or more and a particle size of 0.1 μm to 10 nm.

続いて成形体は、室温養生を経て100〜250℃で1
〜50時間養生乾燥させ、水分を除去すると共に有機バ
インダーの硬化を完了させて十分な保形強度を持たせ、
予成形体とされる。
Subsequently, the molded body was cured at room temperature and then heated at 100 to 250°C.
Cured and dried for ~50 hours to remove moisture and complete hardening of the organic binder to provide sufficient shape-retaining strength.
It is considered to be a preformed body.

次いで、金属けい素子成形体の表面にコーティング剤が
直接又は下地処理剤を介して10μm〜1鶴の層厚で被
覆される。
Next, a coating agent is coated on the surface of the metal silicon element molded body directly or via a surface treatment agent to a layer thickness of 10 μm to 1 μm.

ここで、コーティング剤は、重量比で窒化硼素と窒化ア
ルミニウムを単独又はそれぞれを混合したもの(2:3
〜3:2の混合比)と金属けい素とが重量比で(95対
5)乃至(1対99)、より好ましくは(70対30)
乃至(20対80)の配合比率で配合したちの100重
量部に対して水又は、エタノール・ブタノール・ヘキサ
ン等の非酸化性有機溶媒を50〜200重量部、好まし
くは80〜150重量部と、更に所望に応じて前述と同
様の有機バインダーを10〜30重量部、好ましくは1
5〜20重量部、又は分散剤、例えばオレイン酸、アク
リル系の共重合体、ポリカルボン酸型表面活性剤等を1
〜5重量部、好ましくは2〜4重量部を混合・撹拌して
調製されるものである。
Here, the coating agent is boron nitride and aluminum nitride alone or a mixture of each (2:3) by weight.
~3:2 mixing ratio) and metallic silicon in a weight ratio of (95:5) to (1:99), more preferably (70:30).
50 to 200 parts by weight, preferably 80 to 150 parts by weight of water or a non-oxidizing organic solvent such as ethanol, butanol, hexane, etc., per 100 parts by weight of the mixture at a blending ratio of 20 to 80. , and if desired, 10 to 30 parts by weight, preferably 1 part by weight of the same organic binder as above.
5 to 20 parts by weight, or 1 part of a dispersant such as oleic acid, acrylic copolymer, polycarboxylic acid type surfactant, etc.
It is prepared by mixing and stirring ~5 parts by weight, preferably 2 to 4 parts by weight.

この場合、窒化硼素と窒化アルミニウムとは、それぞれ
98重量%以上の純度のもので、且つ窒化けい素体母体
よりも細粒のものとするのが好ましく、平均粒度が30
.lJm以下、好ましくは0゜1〜5μmであるのが望
ましい。更に窒化硼素の場合には、不純物としての酸化
硼素が反応焼結時にガラス化して中心部への窒素ガスの
通気性を阻害するので、酸化硼素が0. 1重量%以下
の含有量のものを使用するのが好ましい。
In this case, boron nitride and aluminum nitride each have a purity of 98% by weight or more, and preferably have finer particles than the silicon nitride matrix, with an average particle size of 30% by weight or more.
.. It is desirable that the thickness is 1Jm or less, preferably 0°1 to 5 μm. Furthermore, in the case of boron nitride, boron oxide as an impurity vitrifies during reaction sintering and inhibits the permeability of nitrogen gas to the center. It is preferable to use one with a content of 1% by weight or less.

又、この場合使用する金属けい素は、予成形体に用いる
金属けい素と同等のものでよいが、より細粒のものとす
るのが好ましく、平均粒度が30μm以下、好ましくは
0.1〜5μmのものがよい。
Further, the metal silicon used in this case may be the same as the metal silicon used for the preform, but it is preferable to use finer particles, with an average particle size of 30 μm or less, preferably 0.1 to 0.1 μm. A thickness of 5 μm is preferable.

下地処理剤は、金属けい素100重量部に対して、水又
はエタノール・ブタノール・ヘキサン等の非酸化性有機
溶媒を50〜200重量部、好ましくは80〜150重
量部と、更に所望に応じて予成形体の製造に用いる有機
バインダーと同様のものを10〜30重量部、好ましく
は15〜20重量部、又は分散剤、例えばオレイン酸、
アクリル系の共重合体、ポリカルボン酸型表面活性剤等
を1重量部以下を混合・撹拌して調製され、10μm 
〜500μmの層厚で被覆されるものである。この下地
処理剤に用いられる金属けい素は、コーティング剤に用
いるものと同一性状のものでよい。
The surface treatment agent contains 50 to 200 parts by weight, preferably 80 to 150 parts by weight of water or a non-oxidizing organic solvent such as ethanol, butanol, hexane, etc., based on 100 parts by weight of metal silicon, and further as desired. 10 to 30 parts by weight, preferably 15 to 20 parts by weight of the same organic binder as used in the production of the preform, or a dispersant such as oleic acid,
Prepared by mixing and stirring 1 part by weight or less of an acrylic copolymer, a polycarboxylic acid type surfactant, etc.
It is coated with a layer thickness of ~500 μm. The silicon metal used in the surface treatment agent may have the same properties as those used in the coating agent.

これらコーティング剤と下地処理剤の予成形体への被覆
手段は、刷毛塗装・スプレー塗布・ドブ漬塗布等の手段
を予成形体の形状特性に応じて適宜適用される。被覆後
は、乾燥又は養生乾燥を100〜250℃で行ない表層
として定着させる。
The means for applying these coating agents and surface treatment agents to the preform may be brush coating, spray coating, dip coating, or the like, depending on the shape characteristics of the preform. After coating, drying or curing drying is performed at 100 to 250°C to fix it as a surface layer.

従って、下地層を介する場合には、下地処理剤とコーテ
ィング剤による被覆の各段階毎に乾燥又は養生乾燥を繰
返すことになる。
Therefore, when using a base layer, drying or curing drying is repeated at each stage of coating with a base treatment agent and a coating agent.

乾燥した表層を形成した予成形体は、続いて窒化反応焼
結炉に搬入され、0.05〜0.8気圧程度の窒素ガス
雰囲気下で1100〜1800℃、より好ましくは13
00〜1500℃にて50〜100時間窒化反応焼結さ
せる。
The preformed body with the dried surface layer formed thereon is then carried into a nitriding reaction sintering furnace and heated at 1100 to 1800°C, more preferably 13
Nitriding reaction and sintering is carried out at 00 to 1500°C for 50 to 100 hours.

これによって、表層から予成形体母体の中心部まで金属
けい素が窒化けい素に同時に転換される。
As a result, metallic silicon is simultaneously converted into silicon nitride from the surface layer to the center of the preform matrix.

その際、表層内に於いて金属けい素粉に窒素分子の結合
がなされ、表層部内の気孔率が低下するので表層内の窒
化硼素や窒化アルミニウムが焼き締められると共に、そ
のバインダーである生成窒化けい素が反応焼結型窒化け
い素結合質焼結母体と一体的になっているので、形成さ
れる表層は反応焼結型窒化けい素結合質焼結母体と堅固
に一体的になっている。
At this time, nitrogen molecules are bonded to the metal silicon powder in the surface layer, and the porosity in the surface layer decreases, so the boron nitride and aluminum nitride in the surface layer are baked and hardened, and the binder, the generated silicon nitride, is Since the base material is integrated with the reactive sintered silicon nitride bonded sintered matrix, the surface layer formed is firmly integrated with the reactive sintered silicon nitride bonded sintered matrix.

大施桝 純度99.9重量%で粒度10μmアンダーの金属けい
素を50重量部と純度99.8重量%で粒度10μmア
ンダーの炭化けい素を50重量部とをIO重量%濃度の
ポリビニルアルコール水溶液3重量部とをニーグーで混
練し、内径50mφで長さ500flの円柱状ゴム製成
形型内に充填し、1000kg/c+Jの冷間静水圧下
で等方圧成形加工((、IP)した後に脱型し、室温で
5時間室温養生した後、150℃の乾燥炉で10時間乾
燥・養生させ予成形体を製作した。
50 parts by weight of metallic silicon with a purity of 99.9% by weight and a particle size of less than 10 μm, and 50 parts by weight of silicon carbide with a purity of 99.8% by weight and a particle size of less than 10 μm in a polyvinyl alcohol aqueous solution with a concentration of IO% by weight 3 parts by weight were kneaded with Ni-gu, filled into a cylindrical rubber mold with an inner diameter of 50 mφ and a length of 500 fl, and was subjected to isostatic pressure molding ((, IP) under cold isostatic pressure of 1000 kg/c + J. The mold was removed and cured at room temperature for 5 hours, and then dried and cured in a drying oven at 150° C. for 10 hours to produce a preform.

一方、コーティング剤を、各々粒度10μmアンダーで
純度98重量%の窒化硼素と窒化アルミニウムと粒度1
0μmアンダーの金属けい素とを以下に示す割合で混合
したものをそれぞれが100重量部に対し、水120重
量部を加えて撹拌することによって調製した。また、下
地処理剤として、粒度10μmアンダーの金属けい素1
00重量部と水150重量部とを混合撹拌し調製した。
On the other hand, a coating agent was mixed with boron nitride and aluminum nitride, each having a particle size of less than 10 μm and a purity of 98% by weight, and a particle size of 1
A mixture of 0 μm or less metal silicon in the proportions shown below was prepared by adding 120 parts by weight of water to 100 parts by weight of each mixture and stirring. In addition, as a surface treatment agent, metallic silicon 1 with a particle size of less than 10 μm is used.
00 parts by weight and 150 parts by weight of water were mixed and stirred.

これらのコーティング剤及び下地処理剤を用い予成形体
の全外表面に所定の膜厚でそれぞれ刷毛塗布し、乾燥さ
せて表層を形成した。
These coating agents and surface treatment agents were applied to the entire outer surface of the preform with a brush to a predetermined thickness, and dried to form a surface layer.

続いて、0.5気圧の窒素ガス雰囲気の反応焼結炉に搬
入し、1250℃で20時間保持し、1400°Cで2
0時間保持する2段階昇温加熱法で反応焼結処理を行な
った。
Subsequently, it was carried into a reaction sintering furnace with a nitrogen gas atmosphere of 0.5 atm, maintained at 1250°C for 20 hours, and then heated at 1400°C for 2 hours.
The reaction sintering process was carried out using a two-step heating method in which the temperature was maintained for 0 hours.

得られた窒化けい素反応焼結体を300℃に予熱した後
に、アルゴンガス雰囲気とした試験炉中の鋳造用アルミ
ニウム合金であるJIS規格のAC−4C合金の730
°Cに保持した溶湯中に完全浸漬して、耐金属溶湯鋳付
き性と耐溶湯汚染性を所定期間後に評価した。
After preheating the obtained silicon nitride reaction sintered body to 300°C, it was heated to 730 of AC-4C alloy of JIS standard, which is an aluminum alloy for casting, in a test furnace with an argon gas atmosphere.
The specimens were completely immersed in the molten metal held at °C, and the molten metal casting resistance and molten metal contamination resistance were evaluated after a predetermined period of time.

なお、比較のため、コーティング剤及び下地処理剤中に
金属けい素を配合しないもの、及び何んらの表層を形成
しなかったもの等を製作し、その後は同一条件の窒化反
応焼結処理を施こしたものを製作して評価実験に供した
。また、これらは別に同材質の金属けい素子成形体の表
面を未処理のまま同一条件の窒化反応焼結を施して製造
した窒化けい素反応焼結体に市販のコロイダル窒化硼素
を1.8重量%と有機バインダー1重量%を溶媒に分散
させた窒化硼素スプレー剤を使用して窒化硼素の表層を
形成した比較材を製作し、同様に評価実験に供した。
For comparison purposes, we produced samples that did not contain metallic silicon in the coating agent or surface treatment agent, and did not form any surface layer, and then underwent nitriding reaction and sintering under the same conditions. A sample was manufactured and subjected to an evaluation experiment. In addition, 1.8 weight of commercially available colloidal boron nitride was added to a silicon nitride reaction sintered body, which was manufactured by subjecting the surface of a metal silicon element molded body made of the same material to nitridation reaction sintering under the same conditions without treatment. A comparative material in which a surface layer of boron nitride was formed using a boron nitride spray agent containing 1% by weight of an organic binder and 1% by weight of an organic binder was prepared and similarly subjected to an evaluation experiment.

これらの評価結果を次の表に示す。The results of these evaluations are shown in the table below.

(以下余白) 光1υ伽果 本発明は、反応焼結による窒化けい素をバインダーとし
て窒化硼素又は窒化アルミニウム或いはその混合体から
成る表層を直接又は窒化けい素単体層を介して反応焼結
型窒化けい素結合質焼結母体に一体的に形成して成るも
のと、その製造方法に関するものであって、 1) 窒化けい素質反応焼結体の耐金属溶湯鋳付き性の
改善がそれを必要とする表面にて母体と一体的に形成さ
れる窒化けい素をバインダーとする窒化硼素又は窒化ア
ルミニウム或いはその混合体から成る表層又はそれらを
窒化けい素単体層を介した表層で行なわれるので、従来
法にない耐金属溶湯鋳付き性に優れた反応焼結型窒化け
い素結合賞焼結体を低コストで提供出来る。
(Hereinafter referred to as the margin 1 υ Caucage 1 υ Caution This invention is a binder or a nitride, or a nitrogen by a nitrified body layer directly or a mixture of nitride or aluminum nitride or a mixture. The present invention relates to a product formed integrally with a silicon-bonded sintered matrix and a method for producing the same, including: 1) Improving the resistance to molten metal castability of a silicon nitride-based reaction sintered product requires it; The conventional method is performed on a surface layer made of boron nitride or aluminum nitride or a mixture thereof with silicon nitride as a binder formed integrally with the base material, or on a surface layer with a single layer of silicon nitride interposed therebetween. It is possible to provide a reactive sintered silicon nitride bonded sintered body with excellent molten metal castability that is unparalleled in other products at a low cost.

2) 更に、本発明の製造方法によるときには窒化けい
素質反応焼結母体自体の反応焼結と同時に窒化けい素を
バインダーとする窒化硼素又は窒化アルミニウム或いは
その混合体から成る表層の形成も行なわれるために、表
層が母体と一体的に形成される。このため、従来法にな
い優れた耐久性のある表層が少ない工程で簡便に得られ
る。
2) Furthermore, when using the manufacturing method of the present invention, a surface layer made of boron nitride or aluminum nitride or a mixture thereof using silicon nitride as a binder is formed simultaneously with the reaction sintering of the silicon nitride reactive sintered matrix itself. The surface layer is formed integrally with the mother body. Therefore, a surface layer with excellent durability not found in conventional methods can be easily obtained with fewer steps.

等の実用性に優れた効果が発揮される。Excellent practical effects are demonstrated.

Claims (1)

【特許請求の範囲】 [1]反応焼結型窒化けい素結合質焼結母体の溶湯接触
面に窒化けい素をバインダーとする窒化硼素又は窒化ア
ルミニウム或いはその混合体から成る表層を直接又は窒
化けい素単体層を介して形成して成ることを特徴とする
耐金属溶湯鋳付き性に優れた反応焼結型窒化けい素結合
質焼結体。 [2]金属けい素子成形体の溶湯接触面に、窒化硼素又
は窒化アルミニウム或いはその混合体を金属けい素と重
量比で(95対5)乃至(1対99)の配合比率で分散
させて成るコーティング剤を被覆した後、窒素ガス雰囲
気下で1100〜1800℃にて反応焼結させることを
特徴とする耐金属溶湯鋳付き性に優れた反応焼結型窒化
けい素結合質焼結体の製造方法。 [3]金属けい素子成形体の溶湯接触面に、金属けい素
を分散させて成る下地処理剤による被覆に続いて、窒化
硼素又は窒化アルミニウム或いはその混合体を金属けい
素と重量比で(95対5)乃至(1対99)の配合比率
で分散させて成るコーティング剤を被覆した後、窒素ガ
ス雰囲気下で1100〜1800℃にて反応焼結させる
ことを特徴とする耐金属溶湯鋳付き性に優れた反応焼結
型窒化けい素結合質焼結体の製造方法。
[Scope of Claims] [1] A surface layer made of boron nitride or aluminum nitride or a mixture thereof with silicon nitride as a binder is applied directly to the molten metal contact surface of the reactive sintered silicon nitride bonded sintered matrix or A reactive sintered silicon nitride bonded sintered body having excellent resistance to molten metal casting, characterized in that it is formed through a single element layer. [2] Boron nitride, aluminum nitride, or a mixture thereof is dispersed on the molten metal contact surface of the metal silicon element molded body at a weight ratio of (95:5) to (1:99) with metal silicon. Production of a reactive sintered silicon nitride bonded sintered body with excellent resistance to molten metal casting, characterized in that after coating with a coating agent, reaction sintering is performed at 1100 to 1800°C in a nitrogen gas atmosphere. Method. [3] After coating the molten metal contact surface of the metal silicon element molded body with a surface treatment agent containing metal silicon dispersed therein, boron nitride, aluminum nitride, or a mixture thereof is applied to the metal silicon in a weight ratio of (95 Molten metal casting resistance characterized by coating with a coating agent dispersed at a blending ratio of 1:5) to (1:99) and then reacting and sintering at 1100 to 1800°C in a nitrogen gas atmosphere. A method for producing a reactive sintered silicon nitride bonded sintered body with excellent properties.
JP2016079A 1990-01-29 1990-01-29 Reaction sintering type silicon nitride bonded sintered body having excellent resistance to molten metal casting and method for producing the same Expired - Lifetime JPH0712990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016079A JPH0712990B2 (en) 1990-01-29 1990-01-29 Reaction sintering type silicon nitride bonded sintered body having excellent resistance to molten metal casting and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016079A JPH0712990B2 (en) 1990-01-29 1990-01-29 Reaction sintering type silicon nitride bonded sintered body having excellent resistance to molten metal casting and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03223192A true JPH03223192A (en) 1991-10-02
JPH0712990B2 JPH0712990B2 (en) 1995-02-15

Family

ID=11906550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016079A Expired - Lifetime JPH0712990B2 (en) 1990-01-29 1990-01-29 Reaction sintering type silicon nitride bonded sintered body having excellent resistance to molten metal casting and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0712990B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710664A (en) * 1993-06-23 1995-01-13 Kyocera Corp Member for aluminum melt and its production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102812A (en) * 1972-04-12 1973-12-24
JPH01176289A (en) * 1987-12-29 1989-07-12 Hitachi Metals Ltd Member for molten aluminum and production thereof
JPH0383862A (en) * 1989-08-28 1991-04-09 Nichias Corp Production of silicon nitride-boron nitride multiple sintered compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102812A (en) * 1972-04-12 1973-12-24
JPH01176289A (en) * 1987-12-29 1989-07-12 Hitachi Metals Ltd Member for molten aluminum and production thereof
JPH0383862A (en) * 1989-08-28 1991-04-09 Nichias Corp Production of silicon nitride-boron nitride multiple sintered compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710664A (en) * 1993-06-23 1995-01-13 Kyocera Corp Member for aluminum melt and its production

Also Published As

Publication number Publication date
JPH0712990B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JP4261130B2 (en) Silicon / silicon carbide composite material
US4564601A (en) Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
RU2193543C2 (en) Method of manufacturing caked structured ceramic product from aluminum nitride
US5141683A (en) Method of producing reinforced materials
JPH03223192A (en) Sintered material bonded with silicon nitride of reaction-sintering type having excellent resistance to welding of metallic melt and its production
US3287478A (en) Method of sintering aluminum nitride refractories
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
US5030397A (en) Method of making large cross section injection molded or slip cast ceramics shapes
JPH1149568A (en) Graphite-silicon carbide crucible for nonferrous molten metal and its production
WO1991011409A1 (en) Improved method of making large cross section injection molded or slip cast ceramic shapes
JPS60171269A (en) Manufacture of complicated shape silicon nitride sintered body
JP4416946B2 (en) Ceramic composite
JP3297547B2 (en) Method for producing silicon carbide sintered body
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
JPS62227603A (en) Manufacture of ceramics sintered body and molding tool used for said manufacture
JPH10253259A (en) Material of roller for roller hearth furnace and manufacture thereof
JPH07138075A (en) Production of silicon nitride having high strength and high thermal expansion
JP4167318B2 (en) Method for producing metal-ceramic composite material
EP0481643B1 (en) Ceramic composition
JP2952087B2 (en) Aluminum borate whisker having a nitrided layer on the surface and method for producing preform
JP4170544B2 (en) Boron nitride dispersed silicon carbide-carbon composite
JP2997645B2 (en) Manufacturing method of ceramic laminate
JP2000302573A (en) SiC-MoSi2 COMPOSITE MATERIAL AND ITS PRODUCTION
JPH03193860A (en) Production of ti-al intermetallic compound member
CN118084540A (en) Ceramic slurry, coating for improving corrosion resistance of carbon-carbon composite material and preparation method of coating

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 15

EXPY Cancellation because of completion of term