JPH01176289A - Member for molten aluminum and production thereof - Google Patents

Member for molten aluminum and production thereof

Info

Publication number
JPH01176289A
JPH01176289A JP62335869A JP33586987A JPH01176289A JP H01176289 A JPH01176289 A JP H01176289A JP 62335869 A JP62335869 A JP 62335869A JP 33586987 A JP33586987 A JP 33586987A JP H01176289 A JPH01176289 A JP H01176289A
Authority
JP
Japan
Prior art keywords
molten aluminum
weight
sialon
silicon nitride
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62335869A
Other languages
Japanese (ja)
Other versions
JP2588554B2 (en
Inventor
Seishi Furushima
清史 古島
Akira Noda
朗 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62335869A priority Critical patent/JP2588554B2/en
Publication of JPH01176289A publication Critical patent/JPH01176289A/en
Application granted granted Critical
Publication of JP2588554B2 publication Critical patent/JP2588554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5064Boron nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To enable formation of members for molten aluminum capable of withstanding use for a long period without causing fracture, cracking, fusion, corrosion, etc., by covering an inner layer consisting of silicon nitride or sialon based ceramics with an outer layer consisting essentially of boron nitride. CONSTITUTION:This member is constituted of an inner layer consisting of silicon nitride or sialon based ceramics and an outer layer consisting essentially of boron nitride (BN). The above-mentioned member for molten aluminum is produced by coating a compact of silicon nitride or sialon based ceramics with ceramics powder (preferably containing 40-60wt.% BN and 40-60wt.% SiO2) containing BN and SiO2 and then calcining the coated compact at 1,600-1,900 deg.C. The afore-mentioned silicon nitride or sialon base ceramics contain >=70wt.% Si3N4, <=20wt.% one or two or more oxides (e.g., Y2O3, La2O3 or ClO2) of group IIIa elements of the periodic table and <=20wt.% Al2O3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルミニウム溶湯に対して良好な耐食性を有す
るとともに高い機械的強度及び耐熱衝撃性を有する部材
及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a member having good corrosion resistance against molten aluminum, high mechanical strength and thermal shock resistance, and a method for manufacturing the same.

[従来の技術] アルミニウムの溶湯を取り扱うストークス、ラドル、浸
漬ヒーター保護管、ガス吹込み用部材、溶湯ポンプ部材
、溶湯撹拌用部材、溶湯ストッパ及び座、トイ等に対し
て、従来耐食性を有するセラミックス粉末で被覆した鋳
鉄製の部材が広く使用されていた。しかし、このような
部材の金属材料は接触するアルミニウム溶湯に溶解する
傾向があり、そのためアルミニウム溶湯の品質が低下す
る。また耐食性セラミックス・コーティングは金属材料
に対して十分な密着力を有していないので容易に剥離し
、そのため毎日塗布しなければならないという問題があ
る。さらに、鋳鉄のような金属で出来ているため、比較
的重く、取扱(\が容易でないという問題もある。
[Prior art] Corrosion-resistant ceramics have been used for Stokes, ladle, immersion heater protection tube, gas blowing parts, molten metal pump parts, molten metal stirring parts, molten metal stoppers and seats, toys, etc. that handle molten aluminum. Powder-coated cast iron components were widely used. However, the metallic materials of such parts tend to dissolve in the molten aluminum with which they come into contact, thereby reducing the quality of the molten aluminum. Another problem is that corrosion-resistant ceramic coatings do not have sufficient adhesion to metal materials and are easily peeled off, requiring daily application. Furthermore, since it is made of metal such as cast iron, it is relatively heavy and difficult to handle.

そこで最近金属製部材の代りに窒化珪素又は炭化珪素の
ようなセラミックスのアルミニウム溶湯用部材が使用さ
れるようになった。
Therefore, recently, ceramic members made of silicon nitride or silicon carbide for molten aluminum have been used instead of metal members.

[発明が解決しようとする問題点] しかしながら、これらのセラミックス製アルミニウム溶
湯用部材は従来金属珪素を窒化又は炭化する反応焼結法
により製造されていたため、僅か30幻/−程度の曲げ
強度しか有さす、使用中の義械的な応力や衝撃に十分に
耐えることができなかった。さらに、これらのセラミッ
クス製部材は比較的密度が低いので、表面が粗く、アル
ミニウム溶湯が溶着しやすい。その上比較的良好な曲げ
強度を有するものでも十分な耐熱衝撃性を有していない
ので、熱衝撃により破壊しやすい。
[Problems to be Solved by the Invention] However, these ceramic members for molten aluminum have conventionally been manufactured by a reaction sintering method in which silicon metal is nitrided or carbonized, and therefore have a bending strength of only about 30/-. As expected, it was unable to withstand mechanical stress and shock during use. Furthermore, since these ceramic members have a relatively low density, their surfaces are rough and molten aluminum is easily welded to them. Moreover, even those with relatively good bending strength do not have sufficient thermal shock resistance, and are therefore prone to breakage due to thermal shock.

また、Si3N4系セラミックやサイアロン、炭化珪素
等の十分な強度、耐熱衝撃性を有するセラミックは、ア
ルミニウム溶湯とのぬれ性が悪いけれども、使用により
アルミニウムの付着が少しづつ発生し、使用期間の増加
とともに特に溶湯表面付近でアルミニウム付@堡が増加
する。
Ceramics with sufficient strength and thermal shock resistance, such as Si3N4 ceramics, sialon, and silicon carbide, have poor wettability with molten aluminum, but as the time of use increases, aluminum will gradually adhere to them. In particular, the number of aluminum deposits increases near the surface of the molten metal.

従って本発明の目的は高い曲げ強度、アルミニウム溶湯
に対する良好な耐食性、高密度及び高い耐熱衝撃性を有
する内層に、アルミニウムの付着が起こりにくいBNを
主成分とする外層をコーティングしたアルミニウム溶湯
用部材を提供することである。
Therefore, the object of the present invention is to provide a member for molten aluminum in which an inner layer having high bending strength, good corrosion resistance against molten aluminum, high density, and high thermal shock resistance is coated with an outer layer mainly composed of BN to which aluminum does not easily adhere. It is to provide.

本発明のもう1つの目的はかかるアルミニウム溶湯用部
材を製造する方法を提供することである。
Another object of the present invention is to provide a method for manufacturing such a member for molten aluminum.

[問題点を解決するための手段] 上記目的に鑑み鋭意研究の結果、窒化珪素又はサイアロ
ン系セラミックスの上にBNを主成分とする外層を形成
することにより、アルミニウム溶湯の付着を抑制し、ア
ルミニウム溶湯用部材の寿命を著しく長くすることがで
きることを発見し、本発明に想到した。
[Means for solving the problem] In view of the above objectives, as a result of intensive research, it was found that by forming an outer layer mainly composed of BN on silicon nitride or sialon ceramics, adhesion of molten aluminum can be suppressed, and aluminum The inventors have discovered that the lifespan of molten metal members can be significantly extended, and have come up with the present invention.

すなわち本発明によるアルミニウム溶湯用部材は窒化珪
素系又はサイアロン系セラミックスからなる内層と、窒
化ホウ素を主成分とする外層とからなることを特徴とす
る。
That is, the member for molten aluminum according to the present invention is characterized by comprising an inner layer made of silicon nitride-based or sialon-based ceramics, and an outer layer mainly composed of boron nitride.

また本発明のアルミニウム溶湯用部材の製造方法は、窒
化珪素又はサイアロン系セラミックスの成形体をBN及
びSiO2を含有するセラミックス粉末で被覆し、16
00〜1900℃で焼結することを特徴とする。
Further, the method for manufacturing a member for molten aluminum of the present invention includes coating a molded body of silicon nitride or sialon ceramics with ceramic powder containing BN and SiO2,
It is characterized by being sintered at a temperature of 00 to 1900°C.

上記窒化珪素又はサイアロン系セラミックスは5i3N
a70重量%以上と、周期律表の第1IIIa族元素の
酸化物の1種又は2種以上20重童%以下と、Al20
320重量%以下とを含有する。
The above silicon nitride or sialon ceramic is 5i3N
70% by weight or more of a, one or more oxides of Group IIIIa elements of the periodic table and 20% or less of oxides, and Al20
320% by weight or less.

S i 3N4に関しては、α相を65重量%以上含有
すべきである。α相が65@吊%未満だと焼結性が低く
、焼結密度が低いために機械的強度が低い。
Regarding S i 3N4, it should contain more than 65% by weight of α phase. If the α phase is less than 65%, the sinterability is low and the sintered density is low, resulting in low mechanical strength.

α相の含有量は85重量%以上であるのが好ましい。The content of α phase is preferably 85% by weight or more.

本発明に使用し得る第1[a族元素の酸化物はY2O3
、Lag’3、Cede等である。これらの酸化物は主
として焼結助剤として作用する。Y2O3が最も好まし
く、常圧焼結又はガス圧焼結を行う場合Y2O3は3〜
10重量%とするのが好ましい。Y2O3が3重量%未
満だと焼結密度が十分でなく、Y2O3が10重量%を
超えると得られる焼結体の高温強度は著しく低下する。
The oxide of the first group a element that can be used in the present invention is Y2O3
, Lag'3, Cede, etc. These oxides primarily act as sintering aids. Y2O3 is most preferable, and when performing normal pressure sintering or gas pressure sintering, Y2O3 is 3 to 3.
The content is preferably 10% by weight. If Y2O3 is less than 3% by weight, the sintered density will not be sufficient, and if Y2O3 is more than 10% by weight, the high temperature strength of the obtained sintered body will be significantly reduced.

このように常圧焼結又はガス圧焼結を行うためには比較
的多量のY 203が必要である。Y2O3のより好ま
し“い範囲は5〜7重量%である。
In order to perform pressureless sintering or gas pressure sintering in this way, a relatively large amount of Y 203 is required. A more preferred range of Y2O3 is 5 to 7% by weight.

Al2O3に関しては、3〜7重堡重量範囲内であるの
が好ましい。3重量%未満だと焼結性が低く、焼結密度
が低い。一方7重量%を超えると、得られる焼結体は著
しく低い高温強度を有する。
As for Al2O3, it is preferable that the weight is in the range of 3 to 7 weights. If it is less than 3% by weight, sinterability is low and the sintered density is low. On the other hand, if it exceeds 7% by weight, the resulting sintered body will have significantly low high temperature strength.

より好ましいAl2O3含有Φは3〜5重量%である。More preferable Al2O3 content Φ is 3 to 5% by weight.

本発明の窒化珪素又はサイアロン系セラミックスはさら
に15重争%以下のAIN又はその固溶体を含有しても
よい。ここでAIN固溶体はAINポリタイプと呼ぶこ
ともでき、AIN、Si3N4及びAl2O3を含有し
、AINの含有量は約68重量%である。AIN又はA
IN固溶体の好ましい含有量は1〜9重量%である。1
重塁%未満だと青られる焼結体は著しく低い高温強度を
有し、9重量%を超えると十分な焼結性が得られず、焼
結体の強度が低下する。AIN又はAIN固溶体のより
好ましい含有量は2〜9重堡重量ある。
The silicon nitride or sialon ceramics of the present invention may further contain AIN or a solid solution thereof in an amount of 15% by weight or less. Here, the AIN solid solution can also be referred to as an AIN polytype and contains AIN, Si3N4 and Al2O3, and the content of AIN is about 68% by weight. AIN or A
The preferred content of IN solid solution is 1 to 9% by weight. 1
If it is less than 9% by weight, the sintered body will turn blue and have extremely low high temperature strength, and if it exceeds 9% by weight, sufficient sinterability will not be obtained and the strength of the sintered body will decrease. A more preferred content of AIN or AIN solid solution is 2 to 9 weights.

上記組成のセラミックス粉末は、溶媒としてエチルアル
コール、メチルアルコール等を用い、ボールミル中で混
合する。得られた粉末混合物に、ポリビニルアルコール
、ポリビニルブタノール等の有nバインダーをセラミッ
クス成分に対して0.5〜1重量%の割合で添加し、ス
プレードライし、所望の大きさに造粒する。
The ceramic powder having the above composition is mixed in a ball mill using ethyl alcohol, methyl alcohol, etc. as a solvent. A binder such as polyvinyl alcohol or polyvinyl butanol is added to the obtained powder mixture in a proportion of 0.5 to 1% by weight based on the ceramic component, and the mixture is spray-dried and granulated to a desired size.

セラミックス造粒物を200〜60メツシユの粒径にふ
るいわけした後、約700〜1500Kg/cjIの圧
力で冷間静水圧プレス(CIP)により成形する。
After the ceramic granules are sieved to a particle size of 200 to 60 mesh, they are molded by cold isostatic pressing (CIP) at a pressure of about 700 to 1500 kg/cjI.

CIP法により得られた成形体を加熱により脱脂し、外
形を整え、サンドペーパーにより研磨し、所望の長さに
切断する。
The molded body obtained by the CIP method is degreased by heating, its outer shape is adjusted, polished with sandpaper, and cut into a desired length.

焼結前に、成形体をBN及びS!02を含有するセラミ
ックス粉末で被覆する。好ましIL1実施例ではBNは
40〜60重量%であり、SiO2は40〜60重堡%
で重量。被覆層はスプレー又ははけ塗りにより形成する
ことができる。塗布のために、アルコール、エーテル、
ケトン、アルカン類、芳香族炭化水素等のような有機溶
剤を有機バインダーとともに使用する。このセラミック
ス粉末被覆層は十分な効果を得るために少なくとも0.
5rR1nの厚さを有する必要がある。
Before sintering, the molded body is BN and S! Coating with ceramic powder containing 02. In a preferred IL1 embodiment, BN is 40-60% by weight and SiO2 is 40-60% by weight.
in weight. The coating layer can be formed by spraying or brushing. For application, alcohol, ether,
Organic solvents such as ketones, alkanes, aromatic hydrocarbons, etc. are used with organic binders. This ceramic powder coating layer should be at least 0.0% in order to obtain a sufficient effect.
It is necessary to have a thickness of 5rR1n.

本発明によりセラミックス粉末で被覆した窒化珪素又は
サイアロン系セラミックスの成形体は、30(ly/−
以下のガス圧の窒素雰囲気中で焼結する。常圧焼結及び
ガス圧焼結のいずれも使用することができる。
The molded body of silicon nitride or sialon ceramics coated with ceramic powder according to the present invention is 30 (ly/-
Sintering is carried out in a nitrogen atmosphere at a gas pressure of: Both pressureless sintering and gas pressure sintering can be used.

水量a閤において使用する用語「常圧焼結」はプレスを
行わずに大気圧下で行う焼結を意味し、゛用語「ガス圧
焼結」はプレスを行わずにガス圧下で行う焼結を意味す
る。
The term ``normal pressure sintering'' used in Water Quantity A sintering refers to sintering performed under atmospheric pressure without pressing, and the term ``gas pressure sintering'' refers to sintering performed under gas pressure without pressing. means.

常圧焼結は複雑な焼結装置を必要としなりので、より好
ましい。この焼結方法では窒素ガスは通常2に9 / 
ci以下である。窒素ガスの圧力が高くなるにしたがっ
て焼結体の密度も高くなる。
Pressureless sintering requires complicated sintering equipment and is therefore more preferred. In this sintering method, the nitrogen gas is usually 2 to 9 /
less than ci. As the pressure of nitrogen gas increases, the density of the sintered body also increases.

本発明において焼結温度は1600〜1900℃である
In the present invention, the sintering temperature is 1600 to 1900°C.

1600℃未満だと十分な焼結密度が得られず、190
0℃を超えると513Naが分解するおそれがある。
If it is less than 1600℃, sufficient sintered density cannot be obtained, and 190℃
If the temperature exceeds 0°C, 513Na may be decomposed.

好ましい焼結温度は1700〜1800℃である。The preferred sintering temperature is 1700-1800°C.

また、窒化珪素又はサイアロン系セラミックスの焼結体
にもBN及びS i02を含有するセラミックス粉末で
被覆し、BNを主成分とする外層を形成することができ
る。その場合も被覆層形成のための塗布液は前記のもの
と同様であり、焼結条件も同様である。しかし、焼結体
であるため好ましい焼結温度は1600℃から1700
℃である。
Furthermore, a sintered body of silicon nitride or sialon ceramics can also be coated with ceramic powder containing BN and Si02 to form an outer layer mainly composed of BN. In that case as well, the coating liquid for forming the coating layer is the same as that described above, and the sintering conditions are also the same. However, since it is a sintered body, the preferred sintering temperature is 1600°C to 1700°C.
It is ℃.

窒化珪素又はサイアロン系セラミックスの焼結体は、A
IN又はAIN固溶体を15重重量以下含有する場合に
は、下記一般式: %式% (ただしQ<z≦4.2)により表わされる組成を有す
る。
The sintered body of silicon nitride or sialon ceramics is A
When the IN or AIN solid solution is contained in an amount of 15 weight or less, it has a composition represented by the following general formula: % formula % (where Q<z≦4.2).

また5i3N450重量%以上と、l i、Na。In addition, 5i3N450% by weight or more, li, Na.

Ca、M(1,Y及び希土類元素の酸化物の1種又は2
種以上20重塁%以下と、Al20320重量%以下と
、AIN又はAIN固溶体15重量%以下とを含有する
場合には、下記一般式: %式%) (タタし、Mはしi、Na、Ca、Mg、Y及び希土類
元素の1種又は2秒以上、O<X≦2)により表わされ
る組成を有する。この組成のサイアロンはα相サイアロ
ンであり、α−サイアロンはα相10〜70重量%とβ
相20〜90重量%とガラス質相0.1〜10重量%と
からなる。
Ca, M (1, Y and one or two oxides of rare earth elements
When containing 20% by weight or more of species or more, 20% by weight or less of Al203, and 15% by weight or less of AIN or AIN solid solution, the following general formula: % formula %) (Tatashi, Mashishii, Na, It has a composition represented by one or more of Ca, Mg, Y, and rare earth elements (O<X≦2). Sialon with this composition is α-phase sialon, and α-sialon has 10 to 70% by weight of α phase and β phase.
It consists of 20-90% by weight of a phase and 0.1-10% by weight of a glassy phase.

窒化珪素又はサイアロン系セラミックスの焼結体はso
醇/Wt以上の曲げ強度、理論値の90%以上の密度及
び400℃以上の熱衝撃温度ΔTを有する。
Sintered bodies of silicon nitride or sialon ceramics are so
It has a bending strength of at least /Wt, a density of at least 90% of the theoretical value, and a thermal shock temperature ΔT of at least 400°C.

80〜90重量%の513Na、5〜10重量%のYt
03.3〜7重量%のA l l!03及び2〜9重堡
重量AIN又はAIN固溶体からなる焼結体の場合、曲
げ強度は70Ky/ゴ以上であり、密度は95〜99%
であり、熱衝撃温度ΔTは450℃以上である。
80-90 wt% 513Na, 5-10 wt% Yt
03.3-7% by weight A l l! In the case of a sintered body made of 03 and 2 to 9 heavy weight AIN or AIN solid solution, the bending strength is 70 Ky/g or more, and the density is 95 to 99%.
The thermal shock temperature ΔT is 450° C. or higher.

BN及び5i02を含有するセラミックス粉末で液種し
た窒化珪素又はサイアロン系セラミックスの成形体を焼
結すると、2層構造を有する焼結体が得られ、外層はB
Nを主成分とし、主としてBN−81o2−AI 20
3−Y2O3からなる。
When a molded body of silicon nitride or sialon ceramics seeded with ceramic powder containing BN and 5i02 is sintered, a sintered body having a two-layer structure is obtained, with the outer layer containing B.
N is the main component, mainly BN-81o2-AI 20
Consists of 3-Y2O3.

内層はセラミックスの出発原料粉末と実質的に同じ組成
を有する。外層の厚さは5〜50μmであり、外層中に
BNが存在するために、部材の耐アルミニウム溶湯溶着
性は著しく良く、また耐酸化性も向上する。この外層の
形成は下記のメカニズムにより起るものと考えられる。
The inner layer has substantially the same composition as the ceramic starting powder. The thickness of the outer layer is 5 to 50 μm, and because of the presence of BN in the outer layer, the member has extremely good resistance to molten aluminum welding and also improves oxidation resistance. The formation of this outer layer is thought to occur through the following mechanism.

すなわち、表面にSiO2が存在するために粒界のガラ
ス層が表面に上昇し、BNが表面に焼結することができ
るようになる。窒化珪素又はサイアロン系セラミックス
の層から吸引されたAl2O3及びY2O3はBNの焼
結を可能とするよう作用する。
That is, due to the presence of SiO2 on the surface, the glass layer at the grain boundaries rises to the surface, allowing BN to sinter on the surface. Al2O3 and Y2O3 drawn from the silicon nitride or sialon ceramic layer act to enable sintering of the BN.

このように本発明のアルミニウム溶湯用部材は2層構造
を有し、内層は高い機械的強度と耐衝撃性を有する窒化
珪素又はサイアロン系セラミックスからなり、外層は主
としてBN−8!02−AI 203−Y2O3からな
るためにアルミニウム溶場に対する耐溶着性が良好であ
る。従ってこの部材は衝撃負荷、熱衝撃、溶着に対して
著しく抵抗力が大きい。さらにアルミニウムに対する耐
食性も十分である。このため本発明のアルミニウム溶湯
用部材は著しく長寿命である。
As described above, the member for molten aluminum of the present invention has a two-layer structure, the inner layer is made of silicon nitride or sialon ceramics having high mechanical strength and impact resistance, and the outer layer is mainly made of BN-8!02-AI 203. Since it is made of -Y2O3, it has good welding resistance to aluminum melt fields. This component is therefore highly resistant to impact loads, thermal shocks and welding. Furthermore, it has sufficient corrosion resistance against aluminum. Therefore, the member for molten aluminum of the present invention has an extremely long life.

[実施例] 本発明を以下の実施例によりさらに詳細に説明する。[Example] The present invention will be explained in further detail by the following examples.

実施例1 85.6重量%のSi 3Na粉末(粒径0.8u m
 )に6.5重量%のY2O3粉末(粒径1.0μm)
、2.9Φ吊%のAINポリタイプ(固溶体)粉末(粒
径0.8μm )及び4.811%のAlO3粉末〈粒
径0.1μm)を添加し、イソプロピルアルコール中で
ボールミルにより混合した。乾燥後粉末混合物に5%濃
度のポリビニルアルコール溶液10%を添h口し、ラバ
ープレスに入れて、1トン/Cl11の静水圧により冷
間静水圧プレス(CIP)をし、成形体を形成した。こ
の成形体に40重0部のBN粉末と、40重量部のSi
O2粉末と、50重量部のコロジオンと4−メチル−2
−ペンタノンとからなるセラミックス粉末ペーストを被
覆した。コーティング層の乾燥後の厚さは約1m#!で
あった。次いで、1750℃、1気圧で5時間窒素雰囲
気中で焼結した。焼結後、表面に残留するセラミックス
粉末を除去した。得られたサイアロン焼結体の部材は以
下の特性を有していた。
Example 1 85.6% by weight Si 3Na powder (particle size 0.8um
) with 6.5 wt% Y2O3 powder (particle size 1.0 μm)
, 2.9% AIN polytype (solid solution) powder (particle size 0.8 μm) and 4.811% AlO3 powder (particle size 0.1 μm) were added and mixed by a ball mill in isopropyl alcohol. After drying, a 10% polyvinyl alcohol solution with a 5% concentration was added to the powder mixture, placed in a rubber press, and subjected to cold isostatic pressing (CIP) using a hydrostatic pressure of 1 ton/Cl11 to form a compact. . 40 parts by weight of BN powder and 40 parts by weight of Si
O2 powder, 50 parts by weight of collodion and 4-methyl-2
- coated with a ceramic powder paste consisting of pentanone. The thickness of the coating layer after drying is approximately 1m#! Met. Then, it was sintered in a nitrogen atmosphere at 1750° C. and 1 atm for 5 hours. After sintering, the ceramic powder remaining on the surface was removed. The obtained sialon sintered member had the following characteristics.

相対密度       99.0% 曲げ強度* (至 温)  80に9/寵(1000℃
)  80/(y/m” 熱衝撃温度へT600℃ 注* :4点曲げテスト(下方スパン30ffi11上
方スパン10M)による。
Relative Density 99.0% Bending Strength* (Temperature) 80 to 9/C
) 80/(y/m” Thermal shock temperature T600°C Note*: Based on 4-point bending test (lower span 30ffi11 upper span 10M).

この部材を切断し、その断面を走査電子顕微鏡(SEM
)で測定した。第1図はSEM写真であり、明らかに2
層構造(灰色部分はサイアロン内層であり、白色部分は
外層である。)を示す。赤外線分析により、外層が8N
を含有することが確認された。また電子プローブ微小部
分析法(EPMA)により、外層中にA1及びSiが存
在することが確認された。Y2O3は焼結に必須の成分
であるので、焼結した外層にY2O3も存在するのは確
実であると考えられる。このY2O3は下層の窒化珪素
又はサイアロン系セラミックス層から吸引されたもので
ある。
This member was cut and its cross section was examined using a scanning electron microscope (SEM).
) was measured. Figure 1 is a SEM photo, and it is clear that 2
The layered structure (the gray part is the inner layer of Sialon, and the white part is the outer layer) is shown. Infrared analysis shows that the outer layer is 8N.
It was confirmed that it contains Furthermore, the presence of A1 and Si in the outer layer was confirmed by electron probe micropart analysis (EPMA). Since Y2O3 is an essential component for sintering, it is considered certain that Y2O3 also exists in the sintered outer layer. This Y2O3 is sucked from the underlying silicon nitride or sialon ceramic layer.

この部材を溶融アルミニウム中に浸漬した。その結果、
6ケ月浸漬した後でも溶融アルミニウムにより実質的に
腐食及び溶着が起っていないことがわかった。また浸漬
中の機械的衝撃及び出し入れによる熱wjj撃にも耐え
ることができた。従って、修理を要さずに1年以上使用
することができることがわかる。
This part was immersed in molten aluminum. the result,
It was found that even after six months of immersion, there was virtually no corrosion or welding caused by the molten aluminum. It was also able to withstand mechanical shock during immersion and thermal shock due to loading and unloading. Therefore, it can be seen that it can be used for more than one year without requiring repair.

実施例2 82.7重量%のS!3Na、5,8重量%のY2O3
,3,8重量%のAl2O2及び7.7重量%のAIN
ポリタイプをセラミックス材料として用いた以外、実施
例1を繰り返した。
Example 2 82.7% by weight of S! 3Na, 5.8% by weight Y2O3
, 3.8% by weight Al2O2 and 7.7% by weight AIN
Example 1 was repeated except that polytype was used as the ceramic material.

得られた部材をアルミニウム溶湯に浸漬した。The obtained member was immersed in molten aluminum.

その結果、実施例1と同様に6ケ月浸漬した後でも部材
はほとんどアルミニウム溶湯中に溶解していなかった。
As a result, as in Example 1, even after being immersed for 6 months, the member was hardly dissolved in the molten aluminum.

実施例3 実施例1と同じセラミックス材料を用い、同じ方法で成
形体を形成した。その成形体のまわりに80重量%の3
 i 3N4粉末と20重量%のBN粉末とからなる粉
末を充填し、1750℃、1気圧で5時間窒素雰囲気中
で焼結した。次いで、得られた焼結体表面に実施例1と
同様のセラミックス粉末ペーストを被覆し、1650℃
、1気圧で3時間窒素雰囲気中で焼結した。
Example 3 A molded body was formed using the same ceramic material as in Example 1 and the same method. Around the molded body, 80% by weight of 3
A powder consisting of i3N4 powder and 20% by weight BN powder was filled and sintered at 1750° C. and 1 atm in a nitrogen atmosphere for 5 hours. Next, the surface of the obtained sintered body was coated with the same ceramic powder paste as in Example 1, and heated at 1650°C.
, sintered in a nitrogen atmosphere at 1 atm for 3 hours.

得られた部材をアルミニウム溶湯に浸漬した。The obtained member was immersed in molten aluminum.

その結果、実施例1及び2と同様に6ケ月浸漬した後で
も部材はほとんどアルミニウム溶湯中に溶解していなか
った。
As a result, the members were hardly dissolved in the molten aluminum even after being immersed for 6 months as in Examples 1 and 2.

[発明の効果] 上記の通り、本発明のアルミニウム溶湯用部材は2層構
造を有し、内層は焼結した窒化珪素又はサイアロン系セ
ラミックスからなり、外層は主としてBN−3! 02
−A I 203−Y2O3からなるので、破壊、亀裂
、溶着、腐食等を起こすことなく長期間の使用に耐える
ことができる。また鋳鉄製管を使用しないので軽量であ
り、かつアルミニウム溶湯中へ溶解するようなこともな
い。従って、アルミニウム溶湯の品質低下を防止するこ
とができる。
[Effects of the Invention] As described above, the member for molten aluminum of the present invention has a two-layer structure, the inner layer is made of sintered silicon nitride or sialon ceramics, and the outer layer is mainly made of BN-3! 02
-AI 203-Y2O3, it can withstand long-term use without breaking, cracking, welding, corrosion, etc. Furthermore, since cast iron pipes are not used, it is lightweight and does not dissolve into molten aluminum. Therefore, deterioration in the quality of molten aluminum can be prevented.

このような′#徴を有する本発明のアルミニウム溶湯用
部材はストークス、ラドル、浸漬ヒーター保護管、ガス
吹込み用部材、溶湯ポンプ部材、溶湯撹拌゛用部材、溶
湯ストッパ及び座、及びトイ等に好適に使用することが
できる。
The members for molten aluminum of the present invention having such features are suitable for Stokes, ladle, immersion heater protection tube, gas blowing member, molten metal pump member, molten metal stirring member, molten metal stopper and seat, toys, etc. It can be suitably used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の部材の断面の結晶組織を示す走査顕
微鏡写真である。 代理人  弁理士  高 石  橘 馬第1図 15kV   ぢDIJ
FIG. 1 is a scanning micrograph showing the crystal structure of the cross section of the member of Example 1. Agent Patent Attorney Takaishi Tachibana Ma Diagram 1 15kV DIJ

Claims (11)

【特許請求の範囲】[Claims] (1)窒化珪素系又はサイアロン系セラミックスからな
る内層と、窒化ホウ素を主成分とする外層とからなるこ
とを特徴とするアルミニウム溶湯用部材。
(1) A member for molten aluminum comprising an inner layer made of silicon nitride-based or sialon-based ceramics and an outer layer mainly composed of boron nitride.
(2)特許請求の範囲第1項に記載のアルミニウム溶湯
用部材において、前記窒化珪素又はサイアロン系セラミ
ックスが50Kg/mm^2以上の曲げ強度、理論値の
90%以上の密度及び400℃以上の熱衝撃温度ΔTを
有することを特徴とするアルミニウム溶湯用部材。
(2) In the member for molten aluminum according to claim 1, the silicon nitride or sialon ceramic has a bending strength of 50 kg/mm^2 or more, a density of 90% or more of the theoretical value, and a temperature of 400°C or more. A member for molten aluminum characterized by having a thermal shock temperature ΔT.
(3)特許請求の範囲第1項又は第2項に記載のアルミ
ニウム溶湯用部材において、前記窒化珪素又はサイアロ
ン系セラミックスがSi_3N_470重量%以上と、
周期律表の第IIIa族元素の酸化物の1種又は2種以
上20重量%以下と、Al_2O_320重量%以下と
を含有することを特徴とするアルミニウム溶湯用部材。
(3) In the member for molten aluminum according to claim 1 or 2, the silicon nitride or sialon ceramic is Si_3N_470% by weight or more;
A member for molten aluminum, comprising 20% by weight or less of one or more oxides of Group IIIa elements of the periodic table and 20% by weight or less of Al_2O_3.
(4)特許請求の範囲第1項に記載のアルミニウム溶湯
用部材において、前記窒化珪素又はサイアロン系セラミ
ックスが一般式: Si_6_−_zAl_zO_zN_8_−_z(ただ
し0<z≦4.2)を有するβ−サイアロンであつて、
Si_3N_470重量%以上と、周期律表の第III
a族元素の酸化物の1種又は2種以上20重量%以下と
、Al_2O_320重量%以下と、AlN又はAlN
固溶体15重量%以下とを含有することを特徴とするア
ルミニウム溶湯用部材。
(4) In the member for molten aluminum according to claim 1, the silicon nitride or sialon ceramic is β-sialon having the general formula: Si_6_-_zAl_zO_zN_8_-_z (0<z≦4.2). And,
Si_3N_470% by weight or more and III of the periodic table
20% by weight or less of one or more oxides of group a elements, 20% by weight or less of Al_2O_3, and AlN or AlN
A member for molten aluminum, characterized in that it contains 15% by weight or less of a solid solution.
(5)特許請求の範囲第1項に記載のアルミニウム溶湯
用部材において、前記窒化珪素又はサイアロン系セラミ
ックスは一般式: M_x(Si,Al)_1_2(O,N)_1_6(た
だし、0<x≦2,MはLi,Na,Ca,Mg,Y及
び希土類元素のうち1種又は2種以上を示す。)を有す
るα−サイアロンであって、α相サイアロン10〜 7
0重量%とβ相サイアロン20〜90重量%とガラス質
相0.1〜10重量%とからなり、Si_3N_450
重量%以上と、Li,Na,Ca,Mg,Y及び希土類
元素の酸化物の1種又は2種以上20重量%以下と、A
lN又はAlN固溶体15重量%以下とを含有すること
を特徴とするアルミニウム溶湯用部材。
(5) In the member for molten aluminum according to claim 1, the silicon nitride or sialon ceramic has the general formula: M_x(Si,Al)_1_2(O,N)_1_6 (where 0<x≦ 2, M represents one or more of Li, Na, Ca, Mg, Y, and a rare earth element), which is an α-sialon having an α-phase sialon 10 to 7.
Si_3N_450
% by weight or more, one or more oxides of Li, Na, Ca, Mg, Y and rare earth elements and 20% by weight or less of A
A member for molten aluminum, characterized in that it contains 15% by weight or less of IN or AlN solid solution.
(6)特許請求の範囲第1項乃至第5項のいずれかに記
載のアルミニウム溶湯用部材において、前記外層が5〜
50μmの厚さを有することを特徴とするアルミニウム
溶湯用部材。
(6) In the member for molten aluminum according to any one of claims 1 to 5, the outer layer has a
A member for molten aluminum, characterized in that it has a thickness of 50 μm.
(7)特許請求の範囲第1項乃至第6項のいずれかに記
載のアルミニウム溶湯用部材において、前記部材がスト
ークス、ラドル、浸漬ヒーター保護管、ガス吹込み用部
材、溶湯ポンプ部材、溶湯撹拌用部材、溶湯ストッパ及
び座、及びトイのいずれかであることを特徴とするアル
ミニウム溶湯用部材。
(7) In the member for molten aluminum according to any one of claims 1 to 6, the member includes a Stokes, a ladle, an immersion heater protection tube, a gas blowing member, a molten metal pump member, and a molten metal stirring member. A member for molten aluminum, characterized in that it is any one of a member for use with molten metal, a molten metal stopper and seat, and a toy.
(8)窒化珪素又はサイアロン系セラミックスからなる
内層と窒化ホウ素を主成分とする外層とからなるアルミ
ニウム溶湯用部材を製造する方法において、前記窒化珪
素又はサイアロン系セラミックスの成形体をBN及びS
iO_2を含有するセラミックス粉末で被覆し、160
0〜1900℃で焼結することを特徴とする方法。
(8) In a method for producing a member for molten aluminum comprising an inner layer made of silicon nitride or sialon ceramics and an outer layer mainly composed of boron nitride, the molded body of silicon nitride or sialon ceramics is made of BN and S.
Coated with ceramic powder containing iO_2, 160
A method characterized by sintering at 0 to 1900°C.
(9)特許請求の範囲第8項に記載の方法において、前
記セラミックス粉末の被覆が0.5mm以上の厚さであ
ることを特徴とする方法。
(9) The method according to claim 8, wherein the ceramic powder coating has a thickness of 0.5 mm or more.
(10)特許請求の範囲第8項に記載の方法において、
前記窒化珪素又はサイアロン系セラミックスの焼結体を
BN及びSiO_2を含有するセラミックス粉末で被覆
し、1600〜1900℃で焼結することを特徴とする
方法。
(10) In the method according to claim 8,
A method characterized in that the sintered body of silicon nitride or sialon ceramics is coated with ceramic powder containing BN and SiO_2 and sintered at 1600 to 1900°C.
(11)特許請求の範囲第10項に記載の方法において
、前記セラミックス粉末の被覆が0.5mm以上の厚さ
であることを特徴とする方法。
(11) The method according to claim 10, wherein the ceramic powder coating has a thickness of 0.5 mm or more.
JP62335869A 1987-12-29 1987-12-29 Member for molten aluminum and method for producing the same Expired - Lifetime JP2588554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335869A JP2588554B2 (en) 1987-12-29 1987-12-29 Member for molten aluminum and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335869A JP2588554B2 (en) 1987-12-29 1987-12-29 Member for molten aluminum and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01176289A true JPH01176289A (en) 1989-07-12
JP2588554B2 JP2588554B2 (en) 1997-03-05

Family

ID=18293290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335869A Expired - Lifetime JP2588554B2 (en) 1987-12-29 1987-12-29 Member for molten aluminum and method for producing the same

Country Status (1)

Country Link
JP (1) JP2588554B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223192A (en) * 1990-01-29 1991-10-02 Nippon Light Metal Co Ltd Sintered material bonded with silicon nitride of reaction-sintering type having excellent resistance to welding of metallic melt and its production
JP2008194713A (en) * 2007-02-09 2008-08-28 National Institute Of Advanced Industrial & Technology Molding stoke with less slag deposition, and its manufacturing method
JP2011168424A (en) * 2010-02-17 2011-09-01 Kubota Corp Ceramic member for molten metal, and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130175A (en) * 1982-01-28 1983-08-03 東芝セラミツクス株式会社 Anticorrosive material for molten metal immersion
JPS6227392A (en) * 1985-07-24 1987-02-05 京セラ株式会社 Steeping member for aluminum molten alloy
JPS63190786A (en) * 1987-01-30 1988-08-08 日立金属株式会社 Coated silicon nitride base ceramics and manufacture
JPH01157487A (en) * 1987-12-11 1989-06-20 Koransha Co Ltd Complex nitride ceramics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130175A (en) * 1982-01-28 1983-08-03 東芝セラミツクス株式会社 Anticorrosive material for molten metal immersion
JPS6227392A (en) * 1985-07-24 1987-02-05 京セラ株式会社 Steeping member for aluminum molten alloy
JPS63190786A (en) * 1987-01-30 1988-08-08 日立金属株式会社 Coated silicon nitride base ceramics and manufacture
JPH01157487A (en) * 1987-12-11 1989-06-20 Koransha Co Ltd Complex nitride ceramics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223192A (en) * 1990-01-29 1991-10-02 Nippon Light Metal Co Ltd Sintered material bonded with silicon nitride of reaction-sintering type having excellent resistance to welding of metallic melt and its production
JP2008194713A (en) * 2007-02-09 2008-08-28 National Institute Of Advanced Industrial & Technology Molding stoke with less slag deposition, and its manufacturing method
JP4724863B2 (en) * 2007-02-09 2011-07-13 独立行政法人産業技術総合研究所 Cast stalk with little adhesion and method for producing the same
JP2011168424A (en) * 2010-02-17 2011-09-01 Kubota Corp Ceramic member for molten metal, and method for producing the same

Also Published As

Publication number Publication date
JP2588554B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
JP4113857B2 (en) Article comprising silicon substrate, bond layer and protective layer
US5508120A (en) Boron carbide cermet structural materials with high flexure strength at elevated temperatures
KR100775819B1 (en) Ceramic with zircon coating
US4796671A (en) Protective tube for thermocouple and method of producing same
JP2001328869A (en) Abrasion-resistant member and method for producing the same
JPH07118070A (en) Silicon nitride ceramic sintered compact
JP4601160B2 (en) Corrosion resistant material
JPH01176289A (en) Member for molten aluminum and production thereof
JP4855874B2 (en) Non-oxidizing atmosphere kiln tools
JP4422044B2 (en) Refractory
JPH0244067A (en) Bn no-pressure sintered ceramic having excellent melting flacture resistance
JP2001152308A (en) Method of forming corrosion resisting combined coating standing long use, and member having the composite coating
JPH0238391A (en) Member for dipping in molten metal and production thereof
JPH05186285A (en) Substrate for heat treatment and its production
JPH06239667A (en) Sintered porous sialon
JP2673330B2 (en) Method for forming composite protective coating on ceramic compact
KR950003577B1 (en) Co2 gas welding nozzle by ceramics
JP2001130983A (en) Silicon nitride sintered compact
WO2022018088A1 (en) Silicon ceramic coating for protecting a substrate
JP2002167284A (en) Joint body and method of manufacturing it
JPH03112857A (en) Complex mullite sintered material
JP2011132069A (en) Thermal shock resistant silicon nitride sintered compact and method for producing the same
JPS63282163A (en) Production of high-toughness silicon nitride ceramics
JPS5965690A (en) Joined body of ceramic pipe and joining method
JPH05170522A (en) Alumina-based composite ceramic sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12