JP2001163671A - Silicon carbide-carbon composite material wherein boron nitride is dispersed - Google Patents

Silicon carbide-carbon composite material wherein boron nitride is dispersed

Info

Publication number
JP2001163671A
JP2001163671A JP34996899A JP34996899A JP2001163671A JP 2001163671 A JP2001163671 A JP 2001163671A JP 34996899 A JP34996899 A JP 34996899A JP 34996899 A JP34996899 A JP 34996899A JP 2001163671 A JP2001163671 A JP 2001163671A
Authority
JP
Japan
Prior art keywords
boron nitride
silicon carbide
dispersed
powder
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34996899A
Other languages
Japanese (ja)
Other versions
JP4170544B2 (en
Inventor
Takashi Takatsu
崇 高津
Yuji Takimoto
裕治 瀧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP34996899A priority Critical patent/JP4170544B2/en
Publication of JP2001163671A publication Critical patent/JP2001163671A/en
Application granted granted Critical
Publication of JP4170544B2 publication Critical patent/JP4170544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon carbide-carbon composite material wherein boron nitride is dispersed, which is capable of improving oxidation resistance of a carbon product and suppressing sticking of a material to be treated. SOLUTION: The silicon carbide-carbon composite material wherein boron nitride is dispersed is formed at the surface layer part of a graphite substrate by coating a slurry composed of a silicon powder, a boron carbide powder, a boron nitride powder and a thermoplastic resin onto the surface of a substrate of the carbon material and then heat treating the coated carbon substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温酸化雰囲気下
で使用される窒化ホウ素分散炭化ケイ素−炭素複合材に
関する。
The present invention relates to a boron nitride-dispersed silicon carbide-carbon composite used in a high-temperature oxidizing atmosphere.

【0002】[0002]

【従来の技術】炭素材料は、従来より高温での優れた特
性のため、金属溶解用ルツボ、セラミックス焼結用ルツ
ボ、金属蒸着用治具、連続鋳造用ダイス、鋳造用鋳型等
の各種熱処理用治具等に用いられる耐熱用材料として広
く利用されている。
2. Description of the Related Art Carbon materials have been used for various heat treatments such as crucibles for melting metals, crucibles for sintering ceramics, jigs for metal deposition, dies for continuous casting, casting molds, etc. because of their superior properties at higher temperatures than before. It is widely used as a heat-resistant material used for jigs and the like.

【0003】しかしながら、炭素材料は高温酸化雰囲気
中で酸化消耗しやすいという欠点を持っており、また、
還元雰囲気下でも、前記各種用途に利用されている際
に、その被処理物と反応したり、処理物が溶解し炭素材
料中に浸透し、炭素材料が破損する等の問題があり、炭
素材料の酸化防止や、溶解物の浸透防止のため従来から
色々と工夫がなされてきた。
[0003] However, carbon materials have a disadvantage that they are easily oxidized and consumed in a high-temperature oxidizing atmosphere.
Even under a reducing atmosphere, when used in the above-mentioned various applications, there is a problem that the material reacts with the material to be treated, or the treated material dissolves and penetrates into the carbon material, and the carbon material is damaged. Various measures have been devised in the past to prevent oxidation of water and to prevent penetration of dissolved substances.

【0004】本発明者らは、こうした炭素材料の欠点を
補うために、炭素材料からなる基材表面に、ケイ素(以
下、「Si」という。)粉末と炭化ホウ素(以下、「B
4 C」という。)粉末と熱可塑性樹脂からなるスラリー
を塗布し、熱処理することにより基材の表面に炭化ケイ
素−炭素(以下、「SiC−C」という。)複合層を深
めに形成してなる、耐酸化性に優れた炭素製品を開発
し、出願した(特開平10−212182号)。
[0004] In order to make up for such a drawback of the carbon material, the inventors of the present invention provided a silicon (hereinafter, referred to as “Si”) powder and a boron carbide (hereinafter, referred to as “B”) on the surface of a substrate made of the carbon material.
4 C "that. A) a slurry composed of a powder and a thermoplastic resin is applied and heat-treated to form a silicon carbide-carbon (hereinafter, referred to as “SiC-C”) composite layer on the surface of the base material, which is oxidation-resistant; And developed an application (Japanese Patent Application Laid-Open No. 10-212182).

【0005】[0005]

【発明が解決しようとする課題】ところが、金属溶解用
ルツボや、セラミックス焼結用ルツボ、連続鋳造用ダイ
ス、鋳造用鋳型等の、金属やセラミックス等の被処理物
と接触する面にSiC−C複合層を形成した場合、被処
理物が冷却後にトレー、ルツボあるいは鋳型等の熱処理
用治具の表面に固着してしまうという問題が発生した。
However, SiC-C is applied to a surface that comes into contact with an object to be processed, such as a metal or ceramic, such as a metal melting crucible, a ceramic sintering crucible, a continuous casting die, and a casting mold. When the composite layer is formed, there is a problem that the object to be processed is stuck to the surface of a heat treatment jig such as a tray, a crucible or a mold after cooling.

【0006】そこで、本発明は、炭素製品の耐酸化性を
向上させるとともに、被処理物の固着を抑制することが
可能な窒化ホウ素分散炭化ケイ素−炭素複合材を提供す
ることを目的とする。
Accordingly, an object of the present invention is to provide a boron nitride-dispersed silicon carbide-carbon composite material capable of improving the oxidation resistance of a carbon product and suppressing sticking of an object to be treated.

【0007】[0007]

【課題を解決するための手段】本発明者らは、この問題
を解決すべく、先願である特開平10−212182号
の技術の改良に取り組み、鋭意研究を重ねた結果、Si
C−C複合層の表層に窒化ホウ素(以下、「BN」とい
う。)を分散させることが有効であることを見出し本発
明を完成させるにいたった。
Means for Solving the Problems In order to solve this problem, the present inventors worked on improving the technology of the prior application, Japanese Patent Application Laid-Open No. 10-212182, and as a result of diligent research, they found that
The inventors have found that it is effective to disperse boron nitride (hereinafter, referred to as “BN”) in the surface layer of the CC composite layer, and have completed the present invention.

【0008】すなわち、本発明のBN分散SiC−C複
合材は、炭素材料からなる基材の表層にSiC−C複合
層が形成されてなり、前記SiC−C複合層に連続し、
最表層の表面の一部若しくは全面にBNが分散してなる
BN分散SiC−C複合材である。また、本発明のBN
分散SiC−C複合材は、BN粉末と、B4 C粉末と、
Si粉末と、溶剤からなるスラリーを、基材の表面に塗
布し、乾燥、熱処理して、前記基材の表層部にSiC−
C複合層が形成してなり、前記SiC−C複合層の表面
の一部若しくは全面にBNが分散してなるものである。
That is, the BN-dispersed SiC-C composite material of the present invention comprises an SiC-C composite layer formed on a surface layer of a substrate made of a carbon material, and is continuous with the SiC-C composite layer.
This is a BN-dispersed SiC-C composite material in which BN is dispersed over part or the entire surface of the outermost layer. In addition, the BN of the present invention
The dispersed SiC-C composite comprises BN powder, B 4 C powder,
A slurry composed of a Si powder and a solvent is applied to the surface of the substrate, dried and heat-treated to form a SiC-
A C composite layer is formed, and BN is dispersed over part or the entire surface of the SiC-C composite layer.

【0009】また、本発明によるBN分散SiC−C複
合材は、炭素材料からなる基材の表層部にSiC−C複
合層が形成され、このSiC−C複合層の表面の凹み部
にBNが入り込み、この表層部の表面の30〜80%の
割合でBNが分散形成されている。
Further, in the BN-dispersed SiC-C composite material according to the present invention, a SiC-C composite layer is formed on a surface layer of a base material made of a carbon material, and BN is formed in a concave portion on the surface of the SiC-C composite layer. BN is dispersed and formed at a rate of 30 to 80% of the surface of the surface layer portion.

【0010】本発明に使用される炭素材料からなる基材
は特に限定されるものではなく、例えば高密度等方性黒
鉛材等が挙げられ、これらのうち水銀圧入法で測定した
平均細孔半径が0.1μm以上である黒鉛材を製品形状
に加工したものを使用することが好ましい。
The substrate made of the carbon material used in the present invention is not particularly limited, and examples thereof include a high-density isotropic graphite material. Among them, the average pore radius measured by a mercury intrusion method is used. It is preferable to use a graphite material having a particle size of 0.1 μm or more processed into a product shape.

【0011】平均細孔半径が0.1μmよりも小さい黒
鉛材を基材として使用すると、SiとB4 CとBNとを
混合したスラリーを基材に塗布する時に、基材の微小細
孔にまでスラリーが浸透しにくくなり、スラリー塗布層
の剥離が生じ易くなるためあまり好ましくない。なお、
基材の平均細孔半径の上限については、特に制限はな
く、平均細孔半径が大きいと、その分、基材内部奥深く
までスラリーが浸透し、熱処理後にスラリー中のSiが
基材と反応し生成されるSiC−C複合層が、深さ方向
に均一に1mm以上の厚みで形成される。このように、
SiC−C複合層の厚みを1mm以上とすることができ
るため、黒鉛等の炭素材料からなる基材の耐酸化性をも
併せて向上させることができる。
When a graphite material having an average pore radius smaller than 0.1 μm is used as a base material, when a slurry of a mixture of Si, B 4 C and BN is applied to the base material, the fine pores of the base material may be removed. This is not preferable because the slurry hardly permeates and the slurry coating layer easily peels off. In addition,
The upper limit of the average pore radius of the substrate is not particularly limited. If the average pore radius is large, the slurry permeates deep inside the substrate, and Si in the slurry reacts with the substrate after the heat treatment. The generated SiC-C composite layer is uniformly formed in the depth direction with a thickness of 1 mm or more. in this way,
Since the thickness of the SiC-C composite layer can be set to 1 mm or more, the oxidation resistance of the substrate made of a carbon material such as graphite can be improved.

【0012】本発明のBN分散SiC−C複合材は、ま
ず、平均粒径10〜50μmのSi粉末、平均粒径4〜
50μmのB4 C粉末、平均粒径1〜5μmのBN粉末
と、これらを混合する溶剤として、熱可塑性樹脂を使用
し、スラリーを作製する。ここで、使用する熱可塑性樹
脂は造膜性が高く、かつ残炭率が低い熱可塑性樹脂が好
ましい。例えばポリアミドイミド、ポリビニルアルコー
ル、ポリカルボジイミド、ポリアミド樹脂の内より選ば
れたものが特に好ましい。また、場合によっては、これ
ら熱可塑性樹脂を溶解するために溶媒を使用することも
できる。この溶媒としてはジメチルアセトアミド、ジメ
チルホルムアミド、ジメチルスルホキシド、N−2−ピ
ロリドン等から適宜選択して使用することで、熱可塑性
樹脂を黒鉛基材中に深く浸透させることが可能となる。
The BN-dispersed SiC-C composite material of the present invention comprises a Si powder having an average particle size of 10 to 50 μm and an average particle size of 4 to 50 μm.
A slurry is prepared using 50 μm B 4 C powder, BN powder having an average particle size of 1 to 5 μm, and a thermoplastic resin as a solvent for mixing them. Here, the thermoplastic resin used is preferably a thermoplastic resin having a high film-forming property and a low residual carbon ratio. For example, those selected from polyamide imide, polyvinyl alcohol, polycarbodiimide, and polyamide resin are particularly preferable. In some cases, a solvent can be used to dissolve these thermoplastic resins. By appropriately selecting and using dimethylacetamide, dimethylformamide, dimethylsulfoxide, N-2-pyrrolidone, or the like as the solvent, the thermoplastic resin can be deeply penetrated into the graphite base material.

【0013】Si粉末、B4 C粉末とBN粉末を混合す
る際の混合割合は、Si粉末60〜80質量%、BN粉
末15質量%以下とし、これらに対してその残りがB4
C粉末となるように混合するのが好ましい。BN粉末が
15質量%を越えると、SiC−C層が深さ方向に均一
にかつ深く形成されないため好ましくない。また、5質
量%未満であると、SiC−C層表面の凹み部に分散形
成されるBNが少なくなり、BNを添加した効果が十分
に得られず、被処理物が固着してしまうため好ましくな
い。したがって、BN粉末は5〜15質量%であること
が好ましい。この混合粉末に対して、50〜100%の
質量の熱可塑性樹脂を混合する。ここで、樹脂量が混合
粉末に対して100%を越えると、スラリーの粘性が低
下し、基材表面に厚く塗布することが困難となり、炭素
基材の表面のSiC化が低下するため好ましくない。ま
た、50%未満であると、粘性が高くなり、スラリーが
基材表面に十分に密着していない部分が生じ、SiC層
が形成されない部分が生じるため好ましくない。
[0013] Si powder, B 4 C powder and mixing ratio in mixing the BN powder, Si powder 60-80 wt%, and BN powder 15 wt% or less, the remainder B 4 for these
It is preferable to mix so as to obtain C powder. If the BN powder exceeds 15% by mass, the SiC—C layer is not formed uniformly and deeply in the depth direction, which is not preferable. When the content is less than 5% by mass, the amount of BN dispersed and formed in the depressions on the surface of the SiC-C layer is reduced, and the effect of adding BN is not sufficiently obtained, and the object to be treated is preferably fixed. Absent. Therefore, the BN powder content is preferably 5 to 15% by mass. A thermoplastic resin having a mass of 50 to 100% is mixed with the mixed powder. Here, if the amount of the resin exceeds 100% with respect to the mixed powder, the viscosity of the slurry decreases, it becomes difficult to apply the resin thickly to the surface of the substrate, and the SiC on the surface of the carbon substrate decreases, which is not preferable. . On the other hand, if it is less than 50%, the viscosity becomes high, and a portion where the slurry does not sufficiently adhere to the substrate surface is generated, and a portion where the SiC layer is not formed is not preferable.

【0014】B4 C粉末をスラリー中に混合することに
より、何らかの触媒作用によってSiが、炭素基材の気
孔内を深く浸透し、結果として、SiC−C層を深さ方
向に均一にかつ深く形成することができる。
By mixing the B 4 C powder into the slurry, Si penetrates deeply into the pores of the carbon substrate by some catalytic action, and as a result, the SiC-C layer is uniformly and deeply formed in the depth direction. Can be formed.

【0015】上記のように調製されたスラリーをはけ塗
り、へら塗り等の適宜な手段で表面全体、又は必要な部
分に塗布する。また、スラリー中に浸漬しても良い。こ
の時に塗布する厚みについては、任意の厚みとすること
ができるが炭素基材表面から0.1〜2mm程度が好ま
しい。0.1mm未満では複合層の形成が浅くなり、2
mmを越える厚みで塗布すると、剥離等することがある
のであまり好ましくない。この後、約80〜200℃、
1〜2時間程度乾燥することにより、樹脂を完全に硬化
させる。こうして得られた材料を、0.1MPa以下、
好ましくは2kPa以下の非酸化雰囲気圧力下で高温熱
処理する。圧力を0.1MPa以下、好ましくは2kP
a以下とすることで、溶融したSiの、基材内部への浸
透が促進される。また、処理温度は1500℃以上、好
ましくは1600〜1800℃で1〜2時間保持する。
加熱手段は特に限定されるものではなく、適当な手段で
行えばよい。この操作によって、Si成分は溶融し、樹
脂の炭化層を通って基材の気孔中に侵入し、炭素と反応
してSiC化する。その後、場合によっては表面の付着
物を除去する。
The slurry prepared as described above is applied to the entire surface or a necessary portion by an appropriate means such as brushing and spatula coating. Moreover, you may immerse in a slurry. The thickness applied at this time can be any thickness, but is preferably about 0.1 to 2 mm from the surface of the carbon substrate. If the thickness is less than 0.1 mm, the formation of the composite layer becomes shallow and 2
It is not preferable to apply the coating in a thickness exceeding mm because the coating may be peeled off. After this, about 80-200 ° C,
The resin is completely cured by drying for about 1 to 2 hours. The material obtained in this way is 0.1 MPa or less,
Preferably, high-temperature heat treatment is performed under a non-oxidizing atmosphere pressure of 2 kPa or less. Pressure below 0.1MPa, preferably 2kP
By setting a or less, penetration of the molten Si into the inside of the base material is promoted. Further, the treatment temperature is maintained at 1500 ° C. or higher, preferably 1600 to 1800 ° C., for 1 to 2 hours.
The heating means is not particularly limited, and may be performed by an appropriate means. By this operation, the Si component is melted, penetrates into the pores of the base material through the carbonized layer of the resin, and reacts with carbon to form SiC. Thereafter, if necessary, the deposits on the surface are removed.

【0016】前述の一連の処理を得て、スラリーが塗布
された部分に相当する基材の表層がSiC−C複合層に
転化した緻密な層となる。この層は、基材の表面から深
さ方向に略均一に1mm以上の深さで形成される。そし
て、この表層部に表面から30μm以下の深さにBNが
分散形成される。表面のBNは、SiC−C複合層の表
面の凹みに入り込み、SiC−C複合層より連続して形
成されているため、アンカー効果が作用し、強固に付着
する。そして、SiCや炭素基材と化学的に反応して固
着しているわけではなく、SiC−C複合層表層部の表
面に30〜80%の割合で微粉末の状態で分散し点在し
ている。
With the above series of treatments, the surface layer of the substrate corresponding to the portion where the slurry is applied becomes a dense layer converted into a SiC-C composite layer. This layer is formed substantially uniformly in the depth direction from the surface of the substrate at a depth of 1 mm or more. Then, BN is dispersedly formed on the surface layer at a depth of 30 μm or less from the surface. Since the BN on the surface enters into the depressions on the surface of the SiC-C composite layer and is formed continuously from the SiC-C composite layer, the anchor effect acts and adheres firmly. And it does not mean that it chemically reacts with and adheres to the SiC or carbon base material, but is dispersed and scattered in a fine powder state at a rate of 30 to 80% on the surface of the surface layer of the SiC-C composite layer. I have.

【0017】本発明のBN分散SiC−C複合材は以上
のように形成されており、ホットプレス用ダイスのスペ
ーサーや、金属溶解用ルツボや、セラミックス焼結用ル
ツボ、金属蒸着用治具、連続鋳造用ダイス、鋳造用鋳型
等を含む各種材料の熱処理用治具等に用いられる耐熱材
料として適用した場合であっても、接触部の被処理物に
固着することを抑制できる。
The BN-dispersed SiC-C composite material of the present invention is formed as described above, and is used as a spacer for a hot press die, a crucible for melting metal, a crucible for sintering ceramics, a jig for metal vapor deposition, Even when applied as a heat-resistant material used for a jig for heat treatment of various materials including a casting die, a casting mold, and the like, it is possible to prevent the contact portion from sticking to an object to be processed.

【0018】[0018]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (実施例1)炭素基材として、嵩密度1.90g/cm
3 、平均細孔半径が0.3μm 、曲げ強度が68MPa
の等方性黒鉛(東洋炭素( 株)製) を、外径100m
m、内径約70mm、深さ90mmのルツボに加工し
た。次に、Si粉末(平均粒度40μm)と、B4 C粉
末(平均粒径30μm)と、BN粉末(粒径1〜5μ
m)を質量比で80:12:8の比率に混合し、この混
合粉末と同質量のポリビニルアルコール(PVA)樹脂
中に混合分散させてスラリーとした。
The present invention will be described below in detail with reference to examples. (Example 1) As carbon substrate, bulk density 1.90 g / cm
3 , average pore radius 0.3μm, bending strength 68MPa
Isotropic graphite (manufactured by Toyo Tanso Co., Ltd.) with an outer diameter of 100 m
m, a crucible having an inner diameter of about 70 mm and a depth of 90 mm. Next, Si powder (average particle size of 40 μm), B 4 C powder (average particle size of 30 μm), and BN powder (particle size of 1 to 5 μm)
m) was mixed at a weight ratio of 80: 12: 8, and mixed and dispersed in a polyvinyl alcohol (PVA) resin having the same weight as the mixed powder to obtain a slurry.

【0019】このスラリーを、ルツボ内面全体に刷毛で
厚みが1〜2mmになるよう塗布し、乾燥機の中で20
0℃、1時間で溶剤を蒸発させ、さらに400Paの窒
素ガス雰囲気下、真空加熱炉において室温から1800
℃まで約4時間で昇温し、30分間保持した後、冷却し
て取り出した。その後、この一連の処理を行うことによ
り、黒鉛基材の表面から深さ方向に均一に2mmの深さ
でSiCーC複合材が形成され、その表層に20μmの
深さでBNが分散形成される。このルツボに、鋳塊を入
れ、1600℃に加熱し、鋳鉄の溶解試験を行った。
This slurry is applied to the entire inner surface of the crucible with a brush so as to have a thickness of 1 to 2 mm, and is then dried in a dryer.
The solvent was evaporated at 0 ° C. for 1 hour, and further heated from room temperature to 1800 in a vacuum heating furnace under a nitrogen gas atmosphere of 400 Pa.
The temperature was raised to about 4 hours, kept for 30 minutes, cooled, and taken out. Thereafter, by performing this series of treatments, a SiC-C composite material is formed uniformly at a depth of 2 mm from the surface of the graphite base material in the depth direction, and BN is dispersedly formed at a depth of 20 μm on the surface layer. You. The ingot was put in this crucible, heated to 1600 ° C., and a melting test of the cast iron was performed.

【0020】また、図1に、BNが表層部に分散したS
iC−C複合材の表面の偏光顕微鏡写真を示す。図1に
おいて、白く見える部分がBNである。図1より、BN
が表面に分散し、形成されているのがわかる。このよう
に一部に凝縮せず、分散し形成させることができるた
め、SiC−C複合材にBNの有する離型性を十分に発
現させることができ、被処理物の固着が抑制される。
FIG. 1 shows that BN is dispersed in the surface layer.
3 shows a polarizing micrograph of the surface of the iC-C composite. In FIG. 1, the portion that looks white is BN. From FIG. 1, BN
Are dispersed and formed on the surface. As described above, since the SiC—C composite material can be dispersed and formed without being partially condensed, the release property of BN possessed by the SiC—C composite material can be sufficiently exhibited, and the fixation of the object to be processed is suppressed.

【0021】(実施例2)スラリー中のSi粉末(平均
粒度40μm)と、B4 C粉末(平均粒径30μm)
と、BN粉末(粒径1〜5μm)の質量比を80:1
0:10の比率に混合した以外、実施例1と同質の黒鉛
基材を同形状に加工し、実施例1と同様な手順でルツボ
内面に黒鉛基材の表面から1mmの厚さでSiCーC複
合材を形成させ、その表面から30μmの深さでBNを
分散形成させ、実施例1と同様に、鋳塊を入れ、溶解試
験を行った。
Example 2 Si powder in slurry (average particle size 40 μm) and B 4 C powder (average particle size 30 μm)
And the mass ratio of BN powder (particle size: 1 to 5 μm) to 80: 1
A graphite substrate of the same quality as in Example 1 was processed into the same shape except that it was mixed at a ratio of 0:10, and a 1 mm thick SiC layer was formed on the inner surface of the crucible from the surface of the graphite substrate by the same procedure as in Example 1. A C composite material was formed, BN was dispersed and formed at a depth of 30 μm from the surface, and an ingot was put in the same manner as in Example 1 to perform a dissolution test.

【0022】(実施例3)スラリー中のSi粉末(平均
粒度40μm)と、B4 C粉末(平均粒径30μm)
と、BN粉末(粒径1〜5μm)の質量比を80:1
5:5の比率に混合した以外、実施例1と同質の黒鉛基
材を同形状に加工し、実施例1と同様な手順でルツボ内
面に黒鉛基材の表面から3mmの厚さでSiCーC複合
材を形成させ、その表面から15μmの深さでBNを分
散形成させ、実施例1と同様に、鋳塊を入れ、溶解試験
を行った。
Example 3 Si powder in slurry (average particle size 40 μm) and B 4 C powder (average particle size 30 μm)
And the mass ratio of BN powder (particle size: 1 to 5 μm) to 80: 1
A graphite substrate of the same quality as in Example 1 was processed into the same shape, except that the mixture was mixed at a ratio of 5: 5, and the inner surface of the crucible was formed with a thickness of 3 mm from the surface of the graphite substrate in the same procedure as in Example 1. A C composite material was formed, BN was dispersed and formed at a depth of 15 μm from the surface, and an ingot was put in the same manner as in Example 1 to perform a dissolution test.

【0023】(比較例1)BN粉末を添加せずに、スラ
リー中のSi粉末(平均粒度40μm)と、B4C粉末
(平均粒径30μm)の質量比を80:20の比率に混
合し、実施例1と同質の黒鉛基材を同形状に加工し、実
施例1と同様な手順で、ルツボ内面に黒鉛基材の表面か
ら3mmの厚さでSiCーC複合材を形成させ、実施例
1と同様に、鋳塊を入れ、溶解試験を行った。
(Comparative Example 1) Without adding BN powder, the mass ratio of Si powder (average particle size: 40 μm) and B 4 C powder (average particle size: 30 μm) in the slurry was mixed at a ratio of 80:20. A graphite substrate of the same quality as in Example 1 was processed into the same shape, and a SiC-C composite material was formed on the inner surface of the crucible with a thickness of 3 mm from the surface of the graphite substrate by the same procedure as in Example 1. As in Example 1, an ingot was placed and a dissolution test was performed.

【0024】実施例1乃至3のルツボは35回の溶解試
験にもかかわらず、鋳鉄の固着がほとんど無く、また、
ルツボの割れ、鋳鉄による腐食等のルツボの交換原因と
なる問題点の発生が確認されなかった。一方、表面にB
Nを分散形成させなかった比較例1のルツボは、2〜3
回の溶解試験で、鋳鉄の固着が発生した。このように、
黒鉛基材の表層にSiC−C複合材が形成され、更にそ
の表層にSiC−C複合材から連続してBNを分散形成
させることで、BNを分散形成させなかったものに比較
すると、耐酸化性に加え、被処理物の離型性にも優れた
特性を有するものとすることができる。
The crucibles of Examples 1 to 3 hardly adhered to cast iron despite the 35 melting tests.
No problems that could cause the crucible to be replaced, such as cracking of the crucible or corrosion by cast iron, were found. On the other hand, B
The crucible of Comparative Example 1 in which N was not formed by dispersion was 2-3
In the dissolution test, sticking of the cast iron occurred. in this way,
The SiC-C composite material is formed on the surface layer of the graphite base material, and BN is continuously dispersed and formed on the surface layer of the SiC-C composite material. In addition to the properties, it is possible to obtain a material having excellent properties in the releasability of the object to be treated.

【0025】[0025]

【発明の効果】本発明は以上のように構成されており、
容易に且つ安価に、黒鉛基材表面の任意の場所に、窒化
ホウ素が分散された炭化ケイ素ー炭素複合材を形成させ
ることが可能であり、潤滑性、耐摩耗性、耐酸化性に優
れた滑らかな被覆面を形成できる。また、ホットプレス
用ダイスのスペーサーや、金属溶解用やセラミックス焼
結用ルツボ、連続鋳造用ダイス、鋳造用鋳型等の各種熱
処理用の炭素製品の寿命の延命効果が得られる。
The present invention is configured as described above.
It is possible to easily and inexpensively form a silicon carbide-carbon composite material in which boron nitride is dispersed at any place on the surface of a graphite substrate, and has excellent lubricity, abrasion resistance, and oxidation resistance. A smooth covering surface can be formed. In addition, the effect of extending the life of carbon products for various heat treatments, such as spacers for dies for hot pressing, crucibles for melting metals and sintering ceramics, dies for continuous casting, casting molds, and the like can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】BN分散SiC−C複合材の表面の偏光顕微鏡
写真を示す図である。
FIG. 1 is a view showing a polarizing microscope photograph of the surface of a BN-dispersed SiC—C composite material.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G001 BA22 BA23 BA33 BA60 BA62 BB22 BB33 BB60 BC11 BC22 BC46 BC47 BC52 BD07 BD37 BE15  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G001 BA22 BA23 BA33 BA60 BA62 BB22 BB33 BB60 BC11 BC22 BC46 BC47 BC52 BD07 BD37 BE15

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 炭素基材の表層に炭化ケイ素−炭素複合
層が形成されてなり、前記炭化ケイ素−炭素複合層の表
層に窒化ホウ素が分散してなる窒化ホウ素分散炭化ケイ
素−炭素複合材。
1. A boron nitride-dispersed silicon carbide-carbon composite material in which a silicon carbide-carbon composite layer is formed on a surface layer of a carbon substrate, and boron nitride is dispersed on the surface layer of the silicon carbide-carbon composite layer.
【請求項2】 前記炭化ケイ素−炭素複合層は、炭素基
材表面から深さ方向に均一に1mm以上の厚みで形成さ
れ、前記窒化ホウ素の分散深さが表面から30μm以下
の厚みである請求項1に記載の窒化ホウ素分散炭化ケイ
素−炭素複合材。
2. The silicon carbide-carbon composite layer is uniformly formed in the depth direction from the surface of the carbon substrate to a thickness of 1 mm or more, and the dispersion depth of the boron nitride is 30 μm or less from the surface. Item 3. The boron nitride-dispersed silicon carbide-carbon composite material according to item 1.
【請求項3】 前記炭素基材表面における窒化ホウ素の
占める割合が30〜80%である請求項1または2に記
載の窒化ホウ素分散炭化ケイ素−炭素複合材。
3. The boron nitride-dispersed silicon carbide-carbon composite material according to claim 1, wherein the proportion of boron nitride on the surface of the carbon substrate is 30 to 80%.
【請求項4】 窒化ホウ素粉末と、炭化ホウ素粉末と、
ケイ素粉末と、溶剤からなるスラリーを、炭素基材の表
面に塗布し、乾燥、熱処理して、前記炭素基材の表層に
炭化ケイ素−炭素複合層が形成してなり、前記炭化ケイ
素−炭素複合層の表層に窒化ホウ素が分散してなる窒化
ホウ素分散炭化ケイ素−炭素複合材。
4. A boron nitride powder, a boron carbide powder,
A slurry comprising silicon powder and a solvent is applied to the surface of a carbon substrate, dried and heat-treated to form a silicon carbide-carbon composite layer on the surface layer of the carbon substrate, and the silicon carbide-carbon composite A boron nitride-dispersed silicon carbide-carbon composite material in which boron nitride is dispersed in a surface layer of the layer.
【請求項5】 前記スラリーが、窒化ホウ素粉末15質
量%以下と、ケイ素粉末60〜80質量%と、その残り
が炭化ホウ素粉末からなる混合粉末と、前記混合粉末の
質量の50〜100%の質量の溶剤からなる請求項4に
記載の窒化ホウ素分散炭化ケイ素−炭素複合材。
5. A mixed powder comprising 15% by mass or less of boron nitride powder, 60 to 80% by mass of silicon powder, and a balance of boron carbide powder, and 50 to 100% by mass of the mixed powder. The boron nitride-dispersed silicon carbide-carbon composite according to claim 4, comprising a solvent by mass.
【請求項6】 前記熱処理が0.1MPa以下の非酸化
雰囲気下で、1500℃以上である請求項4に記載の窒
化ホウ素分散炭化ケイ素−炭素複合材。
6. The boron nitride-dispersed silicon carbide-carbon composite according to claim 4, wherein the heat treatment is performed at a temperature of 1500 ° C. or higher in a non-oxidizing atmosphere of 0.1 MPa or lower.
【請求項7】 前記炭化ケイ素−炭素複合層は、炭素基
材表面から深さ方向に均一に1mm以上の厚みで形成さ
れ、前記窒化ホウ素の分散深さが表面から30μm以下
の厚みである請求項4乃至6のいずれかに記載の窒化ホ
ウ素分散炭化ケイ素−炭素複合材。
7. The silicon carbide-carbon composite layer is uniformly formed in the depth direction from the surface of the carbon substrate to a thickness of 1 mm or more, and the dispersion depth of the boron nitride is 30 μm or less from the surface. Item 7. The boron nitride-dispersed silicon carbide-carbon composite material according to any one of Items 4 to 6.
【請求項8】 各種熱処理用治具として用いられる請求
項1乃至7のいずれかに記載の窒化ホウ素分散炭化ケイ
素−炭素複合材。
8. The boron nitride-dispersed silicon carbide-carbon composite material according to claim 1, which is used as a jig for various heat treatments.
JP34996899A 1999-12-09 1999-12-09 Boron nitride dispersed silicon carbide-carbon composite Expired - Lifetime JP4170544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34996899A JP4170544B2 (en) 1999-12-09 1999-12-09 Boron nitride dispersed silicon carbide-carbon composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34996899A JP4170544B2 (en) 1999-12-09 1999-12-09 Boron nitride dispersed silicon carbide-carbon composite

Publications (2)

Publication Number Publication Date
JP2001163671A true JP2001163671A (en) 2001-06-19
JP4170544B2 JP4170544B2 (en) 2008-10-22

Family

ID=18407341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34996899A Expired - Lifetime JP4170544B2 (en) 1999-12-09 1999-12-09 Boron nitride dispersed silicon carbide-carbon composite

Country Status (1)

Country Link
JP (1) JP4170544B2 (en)

Also Published As

Publication number Publication date
JP4170544B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP4889843B2 (en) Porous material infiltration method
JP4261130B2 (en) Silicon / silicon carbide composite material
FR2528823A1 (en) PROCESS FOR MANUFACTURING CARBON OR GRAPHITE ARTICLES CONTAINING REACTION-LINKED SILICON CARBIDE
US5571758A (en) Nitrogen-reacted silicon carbide material
JP2004323891A (en) Method for surface improvement of steel
JPH01145379A (en) Method for manufacturing fire-resistant molded article
CA2056857A1 (en) Process for manufacturing refractory materials and use of same in casting of corrosive alloys
JPH05237601A (en) Carbon composite material for continuous casting, its production and die for continuous casting using this material
JP4037969B2 (en) Graphite products using boron carbide-coated silicon carbide-carbon composites
JP4170544B2 (en) Boron nitride dispersed silicon carbide-carbon composite
JP3522810B2 (en) Carbon-ceramic composite and method for producing the same
JP4166350B2 (en) Oxidation-resistant boron carbide-silicon carbide composite carbon material, sintering crucible using the same, vacuum evaporation crucible, and high-temperature firing jig
JPH10212182A (en) Carbon-silicon carbide composite material and its production
JP2004002133A (en) Production process of carbon/silicon carbide composite material, and carbon/silicon carbide composite material by the production process
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
KR100610821B1 (en) Surface treatment method of Carbon Melting pot for Liquid Metal Ingot and Slip composite
JPS6058190B2 (en) Method for manufacturing silicon nitride-silicon carbide molded body
JP3923622B2 (en) Metal-ceramic composite material and manufacturing method thereof
JPH10253259A (en) Material of roller for roller hearth furnace and manufacture thereof
JPS60209017A (en) Ceramic coated graphite fiber and its production
JPS63242969A (en) Silicon carbide base ceramics
JP3245678B2 (en) Method for producing carbon material coated with carbon coating
JPH04130067A (en) Refractory material for low melting point nonferrous molten metal
JPH11180788A (en) Oxidation resistant carbon-silicon carbide composite material and heating part using the same
FR2857009A1 (en) CERAMIC MATERIAL BASED ON SILICON CARBIDE FOR USE IN AGGRESSIVE ENVIRONMENTS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4170544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term