JP4170544B2 - Boron nitride dispersed silicon carbide-carbon composite - Google Patents

Boron nitride dispersed silicon carbide-carbon composite Download PDF

Info

Publication number
JP4170544B2
JP4170544B2 JP34996899A JP34996899A JP4170544B2 JP 4170544 B2 JP4170544 B2 JP 4170544B2 JP 34996899 A JP34996899 A JP 34996899A JP 34996899 A JP34996899 A JP 34996899A JP 4170544 B2 JP4170544 B2 JP 4170544B2
Authority
JP
Japan
Prior art keywords
silicon carbide
boron nitride
carbon composite
carbon
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34996899A
Other languages
Japanese (ja)
Other versions
JP2001163671A (en
Inventor
崇 高津
裕治 瀧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP34996899A priority Critical patent/JP4170544B2/en
Publication of JP2001163671A publication Critical patent/JP2001163671A/en
Application granted granted Critical
Publication of JP4170544B2 publication Critical patent/JP4170544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高温酸化雰囲気下で使用される窒化ホウ素分散炭化ケイ素−炭素複合材に関する。
【0002】
【従来の技術】
炭素材料は、従来より高温での優れた特性のため、金属溶解用ルツボ、セラミックス焼結用ルツボ、金属蒸着用治具、連続鋳造用ダイス、鋳造用鋳型等の各種熱処理用治具等に用いられる耐熱用材料として広く利用されている。
【0003】
しかしながら、炭素材料は高温酸化雰囲気中で酸化消耗しやすいという欠点を持っており、また、還元雰囲気下でも、前記各種用途に利用されている際に、その被処理物と反応したり、処理物が溶解し炭素材料中に浸透し、炭素材料が破損する等の問題があり、炭素材料の酸化防止や、溶解物の浸透防止のため従来から色々と工夫がなされてきた。
【0004】
本発明者らは、こうした炭素材料の欠点を補うために、炭素材料からなる基材表面に、ケイ素(以下、「Si」という。)粉末と炭化ホウ素(以下、「B4 C」という。)粉末と熱可塑性樹脂からなるスラリーを塗布し、熱処理することにより基材の表面に炭化ケイ素−炭素(以下、「SiC−C」という。)複合層を深めに形成してなる、耐酸化性に優れた炭素製品を開発し、出願した(特開平10−212182号)。
【0005】
【発明が解決しようとする課題】
ところが、金属溶解用ルツボや、セラミックス焼結用ルツボ、連続鋳造用ダイス、鋳造用鋳型等の、金属やセラミックス等の被処理物と接触する面にSiC−C複合層を形成した場合、被処理物が冷却後にトレー、ルツボあるいは鋳型等の熱処理用治具の表面に固着してしまうという問題が発生した。
【0006】
そこで、本発明は、炭素製品の耐酸化性を向上させるとともに、被処理物の固着を抑制することが可能な窒化ホウ素分散炭化ケイ素−炭素複合材を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、この問題を解決すべく、先願である特開平10−212182号の技術の改良に取り組み、鋭意研究を重ねた結果、SiC−C複合層の表層に窒化ホウ素(以下、「BN」という。)を分散させることが有効であることを見出し本発明を完成させるにいたった。
【0008】
すなわち、本発明のBN分散SiC−C複合材は、炭素材料からなる基材の表層に、SiC−C複合層が、前記炭素基材表面から深さ方向に均一に1mm以上の厚みで形成されてなり、前記SiC−C複合層は表面に凹みを有し、前記SiC−C複合層に連続し、前記凹みに窒化ホウ素が入り込むように、最表層の前記表面の一部若しくは全面にBNが分散してなるBN分散SiC−C複合材である。また、本発明のBN分散SiC−C複合材の製造方法は、BN粉末5〜15質量%、Si粉末60〜80質量%と、 C粉末との合計が100質量%となる混合粉末と、溶剤からなるスラリーを、基材の表面に塗布し、乾燥、熱処理して、前記基材の表層部に、表面に凹みを有したSiC−C複合層が形成してなり、前記凹みに窒化ホウ素が入り込むように、前記SiC−C複合層の前記表面の一部若しくは全面にBNが分散してなるものである。
【0009】
また、本発明によるBN分散SiC−C複合材は、炭素材料からなる基材の表層部にSiC−C複合層が形成され、このSiC−C複合層の表面の凹み部にBNが入り込み、この表層部の表面の30〜80%の割合でBNが分散形成されている。
【0010】
本発明に使用される炭素材料からなる基材は特に限定されるものではなく、例えば高密度等方性黒鉛材等が挙げられ、これらのうち水銀圧入法で測定した平均細孔半径が0.1μm以上である黒鉛材を製品形状に加工したものを使用することが好ましい。
【0011】
平均細孔半径が0.1μmよりも小さい黒鉛材を基材として使用すると、SiとB4 CとBNとを混合したスラリーを基材に塗布する時に、基材の微小細孔にまでスラリーが浸透しにくくなり、スラリー塗布層の剥離が生じ易くなるためあまり好ましくない。なお、基材の平均細孔半径の上限については、特に制限はなく、平均細孔半径が大きいと、その分、基材内部奥深くまでスラリーが浸透し、熱処理後にスラリー中のSiが基材と反応し生成されるSiC−C複合層が、深さ方向に均一に1mm以上の厚みで形成される。このように、SiC−C複合層の厚みを1mm以上とすることができるため、黒鉛等の炭素材料からなる基材の耐酸化性をも併せて向上させることができる。
【0012】
本発明のBN分散SiC−C複合材は、まず、平均粒径10〜50μmのSi粉末、平均粒径4〜50μmのB4 C粉末、平均粒径1〜5μmのBN粉末と、これらを混合する溶剤として、熱可塑性樹脂を使用し、スラリーを作製する。ここで、使用する熱可塑性樹脂は造膜性が高く、かつ残炭率が低い熱可塑性樹脂が好ましい。例えばポリアミドイミド、ポリビニルアルコール、ポリカルボジイミド、ポリアミド樹脂の内より選ばれたものが特に好ましい。
また、場合によっては、これら熱可塑性樹脂を溶解するために溶媒を使用することもできる。この溶媒としてはジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、N−2−ピロリドン等から適宜選択して使用することで、熱可塑性樹脂を黒鉛基材中に深く浸透させることが可能となる。
【0013】
Si粉末、B4 C粉末とBN粉末を混合する際の混合割合は、Si粉末60〜80質量%、BN粉末15質量%以下とし、これらに対してその残りがB4 C粉末となるように混合するのが好ましい。BN粉末が15質量%を越えると、SiC−C層が深さ方向に均一にかつ深く形成されないため好ましくない。また、5質量%未満であると、SiC−C層表面の凹み部に分散形成されるBNが少なくなり、BNを添加した効果が十分に得られず、被処理物が固着してしまうため好ましくない。したがって、BN粉末は5〜15質量%であることが好ましい。この混合粉末に対して、50〜100%の質量の熱可塑性樹脂を混合する。ここで、樹脂量が混合粉末に対して100%を越えると、スラリーの粘性が低下し、基材表面に厚く塗布することが困難となり、炭素基材の表面のSiC化が低下するため好ましくない。また、50%未満であると、粘性が高くなり、スラリーが基材表面に十分に密着していない部分が生じ、SiC層が形成されない部分が生じるため好ましくない。
【0014】
4 C粉末をスラリー中に混合することにより、何らかの触媒作用によってSiが、炭素基材の気孔内を深く浸透し、結果として、SiC−C層を深さ方向に均一にかつ深く形成することができる。
【0015】
上記のように調製されたスラリーをはけ塗り、へら塗り等の適宜な手段で表面全体、又は必要な部分に塗布する。また、スラリー中に浸漬しても良い。この時に塗布する厚みについては、任意の厚みとすることができるが炭素基材表面から0.1〜2mm程度が好ましい。0.1mm未満では複合層の形成が浅くなり、2mmを越える厚みで塗布すると、剥離等することがあるのであまり好ましくない。この後、約80〜200℃、1〜2時間程度乾燥することにより、樹脂を完全に硬化させる。こうして得られた材料を、0.1MPa以下、好ましくは2kPa以下の非酸化雰囲気圧力下で高温熱処理する。圧力を0.1MPa以下、好ましくは2kPa以下とすることで、溶融したSiの、基材内部への浸透が促進される。また、処理温度は1500℃以上、好ましくは1600〜1800℃で1〜2時間保持する。加熱手段は特に限定されるものではなく、適当な手段で行えばよい。この操作によって、Si成分は溶融し、樹脂の炭化層を通って基材の気孔中に侵入し、炭素と反応してSiC化する。その後、場合によっては表面の付着物を除去する。
【0016】
前述の一連の処理を得て、スラリーが塗布された部分に相当する基材の表層がSiC−C複合層に転化した緻密な層となる。この層は、基材の表面から深さ方向に略均一に1mm以上の深さで形成される。そして、この表層部に表面から30μm以下の深さにBNが分散形成される。表面のBNは、SiC−C複合層の表面の凹みに入り込み、SiC−C複合層より連続して形成されているため、アンカー効果が作用し、強固に付着する。そして、SiCや炭素基材と化学的に反応して固着しているわけではなく、SiC−C複合層表層部の表面に30〜80%の割合で微粉末の状態で分散し点在している。
【0017】
本発明のBN分散SiC−C複合材は以上のように形成されており、ホットプレス用ダイスのスペーサーや、金属溶解用ルツボや、セラミックス焼結用ルツボ、金属蒸着用治具、連続鋳造用ダイス、鋳造用鋳型等を含む各種材料の熱処理用治具等に用いられる耐熱材料として適用した場合であっても、接触部の被処理物に固着することを抑制できる。
【0018】
【実施例】
以下、実施例により本発明を具体的に説明する。
(実施例1)
炭素基材として、嵩密度1.90g/cm3 、平均細孔半径が0.3μm 、曲げ強度が68MPaの等方性黒鉛(東洋炭素( 株)製) を、外径100mm、内径約70mm、深さ90mmのルツボに加工した。次に、Si粉末(平均粒度40μm)と、B4 C粉末(平均粒径30μm)と、BN粉末(粒径1〜5μm)を質量比で80:12:8の比率に混合し、この混合粉末と同質量のポリビニルアルコール(PVA)樹脂中に混合分散させてスラリーとした。
【0019】
このスラリーを、ルツボ内面全体に刷毛で厚みが1〜2mmになるよう塗布し、乾燥機の中で200℃、1時間で溶剤を蒸発させ、さらに400Paの窒素ガス雰囲気下、真空加熱炉において室温から1800℃まで約4時間で昇温し、30分間保持した後、冷却して取り出した。その後、この一連の処理を行うことにより、黒鉛基材の表面から深さ方向に均一に2mmの深さでSiCーC複合材が形成され、その表層に20μmの深さでBNが分散形成される。このルツボに、鋳塊を入れ、1600℃に加熱し、鋳鉄の溶解試験を行った。
【0020】
また、図1に、BNが表層部に分散したSiC−C複合材の表面の偏光顕微鏡写真を示す。図1において、白く見える部分がBNである。図1より、BNが表面に分散し、形成されているのがわかる。このように一部に凝縮せず、分散し形成させることができるため、SiC−C複合材にBNの有する離型性を十分に発現させることができ、被処理物の固着が抑制される。
【0021】
(実施例2)
スラリー中のSi粉末(平均粒度40μm)と、B4 C粉末(平均粒径30μm)と、BN粉末(粒径1〜5μm)の質量比を80:10:10の比率に混合した以外、実施例1と同質の黒鉛基材を同形状に加工し、実施例1と同様な手順でルツボ内面に黒鉛基材の表面から1mmの厚さでSiCーC複合材を形成させ、その表面から30μmの深さでBNを分散形成させ、実施例1と同様に、鋳塊を入れ、溶解試験を行った。
【0022】
(実施例3)
スラリー中のSi粉末(平均粒度40μm)と、B4 C粉末(平均粒径30μm)と、BN粉末(粒径1〜5μm)の質量比を80:15:5の比率に混合した以外、実施例1と同質の黒鉛基材を同形状に加工し、実施例1と同様な手順でルツボ内面に黒鉛基材の表面から3mmの厚さでSiCーC複合材を形成させ、その表面から15μmの深さでBNを分散形成させ、実施例1と同様に、鋳塊を入れ、溶解試験を行った。
【0023】
(比較例1)
BN粉末を添加せずに、スラリー中のSi粉末(平均粒度40μm)と、B4 C粉末(平均粒径30μm)の質量比を80:20の比率に混合し、実施例1と同質の黒鉛基材を同形状に加工し、実施例1と同様な手順で、ルツボ内面に黒鉛基材の表面から3mmの厚さでSiCーC複合材を形成させ、実施例1と同様に、鋳塊を入れ、溶解試験を行った。
【0024】
実施例1乃至3のルツボは35回の溶解試験にもかかわらず、鋳鉄の固着がほとんど無く、また、ルツボの割れ、鋳鉄による腐食等のルツボの交換原因となる問題点の発生が確認されなかった。一方、表面にBNを分散形成させなかった比較例1のルツボは、2〜3回の溶解試験で、鋳鉄の固着が発生した。このように、黒鉛基材の表層にSiC−C複合材が形成され、更にその表層にSiC−C複合材から連続してBNを分散形成させることで、BNを分散形成させなかったものに比較すると、耐酸化性に加え、被処理物の離型性にも優れた特性を有するものとすることができる。
【0025】
【発明の効果】
本発明は以上のように構成されており、容易に且つ安価に、黒鉛基材表面の任意の場所に、窒化ホウ素が分散された炭化ケイ素ー炭素複合材を形成させることが可能であり、潤滑性、耐摩耗性、耐酸化性に優れた滑らかな被覆面を形成できる。また、ホットプレス用ダイスのスペーサーや、金属溶解用やセラミックス焼結用ルツボ、連続鋳造用ダイス、鋳造用鋳型等の各種熱処理用の炭素製品の寿命の延命効果が得られる。
【図面の簡単な説明】
【図1】BN分散SiC−C複合材の表面の偏光顕微鏡写真を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a boron nitride-dispersed silicon carbide-carbon composite material used in a high-temperature oxidizing atmosphere.
[0002]
[Prior art]
Carbon materials are used for various heat treatment jigs such as metal melting crucibles, ceramic sintering crucibles, metal deposition jigs, continuous casting dies, casting molds, etc. due to their superior properties at high temperatures. Widely used as a heat-resistant material.
[0003]
However, the carbon material has a drawback that it is easily oxidized and consumed in a high-temperature oxidizing atmosphere, and also reacts with the object to be processed when used in the various applications even under a reducing atmosphere, Has dissolved and penetrated into the carbon material, and the carbon material is damaged. Various attempts have been made to prevent the carbon material from being oxidized and the dissolved material from penetrating.
[0004]
In order to make up for the drawbacks of the carbon material, the present inventors provide silicon (hereinafter referred to as “Si”) powder and boron carbide (hereinafter referred to as “B 4 C”) on the surface of the substrate made of the carbon material. Applying a slurry consisting of powder and thermoplastic resin and heat-treating it to form a deep silicon carbide-carbon (hereinafter referred to as “SiC-C”) composite layer on the surface of the base material. An excellent carbon product was developed and applied (Japanese Patent Laid-Open No. 10-212182).
[0005]
[Problems to be solved by the invention]
However, when a SiC-C composite layer is formed on a surface that contacts a workpiece such as metal or ceramics, such as a crucible for melting metal, a crucible for sintering ceramics, a die for continuous casting, a casting mold, etc. There has been a problem that the object is fixed to the surface of a heat treatment jig such as a tray, crucible or mold after cooling.
[0006]
Then, an object of this invention is to provide the boron nitride dispersion | distribution silicon carbide-carbon composite material which can improve the oxidation resistance of a carbon product, and can suppress fixation of a to-be-processed object.
[0007]
[Means for Solving the Problems]
In order to solve this problem, the present inventors have worked on improving the technology of Japanese Patent Application Laid-Open No. 10-212182 as a prior application, and as a result of earnest research, as a result, boron nitride (hereinafter referred to as the following) is formed on the surface layer of the SiC-C composite layer. It was found that dispersing "BN") was effective, and the present invention was completed.
[0008]
That is, in the BN-dispersed SiC-C composite material of the present invention, the SiC-C composite layer is uniformly formed in the depth direction from the surface of the carbon base material with a thickness of 1 mm or more on the surface layer of the base material made of a carbon material. Te becomes, the SiC-C composite layer has a recess on the surface, successively to the SiC-C composite layer, so that the boron nitride from entering the recess, BN part or the entire surface of the outermost layer of the surface It is a BN-dispersed SiC-C composite material that is dispersed. The manufacturing method of BN dispersion SiC-C composite of the present invention, the BN powder 5 to 15 wt%, 60 to 80 wt% S i powder, B 4 A mixed powder sum of C powder is 100 mass%, a slurry consisting of a solvent, is coated on the surface of a substrate, dried, heat treated, a surface portion of said substrate, having a recess on the surface SiC-C becomes a composite layer is formed, so that the boron nitride from entering the recess, BN part or the entire of the surface of the SiC-C composite layers are made by dispersing.
[0009]
Further, in the BN-dispersed SiC-C composite material according to the present invention, a SiC-C composite layer is formed on the surface layer portion of a base material made of a carbon material, and BN enters a recess portion on the surface of the SiC-C composite layer. BN is dispersed and formed at a ratio of 30 to 80% of the surface of the surface layer portion.
[0010]
The base material made of the carbon material used in the present invention is not particularly limited, and examples thereof include high-density isotropic graphite materials. Among these, the average pore radius measured by the mercury intrusion method is 0.00. It is preferable to use a graphite material that is 1 μm or more processed into a product shape.
[0011]
When a graphite material having an average pore radius smaller than 0.1 μm is used as a base material, when the slurry in which Si, B 4 C and BN are mixed is applied to the base material, the slurry reaches the micropores of the base material. This is not preferable because it hardly penetrates and the slurry coating layer is easily peeled off. The upper limit of the average pore radius of the substrate is not particularly limited, and if the average pore radius is large, the slurry penetrates deeply into the interior of the substrate, and Si in the slurry after the heat treatment The SiC-C composite layer produced by the reaction is formed with a thickness of 1 mm or more uniformly in the depth direction. Thus, since the thickness of a SiC-C composite layer can be 1 mm or more, the oxidation resistance of the base material which consists of carbon materials, such as graphite, can also be improved collectively.
[0012]
The BN-dispersed SiC-C composite material of the present invention is a mixture of Si powder having an average particle diameter of 10 to 50 μm, B 4 C powder having an average particle diameter of 4 to 50 μm, and BN powder having an average particle diameter of 1 to 5 μm. As a solvent to be used, a thermoplastic resin is used to prepare a slurry. Here, the thermoplastic resin used is preferably a thermoplastic resin having a high film-forming property and a low residual carbon ratio. For example, those selected from polyamide imide, polyvinyl alcohol, polycarbodiimide, and polyamide resin are particularly preferable.
In some cases, a solvent may be used to dissolve these thermoplastic resins. The solvent can be appropriately selected from dimethylacetamide, dimethylformamide, dimethylsulfoxide, N-2-pyrrolidone, and the like, thereby allowing the thermoplastic resin to penetrate deeply into the graphite base material.
[0013]
The mixing ratio when mixing the Si powder, the B 4 C powder and the BN powder is set to 60 to 80% by mass of the Si powder and 15% by mass or less of the BN powder, with the remainder being the B 4 C powder. It is preferable to mix. If the BN powder exceeds 15% by mass, the SiC-C layer is not formed uniformly and deeply in the depth direction, which is not preferable. Further, if it is less than 5% by mass, the amount of BN dispersedly formed in the dents on the surface of the SiC-C layer is reduced, and the effect of adding BN cannot be obtained sufficiently, and the object to be processed is fixed. Absent. Therefore, the BN powder is preferably 5 to 15% by mass. A thermoplastic resin having a mass of 50 to 100% is mixed with the mixed powder. Here, when the amount of the resin exceeds 100% with respect to the mixed powder, the viscosity of the slurry is lowered, and it is difficult to apply the slurry thickly on the surface of the substrate, which is not preferable because SiC formation on the surface of the carbon substrate is reduced. . On the other hand, if it is less than 50%, the viscosity becomes high, a portion where the slurry is not sufficiently adhered to the surface of the substrate is generated, and a portion where the SiC layer is not formed is not preferable.
[0014]
By mixing B 4 C powder into the slurry, Si penetrates deeply into the pores of the carbon substrate by some catalytic action, and as a result, the SiC-C layer is formed uniformly and deeply in the depth direction. Can do.
[0015]
The slurry prepared as described above is applied to the entire surface or a necessary portion by an appropriate means such as brushing or spatula coating. Moreover, you may immerse in a slurry. The thickness applied at this time can be any thickness, but is preferably about 0.1 to 2 mm from the surface of the carbon substrate. If the thickness is less than 0.1 mm, the formation of the composite layer is shallow, and if it is applied in a thickness exceeding 2 mm, peeling or the like may occur, which is not preferable. Thereafter, the resin is completely cured by drying at about 80 to 200 ° C. for about 1 to 2 hours. The material thus obtained is subjected to high temperature heat treatment under a non-oxidizing atmosphere pressure of 0.1 MPa or less, preferably 2 kPa or less. By setting the pressure to 0.1 MPa or less, preferably 2 kPa or less, the penetration of molten Si into the substrate is promoted. The treatment temperature is 1500 ° C. or higher, preferably 1600 to 1800 ° C. for 1 to 2 hours. The heating means is not particularly limited and may be performed by an appropriate means. By this operation, the Si component melts, penetrates into the pores of the base material through the carbonized layer of the resin, and reacts with carbon to form SiC. Thereafter, in some cases, the surface deposits are removed.
[0016]
By obtaining the above-described series of treatments, the surface layer of the base material corresponding to the portion where the slurry is applied becomes a dense layer converted into a SiC-C composite layer. This layer is formed at a depth of 1 mm or more substantially uniformly in the depth direction from the surface of the substrate. Then, BN is dispersedly formed on the surface layer portion at a depth of 30 μm or less from the surface. Since BN on the surface enters the dents on the surface of the SiC-C composite layer and is formed continuously from the SiC-C composite layer, the anchor effect acts and adheres firmly. And it does not chemically react with SiC and the carbon base material and is not fixed, but is dispersed and scattered in a fine powder state at a rate of 30 to 80% on the surface of the surface layer part of the SiC-C composite layer. Yes.
[0017]
The BN-dispersed SiC-C composite material of the present invention is formed as described above, and includes hot press die spacers, metal melting crucibles, ceramic sintering crucibles, metal deposition jigs, and continuous casting dies. Even when it is applied as a heat-resistant material used in a jig for heat treatment of various materials including a casting mold or the like, it is possible to suppress sticking to the object to be processed in the contact portion.
[0018]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
(Example 1)
As a carbon base material, isotropic graphite (manufactured by Toyo Tanso Co., Ltd.) having a bulk density of 1.90 g / cm 3 , an average pore radius of 0.3 μm and a bending strength of 68 MPa, an outer diameter of 100 mm, an inner diameter of about 70 mm, Processed into a 90 mm deep crucible. Next, Si powder (average particle size 40 μm), B 4 C powder (average particle size 30 μm), and BN powder (particle size 1 to 5 μm) are mixed at a mass ratio of 80: 12: 8, and this mixing is performed. A slurry was obtained by mixing and dispersing in a polyvinyl alcohol (PVA) resin having the same mass as the powder.
[0019]
This slurry was applied to the entire inner surface of the crucible with a brush to a thickness of 1 to 2 mm, the solvent was evaporated in a dryer at 200 ° C. for 1 hour, and further room temperature in a vacuum heating furnace under a nitrogen gas atmosphere of 400 Pa. The temperature was raised from 1 to 1800 ° C. in about 4 hours, held for 30 minutes, then cooled and taken out. After that, by performing this series of treatments, a SiC-C composite material is uniformly formed at a depth of 2 mm from the surface of the graphite base material in the depth direction, and BN is dispersedly formed at a depth of 20 μm on the surface layer. The An ingot was put into this crucible and heated to 1600 ° C. to perform a cast iron dissolution test.
[0020]
FIG. 1 shows a polarizing microscope photograph of the surface of the SiC-C composite material in which BN is dispersed in the surface layer portion. In FIG. 1, the part that appears white is BN. FIG. 1 shows that BN is dispersed and formed on the surface. Thus, since it can be made to disperse | distribute and not be condensed in part, the release property which BN has in a SiC-C composite material can fully be expressed, and adhering of a to-be-processed object is suppressed.
[0021]
(Example 2)
Except mixing the mass ratio of Si powder (average particle size 40 μm), B 4 C powder (average particle size 30 μm) and BN powder (particle size 1-5 μm) in the slurry at a ratio of 80:10:10 A graphite substrate of the same quality as in Example 1 was processed into the same shape, and a SiC-C composite material was formed on the inner surface of the crucible with a thickness of 1 mm from the surface of the graphite substrate in the same procedure as in Example 1, and 30 μm from the surface. In the same manner as in Example 1, an ingot was placed and a dissolution test was performed.
[0022]
(Example 3)
Except mixing the mass ratio of Si powder (average particle size 40 μm), B 4 C powder (average particle size 30 μm) and BN powder (particle size 1 to 5 μm) in the slurry at a ratio of 80: 15: 5 A graphite substrate of the same quality as in Example 1 is processed into the same shape, and a SiC-C composite material is formed on the inner surface of the crucible with a thickness of 3 mm from the surface of the graphite substrate by the same procedure as in Example 1, and 15 μm from the surface. In the same manner as in Example 1, an ingot was placed and a dissolution test was performed.
[0023]
(Comparative Example 1)
Without adding BN powder, the mass ratio of Si powder (average particle size 40 μm) and B 4 C powder (average particle size 30 μm) in the slurry was mixed at a ratio of 80:20, and the same quality graphite as in Example 1 The base material was processed into the same shape, and a SiC-C composite material was formed on the inner surface of the crucible with a thickness of 3 mm from the surface of the graphite base material in the same procedure as in Example 1. The dissolution test was conducted.
[0024]
In spite of 35 melting tests, the crucibles of Examples 1 to 3 had almost no cast iron fixation, and no occurrence of problems causing crucible replacement such as crucible cracking or corrosion due to cast iron was confirmed. It was. On the other hand, in the crucible of Comparative Example 1 in which BN was not dispersedly formed on the surface, the cast iron was fixed in two to three dissolution tests. In this way, a SiC-C composite material is formed on the surface layer of the graphite base material, and further, BN is dispersed and formed continuously from the SiC-C composite material on the surface layer, so that BN is not dispersedly formed. Then, in addition to oxidation resistance, it can have the characteristic which was excellent also in the mold release property of the to-be-processed object.
[0025]
【The invention's effect】
The present invention is configured as described above, and can easily and inexpensively form a silicon carbide-carbon composite material in which boron nitride is dispersed at any location on the surface of the graphite base material. Smooth coated surface with excellent resistance, wear resistance and oxidation resistance can be formed. Moreover, the life extension effect of carbon products for various heat treatments, such as spacers for hot pressing dies, crucibles for metal melting and ceramic sintering, dies for continuous casting, casting molds, etc., can be obtained.
[Brief description of the drawings]
FIG. 1 is a view showing a polarizing microscope photograph of the surface of a BN-dispersed SiC-C composite material.

Claims (8)

炭素基材の表層に炭化ケイ素−炭素複合層が、前記炭素基材表面から深さ方向に均一に1mm以上の厚みで形成されてなり、
前記炭化ケイ素−炭素複合層は表面に凹みを有し、前記凹みに窒化ホウ素が入り込むように、前記炭化ケイ素−炭素複合層の前記表面に前記窒化ホウ素が分散してなる窒化ホウ素分散炭化ケイ素−炭素複合材。
On the surface layer of the carbon substrate , a silicon carbide-carbon composite layer is formed with a thickness of 1 mm or more uniformly in the depth direction from the surface of the carbon substrate ,
The silicon carbide-carbon composite layer has a recess on the surface, and boron nitride-dispersed silicon carbide formed by dispersing the boron nitride on the surface of the silicon carbide-carbon composite layer so that boron nitride enters the recess. Carbon composite material.
前記炭化ケイ素−炭素複合層において、前記窒化ホウ素の分散深さが前記表面から30μm以下の厚みである請求項1に記載の窒化ホウ素分散炭化ケイ素−炭素複合材。 The silicon carbide - the carbon composite layer, before Symbol boron nitride dispersed silicon carbide according to claim 1 dispersed depth of boron nitride is less thick 30μm from the surface - carbon composite material. 前記炭素基材表面における窒化ホウ素の占める割合が30〜80%である請求項1または2に記載の窒化ホウ素分散炭化ケイ素−炭素複合材。  3. The boron nitride-dispersed silicon carbide-carbon composite material according to claim 1, wherein a proportion of boron nitride in the surface of the carbon base material is 30 to 80%. 窒化ホウ素粉末5〜15質量%、ケイ素粉末60〜80質量%と、炭化ホウ素粉末との合計が100質量%となる混合粉末と、溶剤からなるスラリーを、炭素基材の表面に塗布し、乾燥、熱処理して、前記炭素基材の表層に、表面に凹みを有した炭化ケイ素−炭素複合層が形成してなり、前記凹みに窒化ホウ素が入り込むように、前記炭化ケイ素−炭素複合層の前記に窒化ホウ素が分散してなる窒化ホウ素分散炭化ケイ素−炭素複合材の製造方法Boron powder 5-15 wt% nitride, and 60 to 80 wt% silicic containing powder, and mixed powder sum of the boron carbide powder is 100 mass%, a slurry consisting of a solvent, on the surface of the carbon substrate The silicon carbide-carbon is coated, dried, and heat-treated to form a silicon carbide-carbon composite layer having a dent on the surface of the carbon substrate, and boron nitride enters the dent. table surface boron nitride dispersed silicon carbide, boron nitride is dispersed in the composite layer - the method of producing a carbon composite material. 前記スラリーが、前記混合粉末と、前記混合粉末の質量の50〜100%の質量の溶剤からなる請求項4に記載の窒化ホウ素分散炭化ケイ素−炭素複合材の製造方法The method for producing a boron nitride-dispersed silicon carbide-carbon composite according to claim 4, wherein the slurry comprises the mixed powder and a solvent having a mass of 50 to 100% of the mass of the mixed powder. 前記熱処理が0.1MPa以下の非酸化雰囲気下で、1500℃以上である請求項4に記載の窒化ホウ素分散炭化ケイ素−炭素複合材の製造方法The method for producing a boron nitride-dispersed silicon carbide-carbon composite material according to claim 4, wherein the heat treatment is performed at 1500 ° C. or higher in a non-oxidizing atmosphere of 0.1 MPa or lower. 前記炭化ケイ素−炭素複合層は、炭素基材表面から深さ方向に均一に1mm以上の厚みで形成され、前記窒化ホウ素の分散深さが表面から30μm以下の厚みである請求項4乃至6のいずれかに記載の窒化ホウ素分散炭化ケイ素−炭素複合材の製造方法The silicon carbide-carbon composite layer is uniformly formed in a depth direction from the surface of the carbon substrate with a thickness of 1 mm or more, and a dispersion depth of the boron nitride is a thickness of 30 μm or less from the surface. The manufacturing method of the boron nitride dispersion | distribution silicon carbide-carbon composite material in any one . 各種熱処理用治具として用いられる請求項1乃至のいずれかに記載の窒化ホウ素分散炭化ケイ素−炭素複合材。The boron nitride-dispersed silicon carbide-carbon composite material according to any one of claims 1 to 3 , which is used as a jig for various heat treatments.
JP34996899A 1999-12-09 1999-12-09 Boron nitride dispersed silicon carbide-carbon composite Expired - Lifetime JP4170544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34996899A JP4170544B2 (en) 1999-12-09 1999-12-09 Boron nitride dispersed silicon carbide-carbon composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34996899A JP4170544B2 (en) 1999-12-09 1999-12-09 Boron nitride dispersed silicon carbide-carbon composite

Publications (2)

Publication Number Publication Date
JP2001163671A JP2001163671A (en) 2001-06-19
JP4170544B2 true JP4170544B2 (en) 2008-10-22

Family

ID=18407341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34996899A Expired - Lifetime JP4170544B2 (en) 1999-12-09 1999-12-09 Boron nitride dispersed silicon carbide-carbon composite

Country Status (1)

Country Link
JP (1) JP4170544B2 (en)

Also Published As

Publication number Publication date
JP2001163671A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
JP4261130B2 (en) Silicon / silicon carbide composite material
WO1992007806A1 (en) Refractory materials bonded by a sialon matrix and method of preparation
JP4170544B2 (en) Boron nitride dispersed silicon carbide-carbon composite
JP4037969B2 (en) Graphite products using boron carbide-coated silicon carbide-carbon composites
CA1152536A (en) Dense sintered silicon carbide ceramic
JP3522810B2 (en) Carbon-ceramic composite and method for producing the same
US3287478A (en) Method of sintering aluminum nitride refractories
JP4166350B2 (en) Oxidation-resistant boron carbide-silicon carbide composite carbon material, sintering crucible using the same, vacuum evaporation crucible, and high-temperature firing jig
JP4024946B2 (en) Mechanical seal member
JP3297547B2 (en) Method for producing silicon carbide sintered body
JPH10212182A (en) Carbon-silicon carbide composite material and its production
JPH10253259A (en) Material of roller for roller hearth furnace and manufacture thereof
JP2004002133A (en) Production process of carbon/silicon carbide composite material, and carbon/silicon carbide composite material by the production process
JP6309526B2 (en) Carbon material and jig for heat treatment using the carbon material
JPS6058190B2 (en) Method for manufacturing silicon nitride-silicon carbide molded body
JP3966911B2 (en) In-furnace members and jigs
JPS63242969A (en) Silicon carbide base ceramics
JPH11180788A (en) Oxidation resistant carbon-silicon carbide composite material and heating part using the same
JP3923622B2 (en) Metal-ceramic composite material and manufacturing method thereof
JP4342143B2 (en) Method for producing Si-SiC material
JPH0571541B2 (en)
JPH0333676B2 (en)
JPH08157275A (en) Method for joining silicon carbide sintered compacts to each other
JPH03223192A (en) Sintered material bonded with silicon nitride of reaction-sintering type having excellent resistance to welding of metallic melt and its production
JP2000026177A (en) Production of silicon-silicon carbide ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4170544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term