JPH08157275A - Method for joining silicon carbide sintered compacts to each other - Google Patents

Method for joining silicon carbide sintered compacts to each other

Info

Publication number
JPH08157275A
JPH08157275A JP32148894A JP32148894A JPH08157275A JP H08157275 A JPH08157275 A JP H08157275A JP 32148894 A JP32148894 A JP 32148894A JP 32148894 A JP32148894 A JP 32148894A JP H08157275 A JPH08157275 A JP H08157275A
Authority
JP
Japan
Prior art keywords
silicon
silicon carbide
carbon
joining
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32148894A
Other languages
Japanese (ja)
Inventor
Hiroshi Takai
博史 高井
Hisakiyo Hoshino
久清 星野
Koji Okuda
浩司 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP32148894A priority Critical patent/JPH08157275A/en
Publication of JPH08157275A publication Critical patent/JPH08157275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To improve the strength, heat resistance and thermal shock resistance of a joined part by holding specified sheetlike carbon between silicon carbide sintered compacts contg. free silicon in at least one of them and heating them after pressing in a direction perpendicular to faces to be joined. CONSTITUTION: Sheetlike carbon having several ten to several hundred μm thickness and a bulk density of <=1.9 is held between silicon carbide sintered compacts contg. free silicon in at least one of them and they are fixed by pressing under >=1kg/cm<2> pressure in a direction perpendicular to faces of the sintered compacts to be joined. When silicon is fed from the outside at the time of heating, the sintered compacts are heated to a temp. above the melting temp. of free silicon or that of the fed silicon in a non-oxidizing atmosphere. When silicon is not fed from the outside, they are heated to a temp. above the melting temp. of free silicon in a nonoxidizing atmosphere. The sheetlike carbon is allowed to react with molten silicon to form silicon carbide contg. free silicon. At the same time, the carbon is allowed to react with silicon carbide in the faces of the sintered compacts to be joined and sintering is carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【0001】[0001]

【0002】[0002]

【産業上の利用分野】本発明は、炭化珪素質焼結体同士
の接合方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining silicon carbide-based sintered bodies together.

【0003】[0003]

【0002】[0002]

【0004】[0004]

【従来の技術】ファインセラミックスのうち、炭化珪素
質焼結体は、一般に高温強度、熱伝導性、耐熱衝撃性等
に優れており、高温構造材料としての適用が期待され、
例えば自動車用タービン、熱交換器、各種熱処理炉用マ
ッフル等への応用開発が進められている。これら各種用
途に、炭化珪素質焼結体を利用して、その機能を充分に
発揮させるためには、製造工程でこれら焼結体相互を接
合させることが必要になってくる。
2. Description of the Related Art Among fine ceramics, a silicon carbide sintered body is generally excellent in high temperature strength, thermal conductivity, thermal shock resistance, etc., and is expected to be applied as a high temperature structural material.
For example, application development is underway for automobile turbines, heat exchangers, muffles for various heat treatment furnaces, and the like. In order to fully utilize the functions of the silicon carbide based sintered body for these various uses, it becomes necessary to join these sintered bodies together in the manufacturing process.

【0005】[0005]

【0003】炭化珪素質焼結体同士の接合方法は、例え
ば特公昭58-6714 号(以下、従来例1という)、米国特
許第2319323 号(以下、従来例2という)、米国特許第
2907972 号(以下、従来例3という)、特公平2-33670
号(以下、従来例4という)及び特公昭60-47229号(以
下、従来例5という)に示されている。
A method for joining silicon carbide-based sintered bodies to each other is, for example, Japanese Patent Publication No. 58-6714 (hereinafter referred to as Conventional Example 1), US Pat. No. 2319323 (hereinafter referred to as Conventional Example 2), and US Pat.
No. 2907972 (hereinafter referred to as Conventional Example 3), Japanese Patent Publication No. 2-33670
(Hereinafter referred to as Conventional Example 4) and Japanese Examined Patent Publication No. 60-47229 (hereinafter referred to as Conventional Example 5).

【0006】[0006]

【0004】従来例1は、金属粉末珪素または珪素合金
粉末と有機バインダーとを混合し、その糊状混合物を用
いて、焼結体同士を仮接着した後、1300〜1550℃に加熱
して熔着させる接合方法である。
In the conventional example 1, metal powder silicon or silicon alloy powder is mixed with an organic binder, and the paste-like mixture is used to temporarily bond the sintered bodies together, and then heated to 1300 to 1550 ° C. to melt. It is a joining method of wearing.

【0007】[0007]

【0005】従来例2は、炭素及びカゼインのような炭
化可能な粘結材からなるパテで、焼結体同士を仮接着し
た後、珪素粉末の存在下で約1800℃以上に加熱し、これ
により珪素が接合部に浸入し、接合部を炭化珪素化する
と共に、過剰の珪素と共存した組織状態にすることによ
って接合する方法である。
Conventional Example 2 is a putty made of a carbonizable binder such as carbon and casein, which is obtained by temporarily adhering sintered bodies to each other and then heating them to about 1800 ° C. or higher in the presence of silicon powder. By this method, silicon is infiltrated into the joint portion to convert the joint portion into silicon carbide, and at the same time, the joint state is brought into a state of coexistence with excess silicon.

【0008】[0008]

【0006】従来例3及び4は、炭化珪素粉末と、黒
鉛、ピッチコークス、木炭等のような炭素粉末とを、炭
素化可能な熱硬化性樹脂(例えばフェノール樹脂)及び
有機バインダー(例えばポリエチレングリコール)でペ
ースト状に混練し、接合部に配置し、珪素の存在下で15
00℃以上に加熱することによって、溶融珪素または珪素
蒸気と接合層中の炭素成分とを反応させ、炭化珪素と過
剰の珪素が共存した組織状態にすることによって接合す
る方法である。
In the conventional examples 3 and 4, a thermosetting resin (for example, phenol resin) and an organic binder (for example, polyethylene glycol) capable of carbonizing silicon carbide powder and carbon powder such as graphite, pitch coke, charcoal, etc. ) In paste form and place at the joint and in the presence of silicon 15
It is a method of joining by causing the molten silicon or silicon vapor to react with the carbon component in the bonding layer by heating to 00 ° C. or higher to form a texture state in which silicon carbide and excess silicon coexist.

【0009】[0009]

【0007】従来例5は、珪素粉末と、炭化可能な熱硬
化性樹脂(例えばフェノール樹脂やフラン樹脂)とをペ
ースト状に混合し、接合部に配置し、約1400℃で加熱す
ることによって炭化珪素を生成させると共に、過剰の珪
素を共存させた状態で接合する方法である。
In Conventional Example 5, silicon powder and a thermosetting resin capable of being carbonized (for example, phenol resin or furan resin) are mixed in a paste form, placed at a joint, and heated at about 1400 ° C. This is a method of forming silicon and joining in the presence of excess silicon.

【0010】[0010]

【0008】[0008]

【0011】[0011]

【発明が解決しようとする課題】従来例1は、反応焼結
法による接合でないために、接合部が珪素層のみで構成
される。従って、接合部の強度、耐熱性、耐熱衝撃性等
の各種特性は、被接合素材のそれらに比べて、低下して
しまう。
In the conventional example 1, since the joining is not performed by the reaction sintering method, the joining portion is composed of only the silicon layer. Therefore, various properties such as strength, heat resistance, and thermal shock resistance of the bonded portion are deteriorated as compared with those of the materials to be bonded.

【0012】[0012]

【0009】従来例2は、反応焼結法を利用したもので
あるが、炭素成分のみを接合部に配置し、珪素を浸入さ
せ炭化珪素を生成させる方法であり、この場合、接合部
に配置された炭素がち密化しやすく、珪素が思うように
炭素内部に浸入せず、珪素化されない未反応炭素部が接
合層中に残ってしまい、接合部特性を低下させる原因と
なる。
The conventional example 2 utilizes the reaction sintering method, but it is a method of arranging only the carbon component in the joint portion and infiltrating silicon to generate silicon carbide. In this case, it is arranged in the joint portion. The formed carbon is likely to be densified, silicon does not infiltrate into the carbon as expected, and unreacted carbon portion which is not silicified remains in the bonding layer, which causes deterioration of the characteristics of the bonding portion.

【0013】[0013]

【0010】従来例3及び4は、従来例2に対し、接合
ペースト剤に炭化珪素粒子を添加することにより、溶融
珪素の流動性をよくし、また炭素と珪素の反応を促進さ
せ、未反応炭素が残らないようにしたものであるが、炭
化珪素、炭素等の粒径、各種原料の配合比、混合度合等
の調整がうまくできていないと、珪素流動に影響を与
え、炭化珪素化しにくく、また、例えできたとしても、
非常に手間のかかる方法でありコストも高くつく。
In Conventional Examples 3 and 4, by adding silicon carbide particles to the bonding paste agent as compared with Conventional Example 2, the fluidity of molten silicon is improved and the reaction between carbon and silicon is promoted so that unreacted. Although carbon is prevented from remaining, if the particle size of silicon carbide, carbon, etc., the mixing ratio of various raw materials, the degree of mixing, etc. are not adjusted properly, silicon flow will be affected and it will be difficult to convert to silicon carbide. , And even if it could be compared,
This is a very time-consuming method and costly.

【0014】[0014]

【0011】従来例5は、従来例2,3及び4のように
珪素を外から浸入させる方法ではなく、接合ペースト剤
に混合する方法で、珪素の流動性を考慮しなくてもよい
が、やはり、珪素粉末の粒径、樹脂との配合比、混合度
合等の調整が困難で手間でコストもかかり、また、従来
例3及び4に比べ接合条件をうまくコントロールしなけ
れば、例え接合ペースト剤中の炭素成分が珪化しても互
いに焼結している状態を得るのは難しい。また、溶融珪
素は固化するときに体積膨張を起こすため、珪素ブリー
ディングという半円状の珪素体が表面上に出る現象があ
り、珪素が接合ペースト剤中に混合されているこの方法
では、特に熱処理物が通るマッフルの接合において、接
合部の内径側に珪素ブリーディングが生じ易く、熱処理
物を傷つける等の問題が生じる。また、界面にも珪素の
層ができ易く、接合部特性の低下原因となる。
The conventional example 5 is not a method of infiltrating silicon from the outside as in the conventional examples 2, 3 and 4, but a method of mixing with a bonding paste agent, and it is not necessary to consider the fluidity of silicon. After all, it is difficult to adjust the particle size of the silicon powder, the compounding ratio with the resin, the degree of mixing, etc., which is troublesome and costly, and if the bonding conditions are not well controlled as compared with the conventional examples 3 and 4, the bonding paste agent Even if the carbon components therein are silicified, it is difficult to obtain a state in which they are sintered together. Further, since molten silicon causes volume expansion when solidifying, there is a phenomenon that a semicircular silicon body called silicon bleeding appears on the surface. In this method in which silicon is mixed in the bonding paste agent, particularly heat treatment is performed. When joining muffles through which objects pass, silicon bleeding is likely to occur on the inner diameter side of the joined parts, and problems such as damage to heat-treated objects occur. In addition, a silicon layer is easily formed on the interface, which causes deterioration of the characteristics of the bonded portion.

【0015】[0015]

【0012】従来例2,3,4及び5は、接合剤に熱硬
化性樹脂のような炭化可能な有機物質を使用する場合、
接合過程で硬化処理や炭化処理等の作業が必要で手間で
ある。
In the conventional examples 2, 3, 4 and 5, when a carbonizable organic substance such as a thermosetting resin is used as the bonding agent,
Work such as hardening treatment and carbonization treatment is required in the joining process, which is troublesome.

【0016】[0016]

【0013】従来例の全ては、接合剤をペースト状で使
用する場合、被接合素材間に接合剤を挟み込むとき、は
み出しが生じ、拭き取り作業を行わないと、接合後その
はみ出し部も炭化珪素化されてしまうので、非常に除去
しにくい状態となる。また、接合剤の量は、接合条件に
影響するため、一定量を供給する必要があるが、ペース
ト剤であると被接合素材間への介在量が調整しにくく、
結果として接合体性能のばらつきの原因となり、信頼性
の点で問題となる。
In all of the conventional examples, when the bonding agent is used in the form of a paste, protrusion occurs when the bonding agent is sandwiched between the materials to be bonded, and if the wiping work is not performed, the protruding portion is also made of silicon carbide after bonding. Therefore, it becomes very difficult to remove. In addition, the amount of the bonding agent affects the bonding conditions, so it is necessary to supply a fixed amount, but if it is a paste agent, the amount of interposition between the materials to be bonded is difficult to adjust,
As a result, it causes variations in the performance of the bonded body, which causes a problem in terms of reliability.

【0017】[0017]

【0014】[0014]

【0018】[0018]

【問題点を解決するための手段】本発明の請求項1にお
いては、少なくとも片方が遊離珪素を含む炭化珪素質焼
結体同士の接合方法であって、かさ密度(重量を固体部
の体積と開いたポアーの体積と閉じたポアーの体積とを
加えた体積で除したもの)が1.9 以下のシート状炭素を
炭化珪素質焼結体間に挟み込み、炭化珪素質焼結体の接
合面に垂直な方向に加圧を行い固定した後、外部から珪
素を供給する場合、遊離珪素または外部から供給された
珪素の溶融温度以上に加熱し、外部から珪素を供給しな
い場合、遊離珪素の溶融温度以上に加熱することによっ
て、シート状炭素を溶融した珪素と反応させて遊離珪素
含有炭化珪素化すると共に、炭化珪素質焼結体の接合面
の炭化珪素と反応焼結させることを特徴とする。
According to a first aspect of the present invention, there is provided a method of joining silicon carbide-based sintered bodies, at least one of which contains free silicon, wherein the bulk density (weight is defined as the volume of the solid portion). Sheet carbon of 1.9 or less (divided by the volume of open pores and volume of closed pores) is sandwiched between silicon carbide sintered bodies and perpendicular to the bonding surface of the silicon carbide sintered bodies. After pressing and fixing in different directions, when supplying silicon from the outside, heat it to the melting temperature of free silicon or silicon supplied from the outside or more, and if not supplying silicon from the outside, melt temperature of free silicon or more It is characterized in that the sheet-shaped carbon is reacted with the molten silicon to be converted into free silicon-containing silicon carbide by being heated to the above, and is also reacted and sintered with the silicon carbide on the joint surface of the silicon carbide sintered body.

【0019】[0019]

【0015】また請求項2においては、遊離珪素を含ま
ない炭化珪素質焼結体同士の接合方法であって、かさ密
度が1.9 以下のシート状炭素を炭化珪素質焼結体間に挟
み込み、炭化珪素質焼結体の接合面に垂直な方向に加圧
を行い固定した後、外部から珪素を供給し、珪素の溶融
温度以上に加熱することによって、シート状炭素を溶融
した珪素と反応させて遊離珪素含有炭化珪素化すると共
に、炭化珪素質焼結体の接合面の炭化珪素と反応焼結さ
せることを特徴とする。
According to a second aspect of the present invention, there is provided a method of joining silicon carbide-based sintered bodies containing no free silicon, wherein sheet carbon having a bulk density of 1.9 or less is sandwiched between the silicon carbide-based sintered bodies. After pressing and fixing in a direction perpendicular to the bonding surface of the silicon-based sintered body, silicon is supplied from the outside and heated above the melting temperature of silicon to cause the sheet carbon to react with the molten silicon. It is characterized in that it is converted to silicon carbide containing free silicon and is reacted and sintered with silicon carbide on the joint surface of the silicon carbide based sintered body.

【0020】[0020]

【0016】さらに請求項3においては、加圧はシート
状炭素が炭化珪素質焼結体の接合面に倣う圧力以上で、
かつ、加圧により変化するシート状炭素のかさ密度が1.
9 以下になる圧力以下であることを特徴とする。
Further, in the third aspect, the pressure is equal to or higher than the pressure at which the sheet-like carbon follows the joint surface of the silicon carbide sintered body,
Moreover, the bulk density of the sheet-like carbon that changes with pressure is 1.
It is characterized in that the pressure is 9 or less.

【0021】[0021]

【0017】本発明において、シート状炭素としては、
かさ密度が1.9 以下のもので、好ましくは0.8 〜1.5 が
よく、1.5 より大きいと珪素の流動性が悪くなってくる
ため、接合時間を長くしなければ、未反応炭素部が残
る。かさ密度が1.9 を越えると、未反応炭素部が残る場
合がほとんどで使用できない。逆に0.8 より小さいと、
接合はできるが、接合層内部での遊離珪素割合が増え接
合特性が低下してくる。また、シート状炭素の厚みとし
ては、数十〜数百μmが適当で、被接合素材の接合面同
士を突き合わせた時に生じる隙間に応じて選べばよい。
しかし、あまり厚くなりすぎると、珪素が内部に浸透す
るのに時間がかかるため接合時間を長くしなければなら
なくなる。シート状炭素は、被接合素材にシート状炭素
を挟み込んだ際、接合面のすべてに倣う弾力性と柔軟性
が必要である。シート状炭素の組織状態としては、当
然、気孔が均一に分散していることが重要であり、ま
た、好ましくは炭素が層状(雲母状)または繊維状ある
いはフェルト状(海綿体状)になっていることが望まし
い。これは、接合後、接合部内の炭化珪素の組織に影響
し、接合特性を向上させる。例えば、膨張化処理した黒
鉛粉末をロール圧延によって加圧成型したシートは、雲
母状になっている。これらのシート状炭素は、市販で低
コストで購入できるものである。
In the present invention, the sheet carbon is
The bulk density is 1.9 or less, preferably 0.8 to 1.5, and when it is more than 1.5, the fluidity of silicon is deteriorated. Therefore, if the bonding time is not lengthened, unreacted carbon remains. If the bulk density exceeds 1.9, the unreacted carbon part may remain and cannot be used in most cases. Conversely, if less than 0.8,
Although bonding is possible, the proportion of free silicon inside the bonding layer increases and the bonding characteristics deteriorate. Also, the thickness of the sheet-like carbon is suitably several tens to several hundreds of μm, and may be selected according to the gap generated when the joining surfaces of the materials to be joined are butted against each other.
However, if the thickness is too thick, it takes time for silicon to penetrate into the interior, so that the bonding time must be lengthened. The sheet-like carbon is required to have elasticity and flexibility that imitate all the joining surfaces when the sheet-like carbon is sandwiched between the materials to be joined. Naturally, it is important that the pores of the carbon sheet are uniformly dispersed, and preferably the carbon is layered (mica-like) or fibrous or felt-like (cavernous). Is desirable. This influences the structure of the silicon carbide in the joint after joining and improves the joining characteristics. For example, a sheet obtained by press-molding expanded graphite powder by roll rolling has a mica shape. These sheet-like carbons are commercially available and can be purchased at low cost.

【0022】[0022]

【0018】接合時、接合面に垂直方向に与える加圧
は、シート状炭素が被接合素材の接合面に倣う圧力以上
で、例えば市販のシート状炭素の場合で1kg /cm2 以上
であればよい。それ以下であると、シート状炭素と被接
合素材との接触状態が悪くなって隙間が発生し、接合が
できたとしても、隙間部で珪素層ができ接合特性が低下
する。また、あまり加圧力が強すぎても、シート状炭素
がち密化してしまい、加圧後のシート状炭素のかさ密度
が1.9 より大きくなり、接合時に硅素の流動を妨げる原
因となり接合部に未反応炭素を残すおそれがあるので、
それ以下の加圧力でなければならない。例えば市販のシ
ート状炭素で、15Kg/cm2 以下であればよい。
During joining, the pressure applied in the direction perpendicular to the joining surface is not less than the pressure at which the sheet-like carbon follows the joining surface of the material to be joined, for example, in the case of commercially available sheet-like carbon, 1 kg / cm 2 or more. Good. When it is less than that, a contact state between the sheet-like carbon and the material to be joined is deteriorated and a gap is generated, and even if joining is possible, a silicon layer is formed in the gap portion and the joining characteristic is deteriorated. Even if the applied pressure is too strong, the sheet-like carbon becomes dense and the bulk density of the sheet-like carbon after pressurization becomes larger than 1.9, which causes the flow of the silicon to be impeded at the time of joining and does not react with the joint. Because it may leave carbon
The pressure should be less than that. For example, commercially available sheet carbon may be used in an amount of 15 kg / cm 2 or less.

【0023】[0023]

【0019】被接合素材である炭化珪素質焼結体の少な
くとも片方が、遊離珪素含有炭化珪素である場合、シー
ト状炭素に含浸させる珪素を外部から与えなくても、素
材中の遊離珪素を接合部に移動させることによって接合
することもできる。珪素を与える場合は、その珪素の状
態が溶融珪素であっても、珪素蒸気であってもよい。熱
処理用マッフルの接合を行う場合は、パイプの外径側か
ら珪素を与えることが望ましい。
When at least one of the silicon carbide-based sintered bodies, which is the material to be joined, is silicon carbide containing free silicon, the free silicon in the material is joined without giving silicon to impregnate the sheet-like carbon from the outside. It can also be joined by moving it to the section. When silicon is provided, the state of the silicon may be molten silicon or silicon vapor. When joining the muffle for heat treatment, it is desirable to give silicon from the outer diameter side of the pipe.

【0024】[0024]

【0020】接合時の雰囲気は、窒素ガス、アルゴンガ
ス等の非酸化性雰囲気が望ましい。接合温度は、珪素溶
融温度以上でよく、1400℃以上が望ましい。加熱源は、
ヒータ、ランプ加熱のような間接加熱であってもよい
し、素材への通電加熱または誘導加熱のような直接加熱
であってもよい。長尺、大型品の接合には、接合部近傍
のみを局部加熱する方法をとることが望ましい。
The atmosphere during bonding is preferably a non-oxidizing atmosphere such as nitrogen gas or argon gas. The bonding temperature may be the silicon melting temperature or higher, and is preferably 1400 ° C. or higher. The heating source is
It may be indirect heating such as heater or lamp heating, or may be direct heating such as electric heating or induction heating of the material. For joining long and large products, it is desirable to locally heat only the vicinity of the joint.

【0025】[0025]

【0021】[0021]

【0026】[0026]

【作用】上記シート状炭素を用い、接合時に所定の加圧
を与えることにより、加熱接合した際、そのシート状炭
素は硅素が浸透してくることにより、ち密な炭化硅素が
生成されるので、接合部は強固な遊離珪素含有炭化珪素
で構成されることになる。また、シート状炭素は被接合
素材との接触性がよいため、被接合素材と接合部の界面
では、被接合素材の炭化硅素と接合部で生成される炭化
硅素の焼結反応が起こり、強固な界面が得られる。した
がって、接合部は素材と同様な構成でなる組織状態にな
り、接合体の特性は素材特性に比べそれほど劣らないも
のが得られる。
By using the above-mentioned sheet-like carbon and applying a predetermined pressure at the time of joining, when heating and joining, the sheet-like carbon penetrates silicon, so that a dense silicon carbide is produced. The joint will be composed of strong free silicon-containing silicon carbide. In addition, since sheet carbon has good contact with the material to be joined, at the interface between the material to be joined and the joint, the sintering reaction between the silicon carbide of the material to be joined and the silicon carbide generated at the joint occurs, resulting in a strong bond. A smooth interface can be obtained. Therefore, the bonded portion has a structure similar to that of the material, and the characteristics of the bonded body are not so inferior to those of the material.

【0027】[0027]

【0022】[0022]

【0028】[0028]

【実施例】【Example】

<実施例1>φ20/φ13×100mm パイプ形状の遊離珪素
を含む反応焼結炭化硅素(硅素含有量:20重量%以下)
素材をパイプ断面同士を突き合わせて、200mm の接合体
を作製した。シート状炭素は、市販のもので、そのかさ
密度及び厚みを表1のように変化させて接合を行った。
接合時の加圧力は、3kg /cm2 とした。雰囲気は、アル
ゴンガス雰囲気とし、加熱手段としては、炭化硅素素材
を直接加熱する誘導加熱で行った。接合温度及びその保
持時間は、表1に示すとおりである。接合体の評価は、
得られたそのままの接合体を、軸方向を横置きに下部ス
パン100mm で、3点曲げを行い強度評価した。その結果
を表1に示す。
Example 1 φ20 / φ13 × 100 mm Pipe-shaped reaction-bonded silicon carbide containing free silicon (silicon content: 20% by weight or less)
The cross sections of the pipes were butted against each other, and a 200 mm joined body was produced. The sheet-like carbon was commercially available, and its bulk density and thickness were changed as shown in Table 1 to carry out the joining.
The pressure applied during joining was 3 kg / cm 2 . The atmosphere was an argon gas atmosphere, and the heating means was induction heating for directly heating the silicon carbide material. The bonding temperature and the holding time thereof are as shown in Table 1. The evaluation of the zygote is
The strength of the thus-obtained bonded body was evaluated by bending it at three points with the lower span of 100 mm horizontally in the axial direction. Table 1 shows the results.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【0023】表1より、かさ密度が1.9 以下で良好な接
合強度(150MPa以上)が得られていることがわかった。
From Table 1, it was found that good bonding strength (150 MPa or more) was obtained when the bulk density was 1.9 or less.

【0031】[0031]

【0024】本実施例では、炭化珪素質焼結体に含有し
た珪素を使ったが、特に含有珪素が少ない場合は、接合
加熱時に珪素を外部から供給してもよい。
In this embodiment, silicon contained in the silicon carbide sintered body is used. However, if the content of silicon is particularly small, silicon may be supplied from the outside during heating for bonding.

【0032】[0032]

【0025】<実施例2>シート状炭素のかさ密度を1.
0 、厚みを200 μmとし、また、加熱条件は接合温度を
1600℃、保持時間を20min とし、接合時の加圧力を変化
させて、実施例1と同様に接合を行い、3点曲げを行い
強度評価した。その結果を表2に示す。
<Example 2> The bulk density of the sheet-like carbon was 1.
0, the thickness is 200 μm, and the heating condition is the bonding temperature.
Bonding was carried out in the same manner as in Example 1 except that the pressure applied during bonding was changed at 1600 ° C. for 20 minutes and the strength was evaluated by three-point bending. The results are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【0026】表2により、1 〜15kg/cm2 で良好な接合
強度(150MPa以上)が得られ、その範囲外の加圧では強
度が低下することがわかった。
From Table 2, it was found that a good bonding strength (150 MPa or more) was obtained at 1 to 15 kg / cm 2 , and the strength was lowered by the pressurization outside the range.

【0035】[0035]

【0027】<実施例3>用いた素材は、遊離珪素を含
まない反応焼結炭化硅素で、その寸法及び接合体寸法
は、実施例1と同様である。シート状炭素は、かさ密度
1.0 、厚み200 μmのものを用いた。硅素を含まない炭
化硅素素材の接合では、接合加熱時に硅素を外部から供
給する必要がある。本実施例では、硅素粒(約1g)を加
熱前に接合部の外径側に配置しておき、通電加熱及び誘
導加熱の併用で炭化硅素素材を直接1400℃以上に加熱す
ることで溶融硅素にし、接合部へ浸透させる手段を採っ
た。加熱条件は接合温度を1600℃、保持時間を20min と
した。その他、実施例1と同様に接合及び評価を行っ
た。その結果、接合強度は、約170MPaで良好な接合体で
あった。ちなみに、供給する硅素を内径側に配置して
も、同様な結果が得られた。
<Embodiment 3> The material used is a reaction-sintered silicon carbide containing no free silicon, and the dimensions and the dimensions of the bonded body are the same as in Embodiment 1. Sheet carbon has bulk density
A film having a thickness of 1.0 and a thickness of 200 μm was used. In the case of joining silicon carbide materials that do not contain silicon, it is necessary to supply silicon from the outside at the time of heating for joining. In this example, silicon grains (about 1 g) were placed on the outer diameter side of the joint before heating, and the silicon carbide material was directly heated to 1400 ° C. or higher by both electric heating and induction heating to melt the molten silicon. Then, a means for permeating the joint was adopted. The heating conditions were a joining temperature of 1600 ° C and a holding time of 20 min. In addition, joining and evaluation were performed in the same manner as in Example 1. As a result, the joint strength was about 170 MPa, which was a good joint. By the way, similar results were obtained even when the silicon to be supplied was arranged on the inner diameter side.

【0036】[0036]

【0028】<実施例4>炭化硅素素材の種類及び寸法
は、実施例1と同様のものを用い、また、シート状炭素
は実施例2と同様なものを用い、加熱を雰囲気炉で行っ
た。接合時の加圧力は、5 〜10kg/cm2 とした。雰囲気
は、窒素ガスまたはアルゴンガス雰囲気とした。加熱条
件は接合温度を1600℃、保持時間を20min とした。強度
評価の結果、雰囲気にかかわらず、約200MPaの強度を得
た。
<Example 4> The kind and size of the silicon carbide material were the same as those in Example 1, and the sheet carbon was the same as that in Example 2, and the heating was performed in an atmosphere furnace. . The pressure applied during joining was 5 to 10 kg / cm 2 . The atmosphere was a nitrogen gas or argon gas atmosphere. The heating conditions were a joining temperature of 1600 ° C and a holding time of 20 min. As a result of the strength evaluation, a strength of about 200 MPa was obtained regardless of the atmosphere.

【0037】[0037]

【0029】[0029]

【0038】[0038]

【発明の効果】以上のように、請求項1に記載した発明
によれば、従来技術で用いられている粉末剤及び粉末ペ
ースト化剤に比べ、シート状炭素は、接合剤準備に高度
な技術やコストがかからず、また、接合時に塗布量の調
整や、被接合素材間に接合剤を挟み込んだ時の剤のはみ
出し除去等の作業が不必要で、簡単に接合ができる。ま
た、このシート状炭素を用いることによって、素材接合
面が、多少粗面である場合や、大面積である場合に特に
有効に接合が行うことができる。
As described above, according to the invention described in claim 1, the sheet-like carbon is a high technology for preparing the bonding agent as compared with the powder agent and the powder pasting agent used in the prior art. It does not require any cost, and does not require work such as adjusting the coating amount at the time of joining or removing the agent when the agent is sandwiched between the materials to be joined. Further, by using this sheet-shaped carbon, the joining can be performed particularly effectively when the material joining surface is somewhat rough or has a large area.

【0039】[0039]

【0030】また特に、請求項2に記載した発明によれ
ば、遊離珪素を含まない炭化珪素質焼結体に対しても、
遊離珪素含有炭化珪素の接合と同様に接合強度の大きい
良好な接合体を得ることができる。
Further, in particular, according to the invention described in claim 2, even for a silicon carbide-based sintered body containing no free silicon,
Similar to the joining of free silicon-containing silicon carbide, a good joined body having a large joining strength can be obtained.

【0040】[0040]

【0031】さらに特に、請求項3に記載した発明によ
れば、接合時の加圧力を適度にすることによって、接合
層部は炭化珪素がち密な遊離珪素含浸炭化珪素ができ、
しかも、シート状炭素が素材接合面に良好に倣うため、
接合界面でも炭化珪素がち密な遊離珪素含浸炭化珪素が
でき、強固な接合部を得ることができる。
More particularly, according to the invention described in claim 3, by appropriately adjusting the pressure applied at the time of bonding, the bonding layer portion can be made of silicon carbide having a dense free silicon-impregnated silicon carbide,
Moreover, since the sheet-like carbon closely follows the material joining surface,
Even at the bonding interface, dense free silicon-impregnated silicon carbide can be formed, and a strong bonded portion can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも片方が遊離珪素を含む炭化珪
素質焼結体同士の接合方法であって、かさ密度が1.9 以
下のシート状炭素を前記炭化珪素質焼結体間に挟み込
み、前記炭化珪素質焼結体の接合面に垂直な方向に加圧
を行い固定した後、外部から珪素を供給する場合、前記
遊離珪素または外部から供給された珪素の溶融温度以上
に加熱し、外部から珪素を供給しない場合、前記遊離珪
素の溶融温度以上に加熱することによって、前記シート
状炭素を溶融した珪素と反応させて遊離珪素含有炭化珪
素化すると共に、前記炭化珪素質焼結体の接合面の炭化
珪素と反応焼結させる炭化珪素質焼結体同士の接合方
法。
1. A method for joining silicon carbide-based sintered bodies, at least one of which contains free silicon, wherein sheet-like carbon having a bulk density of 1.9 or less is sandwiched between the silicon carbide-based sintered bodies. When silicon is supplied from the outside after pressing and fixing in a direction perpendicular to the bonding surface of the sintered material, the silicon is heated from above the melting temperature of the free silicon or the silicon supplied from the outside to remove the silicon from the outside. When not supplied, the sheet-shaped carbon is reacted with the molten silicon to form free silicon-containing silicon carbide by heating the free silicon to a temperature higher than the melting temperature of the free silicon, and carbonization of the bonding surface of the silicon carbide sintered body is performed. A method for joining silicon carbide-based sintered bodies to each other by reacting and sintering with silicon.
【請求項2】 遊離珪素を含まない炭化珪素質焼結体同
士の接合方法であって、かさ密度が1.9 以下のシート状
炭素を前記炭化珪素質焼結体間に挟み込み、前記炭化珪
素質焼結体の接合面に垂直な方向に加圧を行い固定した
後、外部から珪素を供給し、前記珪素の溶融温度以上に
加熱することによって、前記シート状炭素を溶融した珪
素と反応させて遊離珪素含有炭化珪素化すると共に、前
記炭化珪素質焼結体の接合面の炭化珪素と反応焼結させ
る炭化珪素質焼結体同士の接合方法。
2. A method of joining silicon carbide-based sintered bodies containing no free silicon, wherein sheet-like carbon having a bulk density of 1.9 or less is sandwiched between the silicon carbide-based sintered bodies, and the silicon carbide-based sintered body is sintered. After pressing and fixing in a direction perpendicular to the joint surface of the united body, silicon is supplied from the outside and heated above the melting temperature of the silicon to cause the sheet carbon to react with the melted silicon and release. A method for joining silicon carbide-based sintered bodies to each other, wherein silicon carbide containing silicon carbide is formed and the silicon carbide-based sintered bodies are reacted and sintered with silicon carbide on the bonding surface.
【請求項3】 前記加圧は、前記シート状炭素が前記炭
化珪素質焼結体の接合面に倣う圧力以上で、かつ、加圧
により変化する前記シート状炭素のかさ密度が1.9 以下
になる圧力以下である請求項1または2に記載の炭化珪
素質焼結体同士の接合方法。
3. The pressure is equal to or higher than the pressure at which the sheet-like carbon follows the joint surface of the silicon carbide sintered body, and the bulk density of the sheet-like carbon which changes due to the pressure is 1.9 or less. The method for joining silicon carbide-based sintered bodies according to claim 1 or 2, wherein the pressure is not more than the pressure.
JP32148894A 1994-11-29 1994-11-29 Method for joining silicon carbide sintered compacts to each other Pending JPH08157275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32148894A JPH08157275A (en) 1994-11-29 1994-11-29 Method for joining silicon carbide sintered compacts to each other

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32148894A JPH08157275A (en) 1994-11-29 1994-11-29 Method for joining silicon carbide sintered compacts to each other

Publications (1)

Publication Number Publication Date
JPH08157275A true JPH08157275A (en) 1996-06-18

Family

ID=18133126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32148894A Pending JPH08157275A (en) 1994-11-29 1994-11-29 Method for joining silicon carbide sintered compacts to each other

Country Status (1)

Country Link
JP (1) JPH08157275A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6863759B2 (en) 2001-01-24 2005-03-08 M Cubed Technologies, Inc. Methods for making composite bonded structures
US20120018074A1 (en) * 2010-05-27 2012-01-26 Toto Ltd. Method for producing ceramic joined body
JP2022078029A (en) * 2017-10-19 2022-05-24 ゼネラル・アトミックス Joining and sealing of pressurised ceramic components

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6863759B2 (en) 2001-01-24 2005-03-08 M Cubed Technologies, Inc. Methods for making composite bonded structures
US20120018074A1 (en) * 2010-05-27 2012-01-26 Toto Ltd. Method for producing ceramic joined body
KR101324952B1 (en) * 2010-05-27 2013-11-08 토토 가부시키가이샤 Method for producing ceramic joined body
US8728261B2 (en) 2010-05-27 2014-05-20 Toto Ltd. Method for producing ceramic joined body
JP2022078029A (en) * 2017-10-19 2022-05-24 ゼネラル・アトミックス Joining and sealing of pressurised ceramic components

Similar Documents

Publication Publication Date Title
JP2011524466A (en) Metal-infiltrated silicon titanium and aluminum carbide bodies
JPH0474306B2 (en)
JP2000327441A (en) Composite carbonaceous thermal insulant and its production
JP2004018322A (en) Silicon/silicon carbide composite material and method of producing the same
US4419161A (en) Method of producing composite ceramic articles
JPS5997580A (en) Solder for bonding silicon carbide material
RU2193543C2 (en) Method of manufacturing caked structured ceramic product from aluminum nitride
JPH08157275A (en) Method for joining silicon carbide sintered compacts to each other
Rabin Modified tape casting method for ceramic joining: application to joining of silicon carbide
JPH0475872B2 (en)
JP4537669B2 (en) Silicon carbide-based bonded component and method for manufacturing the same
JP2004131318A (en) Joined body of silicon carbide-based member and method of manufacturing the same
US11110692B2 (en) Braze material for ceramic matrix composite articles
JPH10253259A (en) Material of roller for roller hearth furnace and manufacture thereof
JP2002226271A (en) Method for manufacturing porous silicon carbide compact
JP2010126427A (en) Method of manufacturing silicon carbide heating element end part and silicon carbide heating element end part
JPH05105562A (en) Carbon bodies containing silicon carbide films and process for producing same
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JPH0244078A (en) Porous ceramic composite material and production thereof
JP3966911B2 (en) In-furnace members and jigs
JP2003327478A (en) Silicon carbide heating element and joining method thereof
JPS6212191B2 (en)
JP3932405B2 (en) Method of joining silicon carbide heating elements
JPS60251177A (en) Bonding method
JPH066721B2 (en) Method for producing self-lubricating sintered copper alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041221