JPS6230681A - Non-gas-permeable ceramic sintered body and manufacture - Google Patents

Non-gas-permeable ceramic sintered body and manufacture

Info

Publication number
JPS6230681A
JPS6230681A JP16777585A JP16777585A JPS6230681A JP S6230681 A JPS6230681 A JP S6230681A JP 16777585 A JP16777585 A JP 16777585A JP 16777585 A JP16777585 A JP 16777585A JP S6230681 A JPS6230681 A JP S6230681A
Authority
JP
Japan
Prior art keywords
sintered body
powder
ceramic sintered
coating
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16777585A
Other languages
Japanese (ja)
Other versions
JPH0449515B2 (en
Inventor
南澤 正敏
長治 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP16777585A priority Critical patent/JPS6230681A/en
Publication of JPS6230681A publication Critical patent/JPS6230681A/en
Publication of JPH0449515B2 publication Critical patent/JPH0449515B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Al溶湯に浸漬して使用されるSi 3N 
4質および/またはSiC質よりなる反応焼結成形体と
その製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to Si 3N which is used by being immersed in molten Al.
The present invention relates to a reaction sintered compact made of a SiC material and/or a SiC material, and a method for producing the same.

(従来の技術) 従来、Al溶湯用浸漬ヒータの保護管、Al溶湯低圧鋳
造機用給湯管(以下ストークと称す)等に使用される材
料はセラミック被覆された鋳鉄が用いられている。
(Prior Art) Conventionally, ceramic-coated cast iron has been used as a material for protection tubes for immersion heaters for molten Al, hot water supply pipes for low-pressure casting machines for molten Al (hereinafter referred to as "stalks"), and the like.

しかし、前記鋳鉄は使用中に被覆部分が担当あるいはは
く離して鋳鉄中の鉄分がM溶湯に混入することがあり、
最近では、SiO質+ Si3N4質。
However, during use, the coating part of the cast iron may be damaged or peeled off, and the iron content in the cast iron may mix into the M molten metal.
Recently, SiO quality + Si3N4 quality.

ZrO2質等のセラミック材料が使用されている。Ceramic materials such as ZrO2 are used.

ところで、Si3N4質+ SiC質の成形体を得る方
法として、反応焼結法、常圧焼結法、ホットプレス法が
知られているが、前記常圧焼結法、ホットプレス法は成
形性・加工性が悪く、また寸法精度を出しにくいといっ
た欠点を有している。また反応焼結法によれば、複雑な
形状の焼結成形体を得ることができることが知られてい
る。
By the way, reaction sintering, normal pressure sintering, and hot pressing are known as methods for obtaining molded bodies of Si3N4 + SiC, but the above-mentioned normal pressure sintering and hot pressing methods have poor formability and It has drawbacks such as poor workability and difficulty in achieving dimensional accuracy. Furthermore, it is known that a sintered compact having a complicated shape can be obtained by the reaction sintering method.

しかしながら反応焼結成形体は開気孔率が大きく、特に
Si3N4および/またはSiO質反応焼結体にあって
は10〜15%の開気孔率を有する。前記開気孔率を減
少させるため下記の諸方法が提案されている。
However, the reaction sintered compact has a large open porosity, and in particular, the Si3N4 and/or SiO reaction sintered compact has an open porosity of 10 to 15%. The following methods have been proposed to reduce the open porosity.

特公昭38−145号及び特公昭41−4961号に記
載の発明によれば、5iCi + TiCI ZrO等
の炭化物製品の表面にけい酸アルカリ、あるいはこれに
硼砂、硼酸等の有機又は無機酸混合したものを塗布した
後、加熱処理を施してガラス質の下地層を形成させ、次
いで前記下地層にA120 S T Z r O2rz
rSi04,0r203等の耐熱材料を炎溶射して中間
層を形成し、さらに最上層として、Si02 + Ca
O+ZnO+ BeO等の酸化物層を形成させる方法が
知られている。
According to the invention described in Japanese Patent Publication No. 38-145 and Japanese Patent Publication No. 41-4961, the surface of a carbide product such as 5iCi + TiCI ZrO is coated with alkali silicate, or mixed with an organic or inorganic acid such as borax or boric acid. After applying the material, heat treatment is performed to form a glassy base layer, and then A120 S T Z r O2rz is applied to the base layer.
Heat-resistant materials such as rSi04 and 0r203 are flame sprayed to form an intermediate layer, and the top layer is Si02 + Ca.
A method of forming an oxide layer such as O+ZnO+BeO is known.

特開昭54−142219号及び特開昭56−9217
0号記載の発明によれば、反応焼結Si3N4質成形体
の空隙部分に、Si r Alt Mg + Zr’等
の無機塩あるいは有機塩の溶液を含浸させ、その後焼成
を施す方法が知られている。
JP-A-54-142219 and JP-A-56-9217
According to the invention described in No. 0, a method is known in which a solution of an inorganic salt or an organic salt such as Si r Alt Mg + Zr' is impregnated into the voids of a reaction-sintered Si3N4 molded body, and then firing is performed. There is.

特開昭58−130175号記載の発明援よシ、多孔質
のSiO質+ si3N、質成形体の気孔中にAl2O
,。
In accordance with the invention described in JP-A-58-130175, porous SiO+si3N, Al2O in the pores of the porous molded body.
,.

Si3N4、 SiCの微粉を含浸させた後、BN系コ
ート材を被覆してなる溶融金属浸漬用耐食材料が提案さ
れている。
A corrosion-resistant material for immersion in molten metal has been proposed, which is impregnated with fine powder of Si3N4 and SiC and then coated with a BN-based coating material.

特開昭55−22424号記載の発明によりu203質
+ ZrO2質+ 5i(3質の耐火材料の表面に炭素
質材料、無機質材料の1糧又は2種以上を含浸、焼成お
よび施釉の処理のいずれか1種あるいは2種以上の処理
を施したストークが提案されている。
According to the invention described in JP-A No. 55-22424, U203 quality + ZrO2 quality + 5i (by impregnating the surface of the three types of refractory material with one or more of carbonaceous materials and inorganic materials, firing and glazing) A stalk subjected to one or more types of treatments has been proposed.

(本発明が解決しようとする問題点) しかしながら、従来知られている特開昭38−145号
及び特公昭41−4961号に記載された発明によれば
、被膜が下地層、中間層、上層に分かれているためかか
る被膜が施されてなる製品を溶湯に浸漬した場合、熱衝
撃により被膜層がはく離するという欠点を有していた。
(Problems to be Solved by the Present Invention) However, according to the conventionally known inventions described in JP-A No. 38-145 and JP-B No. 41-4961, the coating is formed into a base layer, an intermediate layer, and an upper layer. Therefore, when a product coated with such a coating is immersed in molten metal, the coating layer has the disadvantage of peeling off due to thermal shock.

また、特開昭54−142219号及び特開昭56−9
2170号に記載された発明によれば反応焼結Si3N
4にSi + kl + Mg + Zr等の無機塩あ
るいは有機塩の溶液を含浸させることは容易には行われ
ないので、気密性改善のための効果はほとんどなく、か
つ仮りに、含浸されたものでもSi、tJ4焼結体との
熱膨張係数が異なるため熱衝撃によりはく離しやすいと
いう欠点がある。
Also, JP-A-54-142219 and JP-A-56-9
According to the invention described in No. 2170, reaction sintered Si3N
It is not easy to impregnate 4 with a solution of inorganic or organic salts such as Si + Kl + Mg + Zr, so it has almost no effect on improving airtightness, and if impregnated However, since the coefficient of thermal expansion is different from that of Si and the tJ4 sintered body, it has the disadvantage that it easily peels off due to thermal shock.

また、特開昭58−130175号に記載された発明の
材料は、上記同様に気孔への含浸は充分には行われず、
またBN系等のセラミックフート材を塗布しても使用中
にその気密性は著しく低下する欠点を有していた。
Furthermore, the material of the invention described in JP-A No. 58-130175 does not sufficiently impregnate pores as described above.
Further, even if a ceramic foot material such as a BN type ceramic foot material is coated, the airtightness is significantly reduced during use.

また、特開昭55−22424号に記載された発明の低
圧鋳造装置用ストークは、その表面にタール等の炭素質
物質またはコロイド状の無機質材料を含浸・焼成および
施釉のいずれか1釉、あるいは2種以上の処理が施され
てなるストークであり、得られたストークの表面被膜は
、釉が塗布・焼成されてなるものは被膜が2層よりなり
、前記2層被膜の熱膨張係数の異なることKより互に剥
離しやすく、一方コロイ、ド状無機材料のみを含浸させ
ることは容易には行なわれず気密性改善のための効果は
ほとんどなく、また炭素物質を含浸させてなるものは容
易に酸化され、気密性がそこなわれるという欠点がある
Furthermore, the stalk for low-pressure casting equipment according to the invention described in JP-A No. 55-22424 is impregnated with a carbonaceous material such as tar or a colloidal inorganic material on its surface, fired, or glazed. It is a stalk that has been subjected to two or more types of treatments, and the surface coating of the obtained stalk is made of two layers when a glaze is applied and fired, and the two layers have different coefficients of thermal expansion. On the other hand, impregnating only colloidal or doped inorganic materials is not easy and has little effect on improving airtightness, and materials impregnated with carbon materials are easily separated from each other. It has the disadvantage that it is oxidized and the airtightness is impaired.

(問題点を解決するための手段) 本発明は、前記従来技術の欠点を除去改善することを目
的とするものであシ、特許請求の範囲に記載した非通気
性セラミック焼結成形体とその製造方法を提供すること
により、前記目的を達成することができる。
(Means for Solving the Problems) The present invention aims to eliminate and improve the drawbacks of the prior art. By providing a method, the above object can be achieved.

すなわちAt溶湯と接触する状態で用いられる5i5N
4質、SiC質のいずれか少なくとも1種よりなり、 珪酸ガラス質被膜により被覆されてなる非通気性セラミ
ック焼結成形体において、 加配1を溶湯に対して濡れ性の小さいセラミツり粉末が
前記被膜中に分散されていることを特徴とする非通気性
セラミック焼結成形体とその製造方法に関するものであ
る。
In other words, 5i5N used in contact with molten At
In an impermeable ceramic sintered body made of at least one of the four materials and the SiC material and covered with a vitreous silicate film, the film contains a ceramic powder having low wettability with respect to the molten metal. The present invention relates to an air-impermeable ceramic sintered body characterized in that the present invention is dispersed in a non-porous ceramic sintered body, and a method for manufacturing the same.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明者等は、まず、5i5N4および/またはSiC
質反応焼結成形体の通気性をなくすために従来知られて
いる珪酸ガラス質の被膜で前記反応焼結成形体の表面を
覆う方法について検討した。
The present inventors first discovered that 5i5N4 and/or SiC
In order to eliminate the air permeability of the reactive sintered compact, we investigated a method of covering the surface of the reactive sintered compact with a conventionally known silicate glass film.

すなわちガラス質中の塩基性成分(Na201 K2O
rCaO、Mg0−) 、酸性成分(Si02) +両
性成分(ht2o、 I B2O5)の量を種々変化さ
せた混合粉末のスラリーを反応焼結成形体に塗布した後
焼成を行ない、生成したガラス質被膜の状態について観
察したところ、アルカリ成分が少なく、かつ硼酸(B2
0.)を含有するガラス質被膜が反応焼結成形体との間
に中間層を形成させて強固な結合を与えることがわかっ
た。しかし、このようにガラス化させつつ同時に被膜を
施す方法によれば前記混合粉末中の溶融温度が低く、か
つ低粘性のB10゜成分は、焼成の際他の混合粉末成分
と共融する以前に単独状態で溶融して成形体の気孔中に
滲透し、成形体そのものの耐熱衝撃性を低下させ、熱衝
撃による亀裂が発生しやすいことが判明した。そこでこ
れらの成分を予め溶融してフリットしたほう珪酸ガラス
粉末を使用したところ、成形体の耐熱衝撃性を損わずか
つ付着力の強い被膜を施すことができることを新規に知
見した。
In other words, the basic components in the glass (Na201 K2O
A slurry of mixed powder containing various amounts of rCaO, Mg0-), acidic components (Si02) + amphoteric components (ht2o, IB2O5) was applied to the reaction sintered compact, and then fired. When we observed the condition, we found that there were few alkaline components and boric acid (B2).
0. ) was found to form an intermediate layer with the reactive sintered compact to provide a strong bond. However, according to this method of vitrifying and simultaneously applying a film, the B10° component, which has a low melting temperature and low viscosity, in the mixed powder can be melted before eutectic with other mixed powder components during firing. It has been found that it melts in its own state and seeps into the pores of the molded body, lowering the thermal shock resistance of the molded body itself and making cracks more likely to occur due to thermal shock. Therefore, by using borosilicate glass powder prepared by melting and fritting these components in advance, we newly discovered that it is possible to apply a coating with strong adhesion without impairing the thermal shock resistance of the molded body.

さらに本発明者等はほう珪酸ガラス粉末のうちSi 3
N4質成形体用のものとしては熱膨張係数が1.5X 
10−’ 〜3.5 X 10−’/ ’CI SiG
質成形体用ノものとしては熱膨張係数が2.5 X 1
0−6〜4.5x1o−’/℃であるような組成を有す
るほう珪酸質 −ガラス粉末が反応焼結成形体の被膜と
して最も好ましいととを見出した。その理由は前記はう
珪酸ガラス粉末の熱膨張係数が反応焼結成形体の熱膨張
係数と著しく異なると、被膜がはく離するという問題点
があるので、前記熱膨張範囲内でかつ、反応焼結体との
、熱膨張係数が同じか又は成形体に適度な圧縮応力が加
わるように若干小さくすることが好ましく、熱膨張係数
を大きくすると焼成時に、被膜の表面に亀裂が発生した
シ、Al溶湯に浸漬時に被膜がはく離するので好ましく
なく、またほう珪酸質粉末のうちでも一般に熱膨張係数
の小さいものほどその軟化点が上昇するので、この点か
らも熱膨張係数の若干小さいほう珪酸質粉末を用いて被
膜を施すことが望ましいためである。
Furthermore, the present inventors discovered that Si 3 of the borosilicate glass powder
The thermal expansion coefficient is 1.5X for N4 molded bodies.
10-' ~3.5 X 10-'/'CI SiG
The coefficient of thermal expansion is 2.5 x 1 for molded products.
It has been found that a borosilicate-glass powder having a composition of 0-6 to 4.5 x 1 o-'/°C is most preferred as a coating for a reaction-sintered compact. The reason for this is that if the thermal expansion coefficient of the borosilicate glass powder is significantly different from the thermal expansion coefficient of the reaction sintered compact, there is a problem that the coating will peel off. It is preferable that the coefficient of thermal expansion be the same or slightly smaller so that appropriate compressive stress is applied to the molded body.If the coefficient of thermal expansion is increased, cracks may occur on the surface of the coating during firing, and the molten aluminum may This is not preferable because the film peels off during immersion, and also among borosilicate powders, the softening point generally increases as the coefficient of thermal expansion becomes smaller, so from this point of view as well, borosilicate powders with a slightly smaller coefficient of thermal expansion are used. This is because it is desirable to apply the coating using the same method.

なおほう珪酸質ガラスの軟化温度は、At溶湯の温度よ
シ高いことが必要であり、少なくさも700℃以上望ま
しくは800℃以上であることが好ましい。
The softening temperature of the borosilicate glass needs to be higher than the temperature of the At molten metal, and is preferably at least 700°C or higher, preferably 800°C or higher.

以上の結果に基づいて、特定成分のほう珪酸ガラスを反
応焼結成形体に被覆したものをAl溶湯に浸漬する試験
を繰返し行なった結果、被膜のはく離、亀裂はなくなっ
たが、Al溶湯に長時間浸漬すると前記1溶湯とほう珪
酸ガラスが反応し、遊離シリコンを析出して、はう珪酸
ガラス質の被膜が溶離することか認められた。
Based on the above results, we repeatedly conducted tests in which a reactive sintered molded body coated with borosilicate glass of a specific composition was immersed in molten Al, and as a result, there was no peeling or cracking of the coating. It was observed that upon immersion, the molten metal 1 reacts with the borosilicate glass, precipitates free silicon, and elutes the borosilicate glass coating.

そこで、更に本発明者等は、はう珪酸ガラス質の被膜を
At溶湯に濡れ難くする方法、すなわちほう珪酸ガラス
質被膜が溶離しない方法について検討した。この結果A
t溶湯に濡れ性の小さい5i5N4t BN p Ti
B2p T1Cr Zr02r Zr5iO,等のセラ
ミック粉末をほう珪酸ガラス質被膜中に懸濁させたもの
がAl溶湯に対し最も濡れ難いことを知見した。この際
前記At溶湯に濡れ性の小さいセラミック粉末(以下セ
ラミック粉末という)は、はう珪酸ガラス質粉末100
重量部に対して2ON量部以下の配合が好ましいことが
判った。前記セラミック粉末の配合量を限定する理由は
セラミック粉末の配合量が20重量部よりも多いと被膜
の耐熱性は向上するけれども気密性が劣化し、かつ被膜
がはく離しやすくなるため、前記配合量は20重量部以
下にする必要がある。
Therefore, the present inventors further studied a method of making the borosilicate glass film difficult to wet with At molten metal, that is, a method of preventing the borosilicate glass film from eluting. This result A
5i5N4t BN p Ti with low wettability to molten metal
It has been found that a ceramic powder such as B2p T1Cr Zr02r Zr5iO suspended in a borosilicate glass coating is the most difficult to wet with molten Al. At this time, the ceramic powder with low wettability to the At molten metal (hereinafter referred to as ceramic powder) is a vitreous silicate powder of 100%
It has been found that it is preferable to mix 2ON parts by weight or less. The reason for limiting the amount of ceramic powder blended is that if the amount of ceramic powder blended is more than 20 parts by weight, the heat resistance of the coating will improve, but the airtightness will deteriorate and the coating will peel easily. must be 20 parts by weight or less.

次に本発明の非通気性セラミック焼結成形体の製造方法
を説明する。
Next, a method for manufacturing the non-porous ceramic sintered body of the present invention will be explained.

はう珪酸ガラス質被膜にセラミック粉末を配合・混合す
る方法としては、セラミック粉末とほう珪酸ガラス質粉
末を水クアルコール等の溶媒にMQさせ、これを反応焼
結成形体の表面に刷毛塗υ。
A method for blending and mixing ceramic powder with a borosilicate glassy coating is to MQ the ceramic powder and borosilicate glassy powder in a solvent such as aqueous alcohol, and then apply this to the surface of the reaction sintered body with a brush.

スプレー掛け、浸し掛は等の方法により塗布し、焼成す
ることにより得られる。本発明の他の1っの方法によれ
ば、反応焼結成形体の表面に、まず始めに特定成分のほ
う珪酸ガラス質粉末を水!アルコール等の溶媒に懸濁さ
せたスラリーを塗布し、その後、さらにセラミック粉末
を水、アルコール等の溶媒に懸濁させたスラリー又は前
記セラミック粉末とほう珪酸ガラス粉末の混合物を溶媒
に懸濁させたスラリーを前記はう珪酸ガラス質粉末を塗
布した層の上部にさらに塗布し、その後焼成する。
It can be obtained by applying by spraying, dipping, etc., and baking. According to another method of the present invention, borosilicate glass powder of a specific component is first applied to the surface of the reaction-sintered compact with water! A slurry of ceramic powder suspended in a solvent such as alcohol was applied, and then a slurry of ceramic powder suspended in a solvent such as water or alcohol, or a mixture of the ceramic powder and borosilicate glass powder was suspended in a solvent. The slurry is further applied on top of the layer coated with the vitreous silicate powder, and then fired.

上記方法によれば、はう珪酸質ガラス被膜の比較的表面
にセラミック粉末が存在するようになシ、濡れ性はさら
に改善されるばかりでなく、反応焼結成形体に近い被膜
の部分には、セラミック粉末が全く存在せず、反応焼結
成形体の基体であるSiC又はSi、 N4の表面がほ
う珪酸ガラスと反応して中間化合物を形成し、よシ強固
な結合となり、熱衝撃によるはく離が全くなくなる。
According to the above method, the ceramic powder is present relatively on the surface of the siliceous glass coating, and not only the wettability is further improved, but also the part of the coating near the reaction sintered body has There is no ceramic powder present, and the surface of SiC, Si, or N4, which is the base material of the reaction sintered compact, reacts with the borosilicate glass to form an intermediate compound, resulting in a very strong bond and no peeling due to thermal shock. It disappears.

本発明方法によれば、反応焼結成形体の表面は薄いSi
n、、被膜で覆われてはいるが、はう珪酸ガラス質被膜
を施す前に予め反応焼結成形体を酸化性雰囲気で焼成し
て前記5in2被膜をより成長させてからほう珪酸ガラ
ス質被膜を施すことにより、よシ強固な被膜を形成させ
ることができる。
According to the method of the present invention, the surface of the reaction-sintered compact is made of thin Si.
Although it is covered with a film, before applying the borosilicate glass film, the reaction sintered compact is fired in an oxidizing atmosphere to further grow the 5in2 film, and then the borosilicate glass film is applied. By applying this, a very strong film can be formed.

本発明によれば、はう珪酸ガラス質粉末に配合するセラ
ミック粉末の粒径は20μm以下が好ましく、その理由
は20μmより太きいとほう珪酸ガラス質粉末と混合し
ても十分に均一とならないためである。
According to the present invention, the particle size of the ceramic powder to be mixed with the borosilicate glass powder is preferably 20 μm or less, because if the particle size is larger than 20 μm, it will not be sufficiently uniform even when mixed with the borosilicate glass powder. It is.

本発明によれば焼成温度は、はう珪酸ガラス粉末が溶融
するに十分な温度であれば、一般に軟化点より300〜
400℃高い温度で十分である。焼成の際の雰囲気は酸
化性である場合は、高温又は長時間焼成すると発泡現象
を生じるので、好ましくなく、非酸化性雰囲気で焼成す
ることが好ましい。
According to the present invention, the firing temperature is generally 300 to 300° below the softening point, as long as the temperature is sufficient to melt the borosilicate glass powder.
A temperature 400°C higher is sufficient. If the atmosphere during firing is oxidizing, it is not preferable because firing at high temperature or for a long time will cause a foaming phenomenon, and it is preferable to perform firing in a non-oxidizing atmosphere.

なお酸化性雰囲気中で焼成する際には、反応焼結成形体
を予め 酸化性雰囲気で焼成した後に、はう珪酸ガラス
質粉末とセラミック粉末の混合スラリーを塗布、焼成す
ることにより、上記発泡現象を防止することができる。
When firing in an oxidizing atmosphere, the above foaming phenomenon can be suppressed by first firing the reaction sintered compact in an oxidizing atmosphere, then applying a slurry mixture of vitreous silicate powder and ceramic powder and firing. It can be prevented.

以下に本発明の実施例について説明する。Examples of the present invention will be described below.

実施例1゜ 200メツシユ以下の粒度に調整したほう珪酸ガラス粉
末(熱膨張係数2.3 X 1 o−’、/’c 、軟
化温度830℃2組成5i0280.2%lB2031
7.9 %1K201.9%)と5重N%のBN粉末(
平均粒径10.5μ)および5重量%のZrO□粉末(
平均粒径2.7μ)を含む40重置火水溶液混合泥漿を
作成し、これを反応焼結により製造されたSi 31J
 、ストークの外表面に約2闘厚にスプレー塗布した。
Example 1 Borosilicate glass powder adjusted to a particle size of 200 mesh or less (thermal expansion coefficient 2.3 x 1 o-', /'c, softening temperature 830°C2 composition 5i0280.2%lB2031
7.9%1K201.9%) and 5fold N% BN powder (
average particle size 10.5 μ) and 5 wt% ZrO□ powder (
Si 31J produced by reaction sintering was prepared by creating a 40-layer mixed fire-water solution slurry containing an average particle size of 2.7μ).
, spray applied to the outer surface of the stalk to a thickness of approximately 2 coats.

これを乾燥後・1200℃1時間保持の条件でN2雰囲
気中で焼成を行ない、アルミニウム低圧鋳造用ストーク
を得た。これをIKty/cm2の加圧条件で圧漏れ試
験を行なったところ、被覆を施さないスト−りは1.7
 X l O””  (cm2−cm/H2Q cm・
cm2・3 )の通気度を有していたが、本発明のスト
ークの通気度は8.8 X 10−’ (cm2・cm
/H20cm、 cm2.3 )であり、実際の使用に
あたっては全く問題がないことがわかった。またこのス
トークは溶融A/に対して濡れ難く、使用後1ケ月を経
た時点でも、継続使用できることがわかった。
After drying this, it was fired in a N2 atmosphere under conditions of holding at 1200° C. for 1 hour to obtain a stalk for aluminum low pressure casting. When this was subjected to a pressure leakage test under the pressurizing condition of IKty/cm2, the stroke without coating was 1.7
X l O”” (cm2-cm/H2Q cm・
The stalk of the present invention had an air permeability of 8.8 x 10-' (cm2.cm).
/H20cm, cm2.3), and it was found that there was no problem at all in actual use. It was also found that this stalk was difficult to wet with molten A/, and could be used continuously even after one month had passed after use.

実施例2゜ 実施例1と同質のほう珪酸ガラス粉末の40重量%水溶
液泥漿を作成し、これを反応焼結により製造されたSi
 3N、製保護管に約2闘厚にスプレー塗布した。次い
でzr02粉末の40重量%水溶液とほう珪酸ガラス粉
末40重量%水溶液の混合泥漿を約1 f!m厚にスプ
レー塗布した。これを乾燥後、950℃30分保持の条
件で焼成を行ない、溶融Al浸漬用ヒーター保護管を得
た。通気度試験により、この保護管の通気性はほとんど
ないことが確かめられ、また黒鉛ルツボ中で750℃に
加熱したA7溶湯5 N9中に浸漬して耐食性を調べた
ところ、3ケ月を経過してもほとんど変化は見られなか
った。
Example 2 A slurry of a 40% by weight aqueous solution of borosilicate glass powder of the same quality as in Example 1 was prepared, and this was mixed with Si produced by reaction sintering.
3N, was spray applied to the protective tube to a thickness of approximately 2 coats. Next, about 1 f! Spray coated to a thickness of m. After drying, it was fired at 950° C. for 30 minutes to obtain a heater protection tube for immersion in molten Al. An air permeability test confirmed that this protective tube had almost no air permeability, and when it was immersed in A7 molten metal 5N9 heated to 750°C in a graphite crucible to examine its corrosion resistance, it was found that after 3 months had passed. Almost no change was observed.

比較のため、はう珪酸ガラス粉末のみで施釉を行なった
保護管をAl溶湯中に浸漬したところ、浸漬してまもな
く保護管の表面にAlが付着するのが観察された。
For comparison, when a protective tube glazed only with borosilicate glass powder was immersed in molten Al, Al was observed to adhere to the surface of the protective tube shortly after immersion.

実施例3゜ 実施例1と同様の混合泥漿を、あらかじめ酸化性雰囲気
で熱処理した反応焼結5i5N、製パイプの外表面に1
關厚にスプレー塗布し、乾燥後1100℃1時間保持の
条件で大気雰囲気下で焼成を行なった。得られた被膜に
はほとんど発泡現象はみられなかったが、比較のため酸
化処理を経ないものへ塗布・焼成を行なったところ、ガ
ラス質被膜に著しい発泡が認められた。
Example 3 The same mixed slurry as in Example 1 was applied to the outer surface of a reactive sintered 5i5N pipe that had been heat-treated in an oxidizing atmosphere.
It was spray coated thickly, and after drying, it was fired in an air atmosphere at 1100° C. for 1 hour. Almost no foaming phenomenon was observed in the resulting coating, but when a coating and baking was performed on a coating that had not undergone oxidation treatment for comparison, significant foaming was observed in the glassy coating.

(本発明の効果) 本発明の反応焼結成形体は、通気性が全くなく、かつ繰
返しAl溶湯に浸漬しても被膜がはく離することがなく
、l溶湯に対する濡れ性が極めて小さいため、耐食性が
著しく改善される。
(Effects of the present invention) The reaction sintered compact of the present invention has no air permeability, the film does not peel off even when repeatedly immersed in molten Al, and its wettability with molten metal is extremely low, so it has excellent corrosion resistance. Significantly improved.

Claims (1)

【特許請求の範囲】 1、Al溶湯と接触する状態で用いられるSi_3N_
4質、SiC質のいずれか少なくとも1種よりなり、 珪酸ガラス質被膜により被覆されてなる非通気性セラミ
ック焼結成形体において、 前記Al溶湯に対して濡れ性の小さいセラミック粉末が
前記被膜中に分散されていることを特徴とする通気性セ
ラミック焼結成形体。 2、前記被膜中に分散されているセラミック粉末は、S
i_3N_4、BN、TiB_2、TiC、ZrO_2
、ZrSiO_4の1種または2種以上であることを特
徴とする特許請求の範囲第1項記載の非通気性セラミッ
ク焼結成形体。 3、前記被膜中に分散されているセラミック粉末の、粒
径は0.1〜20μmであることを特徴とする特許請求
の範囲第1項あるいは第2項記載の非通気性セラミック
焼結成形体。 4、前記被膜中に分散されているセラミック粉末の含有
量は、被膜中の珪酸ガラス100重量部に対し20重量
部以下であることを特徴とする特許請求の範囲第1〜3
項のいずれかに記載の非通気性セラミック焼結成形体。 5、前記珪酸ガラス質被膜は、その熱膨張係数が1.5
×10^−^6〜4.5×10^−^6/℃、またその
軟化温度が700℃以上のほう珪酸ガラス質被膜である
ことを特徴とする特許請求の範囲第1〜4項のいずれか
に記載の非通気性セラミック焼結成形体。 6、Al溶湯と接触する状態で用いられるSi_3N_
4質、SiC質のいずれか少なくとも1種よりなり、 珪酸ガラス質被膜により被覆されてなる非通気性セラミ
ック焼結成形体の製造方法において、 前記セラミック焼結成形体の表面に、前記Al溶湯に対
して濡れ性の小さいセラミック粉末と珪酸ガラス質粉末
を溶媒に懸濁させたスラリーを塗布した後、焼成するこ
とを特徴とする非通気性セラミック焼結成形体の製造方
法。 7、前記被膜中に分散されているセラミック粉末は、S
i_3N_4、BN、TiB_2、TiC、ZrO_2
、ZrSiO_4の1種または2種以上であることを特
徴とする特許請求の範囲第6項記載の非通気性セラミッ
ク焼結成形体の製造方法。 8、前記被膜中に分散されているセラミック粉末の、粒
径は0.1〜20μmであることを特徴とする特許請求
の範囲第6あるいは7項記載の非通気性セラミック焼結
成形体の製造方法。 9、前記珪酸ガラス質被膜中に分散されているセラミッ
ク粉末の含有量は、珪酸ガラス質粉末100重量部に対
し20重量部以下であることを特徴とする、特許請求の
範囲第6〜8項のいずれかに記載の非通気性セラミック
焼結成形体の製造方法。 10、前記珪酸ガラス質粉末は、その熱膨張係数が1.
5×10^−^6〜4.5×10^−^6/℃、またそ
の軟化温度が700℃以上のほう珪酸ガラス質粉末であ
ることを特徴とする特許請求の範囲第6〜9項のいずれ
かに記載の非通気性セラミック焼結成形体の製造方法。 11、Al溶湯と接触する状態で用いられるSi_3N
_4質、SiC質のいずれか少なくとも1種よりなり、 珪酸ガラス質被膜により被覆されてなる非通気性セラミ
ック焼結成形体の製造方法において、 前記セラミック焼結体の表面に、珪酸ガラス質粉末を溶
媒に懸濁させたスラリーを塗布した後、さらに前記Al
溶湯に対して濡れ性の小さいセラミック粉末の単独また
はこれに珪酸ガラス質粉末を混合したものを溶媒に懸濁
させたスラリーを塗布し、焼成することを特徴とする非
通気性セラミック焼結成形体の製造方法。 12、前記被膜中に分散されているセラミック粉末は、
Si_3N_4、BN、TiB_2、TiC、ZrO_
2、ZrSiO_4の1種または2種以上であることを
特徴とする特許請求の範囲第11項記載の非通気性セラ
ミック焼結成形体の製造方法。 13、前記被膜中に分散されているセラミック粉末の、
粒径は0.1〜20μmであることを特徴とする特許請
求の範囲第10あるいは12項記載の非通気性セラミッ
ク焼結成形体の製造方法。 14、前記被膜中に分散されているセラミック粉末の含
有量は、珪酸ガラス質粉末100重量部に対し20重量
部以下が含有されていることを特徴とする特許請求の範
囲第11〜13項のいずれかに記載の非通気性セラミッ
ク焼結成形体の製造方法。 15、前記珪酸ガラス質粉末は、その熱膨張係数が1.
5×10^−^6〜4.5×10^−^6/℃、またそ
の軟化温度が700℃以上のほう珪酸ガラス質粉末であ
ることを特徴とする特許請求の範囲第11〜14項のい
ずれかに記載の非通気セラミック焼結成形体の製造方法
[Claims] 1. Si_3N_ used in contact with molten Al
In the non-porous ceramic sintered body made of at least one of the four materials and the SiC material and covered with a vitreous silicate film, a ceramic powder having low wettability with respect to the molten Al is dispersed in the film. A breathable ceramic sintered body characterized by: 2. The ceramic powder dispersed in the coating is S
i_3N_4, BN, TiB_2, TiC, ZrO_2
, ZrSiO_4, or two or more thereof. 3. The impermeable ceramic sintered body according to claim 1 or 2, wherein the ceramic powder dispersed in the coating has a particle size of 0.1 to 20 μm. 4. Claims 1 to 3, characterized in that the content of the ceramic powder dispersed in the coating is 20 parts by weight or less per 100 parts by weight of silicate glass in the coating.
The impermeable ceramic sintered body according to any one of paragraphs. 5. The silicate glass coating has a thermal expansion coefficient of 1.5.
x10^-^6 to 4.5 x 10^-^6/℃, and the softening temperature is 700℃ or higher. The impermeable ceramic sintered body according to any one of the above. 6. Si_3N_ used in contact with molten Al
A method for manufacturing an impermeable ceramic sintered body made of at least one of four materials and a SiC material and coated with a vitreous silicate film, wherein the surface of the ceramic sintered body is coated with the molten Al metal. A method for manufacturing a non-porous ceramic sintered body, which comprises applying a slurry of a ceramic powder with low wettability and a vitreous silicate powder suspended in a solvent, and then firing the slurry. 7. The ceramic powder dispersed in the coating is S
i_3N_4, BN, TiB_2, TiC, ZrO_2
, ZrSiO_4, or ZrSiO_4. 8. The method for producing a non-porous ceramic sintered body according to claim 6 or 7, wherein the particle size of the ceramic powder dispersed in the coating is 0.1 to 20 μm. . 9. Claims 6 to 8, characterized in that the content of the ceramic powder dispersed in the vitreous silicate film is 20 parts by weight or less per 100 parts by weight of the vitreous silicate powder. A method for producing a non-porous ceramic sintered body according to any one of the above. 10. The silicate glass powder has a coefficient of thermal expansion of 1.
Claims 6 to 9 are characterized in that the powder is a borosilicate glassy powder having a softening temperature of 5×10^-^6 to 4.5×10^-^6/℃ and a softening temperature of 700℃ or higher. A method for producing a non-porous ceramic sintered body according to any one of the above. 11. Si_3N used in contact with molten Al
A method for manufacturing an impermeable ceramic sintered body made of at least one of the following materials: After applying the slurry suspended in Al,
A non-porous ceramic sintered body characterized by applying a slurry of a ceramic powder having low wettability to molten metal or a mixture thereof with a silicate glass powder suspended in a solvent and firing it. Production method. 12. The ceramic powder dispersed in the coating is
Si_3N_4, BN, TiB_2, TiC, ZrO_
2. The method for producing a non-porous ceramic sintered body according to claim 11, characterized in that the material is one or more of ZrSiO_4. 13. Ceramic powder dispersed in the coating,
13. The method for producing a non-porous ceramic sintered body according to claim 10 or 12, wherein the particle size is 0.1 to 20 μm. 14. The content of the ceramic powder dispersed in the coating is 20 parts by weight or less per 100 parts by weight of the vitreous silicate powder. A method for producing a non-porous ceramic sintered body according to any one of the above. 15. The vitreous silicate powder has a coefficient of thermal expansion of 1.
Claims 11 to 14, characterized in that the powder is a borosilicate glassy powder having a softening temperature of 5×10^-^6 to 4.5×10^-^6/℃ and a softening temperature of 700℃ or higher. A method for producing a non-porous ceramic sintered body according to any one of the above.
JP16777585A 1985-07-31 1985-07-31 Non-gas-permeable ceramic sintered body and manufacture Granted JPS6230681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16777585A JPS6230681A (en) 1985-07-31 1985-07-31 Non-gas-permeable ceramic sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16777585A JPS6230681A (en) 1985-07-31 1985-07-31 Non-gas-permeable ceramic sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS6230681A true JPS6230681A (en) 1987-02-09
JPH0449515B2 JPH0449515B2 (en) 1992-08-11

Family

ID=15855876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16777585A Granted JPS6230681A (en) 1985-07-31 1985-07-31 Non-gas-permeable ceramic sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS6230681A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452606B2 (en) * 2003-05-01 2008-11-18 Saint-Gobain Ceramics & Plastics, Inc. Silicon carbide ceramic components having oxide layer
US7993571B2 (en) 2003-03-26 2011-08-09 Saint-Gobain Ceramic & Plastics, Inc. Silicon carbide ceramic components having oxide layer
JP2011168424A (en) * 2010-02-17 2011-09-01 Kubota Corp Ceramic member for molten metal, and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993571B2 (en) 2003-03-26 2011-08-09 Saint-Gobain Ceramic & Plastics, Inc. Silicon carbide ceramic components having oxide layer
US7452606B2 (en) * 2003-05-01 2008-11-18 Saint-Gobain Ceramics & Plastics, Inc. Silicon carbide ceramic components having oxide layer
JP2011168424A (en) * 2010-02-17 2011-09-01 Kubota Corp Ceramic member for molten metal, and method for producing the same

Also Published As

Publication number Publication date
JPH0449515B2 (en) 1992-08-11

Similar Documents

Publication Publication Date Title
US4567103A (en) Carbonaceous articles having oxidation prohibitive coatings thereon
US4559270A (en) Oxidation prohibitive coatings for carbonaceous articles
US4931413A (en) Glass ceramic precursor compositions containing titanium diboride
JPS59169942A (en) Method of cladding substrate with glassy film
WO2019109753A1 (en) Anti-oxidation coating for tungsten-rhenium thermocouple with high thermal shock resistance and application thereof
JPH06287468A (en) Coating to protect material from reaction with air at high temperature
JPH07315966A (en) High temperature coating provided on ceramic base material and method for non-calcining for obtaining this
CN110903074A (en) High-temperature oxidation-resistant coating on surface of silicon carbide substrate and preparation method thereof
JP2001505519A (en) Refractory composites protected from oxidation at high temperatures, precursors of the above materials, their production
JPS6230681A (en) Non-gas-permeable ceramic sintered body and manufacture
JPS5925754B2 (en) Adhesive for ceramics and its adhesion method
CN115636692A (en) High-temperature-resistant and anti-oxidation ceramic coating and preparation method and application thereof
JP4363905B2 (en) Carbon-based composite material
JPH03285885A (en) Coating material for preventing penetration of molten aluminum
JPH0424142B2 (en)
JP2585548B2 (en) Hermetic ceramic coating and method for producing the same
JP4658523B2 (en) Oxidation-resistant composite material
JP3060590B2 (en) High temperature heat resistant material
JP2504341B2 (en) High temperature heat resistant member manufacturing method
JP2964858B2 (en) Cast iron parts with thermal barrier coating
US4600607A (en) Bonding a sialon coating to a substrate
JPH0790619A (en) High temperature heat resistant member
JP2757031B2 (en) Method for producing mullite sintered body
JP2751364B2 (en) Corrosion resistant ceramic material and method for producing the same
CN105155251A (en) Preparation method for silicon carbide fiber with porous alumina coating