JPH0712990B2 - Reaction sintering type silicon nitride bonded sintered body having excellent resistance to molten metal casting and method for producing the same - Google Patents

Reaction sintering type silicon nitride bonded sintered body having excellent resistance to molten metal casting and method for producing the same

Info

Publication number
JPH0712990B2
JPH0712990B2 JP2016079A JP1607990A JPH0712990B2 JP H0712990 B2 JPH0712990 B2 JP H0712990B2 JP 2016079 A JP2016079 A JP 2016079A JP 1607990 A JP1607990 A JP 1607990A JP H0712990 B2 JPH0712990 B2 JP H0712990B2
Authority
JP
Japan
Prior art keywords
molten metal
metal
sintered body
silicon
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2016079A
Other languages
Japanese (ja)
Other versions
JPH03223192A (en
Inventor
努 斉藤
房之助 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2016079A priority Critical patent/JPH0712990B2/en
Publication of JPH03223192A publication Critical patent/JPH03223192A/en
Publication of JPH0712990B2 publication Critical patent/JPH0712990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属溶湯に接触する反応焼結型窒化けい素結
合質焼結体の耐金属溶湯鋳付き性の改善に関わるもので
あって、特にその焼結体の表層を焼結体を構成する窒化
けい素をバインダーとして窒化硼素又はアルミニウム或
いはその混合体からなる耐金属溶湯鋳付き材で形成した
反応焼結型窒化けい素結合質焼結体及びその製造方法に
関するものである。
Description: TECHNICAL FIELD The present invention relates to improvement of metal melt castability of a reaction-sintered silicon nitride bonded sintered body that is in contact with a metal melt, and A reaction-sintered silicon nitride bonded sintered body in which the surface layer of the sintered body is formed from a material with a molten metal-resistant cast material made of boron nitride, aluminum, or a mixture thereof using silicon nitride constituting the sintered body as a binder. And a manufacturing method thereof.

従来技術とその問題点 金属溶湯、例えばアルミニウム、銅、亜鉛、マグネシウ
ム、などに接触する構造材として窒化けい素単体や窒化
けい素と炭化けい素との複合体等の窒化けい素質反応焼
結セラミックス体が使用されている。
Prior art and its problems Silicon nitride reactive sintered ceramics such as silicon nitride simple substance or a composite of silicon nitride and silicon carbide as a structural material that contacts molten metal such as aluminum, copper, zinc, magnesium, etc. The body is being used.

例えば、アルミニウム溶湯用構造材として、溶解炉・保
持炉などの炉壁材、低圧鋳造装置用ストークス、注湯用
樋材、溶湯浸漬用ヒータ管、測温用熱電対の保護管、脱
ガス用ガス吹き込み管、溶湯攪拌用部材等の各種の形態
で適用されている。
For example, structural materials for molten aluminum, such as furnace wall materials for melting furnaces and holding furnaces, Stokes for low-pressure casting equipment, gutter materials for pouring molten metal, heater tubes for molten metal immersion, protective tubes for thermocouples for temperature measurement, degassing It is applied in various forms such as a gas blowing pipe and a member for stirring molten metal.

この種の構造材の場合には、静的或いは動的な状態で接
する溶湯との反応性があると、溶湯がその構造材に付着
して反応腐食し、その構造材としての使用機能を喪失し
使用不能に至ると共に、反応生成物が剥離したり溶出し
たりして溶湯汚染を招くことになるので出来るだけ耐金
属溶湯鋳付き性に優れたものが必要とされる。
In the case of this type of structural material, if there is reactivity with the molten metal that contacts in a static or dynamic state, the molten metal will adhere to the structural material and react and corrode, resulting in loss of its function as a structural material. However, as the reaction product becomes unusable and the reaction product peels off or elutes to cause the contamination of the molten metal, it is required to have a metal melt casting resistance as good as possible.

而して、窒化けい素体或いはその炭化けい素との複合体
は、他のセラミックスや従来材より高温強度や耐熱衝撃
性等が優れており、反応焼結法・ホットプレス・常圧焼
結法等の各種の製造法によって製造されたものが使用さ
れて来た。しかし、その用途の拡大と共にその要求特性
としてより高レベルのものが要求され、特に耐金属溶湯
鋳付き性を改善するニーズが高まっている。
Thus, the silicon nitride body or its composite with silicon carbide is superior to other ceramics and conventional materials in high-temperature strength and thermal shock resistance, and the reaction sintering method, hot pressing, and normal pressure sintering are performed. Those manufactured by various manufacturing methods such as the method have been used. However, with the expansion of its applications, higher levels of required properties are required, and in particular, there is an increasing need for improving metal molten metal casting resistance.

その対応策として、窒化けい素に窒化硼素炭化けい素を
配合した複合体が、例えば特開昭56−120575号公報など
に提案されているが、未だ不十分なレベルであるしコス
トも割高になっている。
As a countermeasure, a composite of silicon nitride and boron nitride silicon carbide is proposed, for example, in JP-A-56-120575, but it is still at an insufficient level and the cost is high. Has become.

また、溶湯接触面に窒化硼素を吹付け塗布する手段、例
えば高温潤滑離型用窒化硼素スプレーにより被覆層を形
成する手段も転用されている。しかし、この場合、窒化
硼素は窒化けい素質反応焼結母体と結合しておらず単に
付着しているに過ぎない為に、短期間に剥脱してしま
い、繰返して塗布する必要があり操業管理が煩雑であっ
た。
Also, means for spraying and coating boron nitride on the molten metal contact surface, for example, means for forming a coating layer by high temperature lubrication release boron nitride spray has been diverted. However, in this case, since boron nitride is not bonded to the silicon nitride reaction-sintered matrix and is merely adhered, it peels off in a short period of time, and it is necessary to repeatedly apply it, which results in operational control. It was complicated.

更に、窒化けい素質焼結体の表面にアルミニウム層を形
成した後に窒素ガス雰囲気下で2段昇温させて反応焼結
させる方法(例えば、特開昭63−238950号公報)によっ
て剥脱の少ない耐食性のある表層を形成する方法も提案
されているが、製造工程が複雑で操業管理が難しく、又
形成される窒化アルミニウムの接合強度も未だ十分とい
えない。また、ガラス質或いは粘土質のコーティング剤
を塗布する方法もあるが、使用中にガラス質成分や粘土
質成分の溶出による溶湯汚染の問題もあり好ましくな
い。
Further, by a method of forming an aluminum layer on the surface of a silicon nitride sintered body and then raising the temperature in two steps in a nitrogen gas atmosphere to carry out reaction sintering (for example, JP-A-63-238950), corrosion resistance with less exfoliation. Although a method for forming a surface layer having a certain thickness has been proposed, the manufacturing process is complicated, operation control is difficult, and the joining strength of the formed aluminum nitride is still insufficient. There is also a method of applying a glassy or clayy coating agent, but it is not preferable because there is a problem of molten metal contamination due to elution of the glassy component and the clayy component during use.

本発明者は、これらの問題点に鑑みながら検討した結
果、反応焼結型窒化けい素結合質焼結体の製造方式にお
ける焼結機構を活用して、少なくともその溶湯接触面に
窒化硼素や窒化アルミニウムを反応焼結による窒化けい
素バインダーにて焼結体として一体化した表層を形成す
ることにより耐金属溶湯鋳付き性を改善し得ることに想
到し、第一の本発明を提案するに至った。
The present inventor, as a result of studying in view of these problems, utilized a sintering mechanism in the manufacturing method of the reaction-sintered silicon nitride bonded sintered body, and at least the boron nitride or the nitride on the molten metal contact surface. The inventors have come up with the idea that the metal melt casting resistance can be improved by forming a surface layer in which aluminum is integrated as a sintered body with a silicon nitride binder by reaction sintering, and the first invention is proposed. It was

また、その表層の具体的形成方法として、塗布法の簡便
性を生かして所要厚さのグリーンの表層を形成し続いて
母体と表層の同時一体化による窒化反応焼結を生起させ
ることによって、反応焼結型窒化けい素結合質焼結体の
製造コストを抑えつつ表層を形成することに想到し、第
二・第三の本発明を提案するに至った。
Further, as a specific method of forming the surface layer, by utilizing the simplicity of the coating method, a green surface layer of a required thickness is formed, and subsequently, nitriding reaction sintering is performed by simultaneous integration of the base and the surface layer, thereby reacting. The inventors have come to the idea of forming the surface layer while suppressing the manufacturing cost of the sintered type silicon nitride bonded sintered body, and have come to propose the second and third inventions.

発明の構成 本願の第一の発明は、反応焼結型窒化けい素結合質焼結
体の溶湯の接触する表層が、該焼結体の窒化けい素をバ
インダーとして窒化硼素又は窒化アルミニウム或いはそ
の混合体からなる耐金属溶湯鋳付き材で形成され、該耐
金属溶湯鋳付き材と前記焼結体とが該焼結体の窒化けい
素によって一体化されていることを特徴とする耐金属溶
湯鋳付き性に優れた反応焼結型窒化けい素結合質焼結体
を提案するものである。
According to a first aspect of the present invention, a surface layer of a reaction-sintered silicon nitride-bonded sintered body in contact with a molten metal has boron nitride or aluminum nitride or a mixture thereof using silicon nitride of the sintered body as a binder. A metal-resistant molten metal casting material comprising a body, wherein the metal-resistant molten metal casting material and the sintered body are integrated by the silicon nitride of the sintered body. The present invention proposes a reaction-sintered silicon nitride-bonded sintered body having excellent sticking property.

ここで反応焼結型窒化けい素結合質焼結体とは、反応焼
結させた窒化けい素単体又はこれに1〜90重量%の炭化
けい素を混合させた反応焼結型窒化けい素結合質複合体
から成るものをいう。
Here, the reaction-sintered silicon nitride-bonded sintered body means a reaction-sintered silicon nitride simple substance or a reaction-sintered silicon nitride bond in which 1 to 90% by weight of silicon carbide is mixed. It is composed of a quality complex.

又、本願の第二の発明は、金属けい素予成形体の溶湯接
触面に、窒化硼素又は窒化アルミニウム或いはその混合
体からなる耐金属溶湯鋳付き材を金属けい素と重量比で
(95対5)乃至(1対99)の配合比率で分散させて成る
コーティング剤を被覆した後に、窒素ガス雰囲気下で11
00〜1800℃にて反応焼結させることを特徴とする耐金属
溶湯鋳付き性に優れた反応焼結型窒化けい素結合質焼結
体の製造方法である。
Further, a second invention of the present application is to provide a metal-metal-resistant cast material made of boron nitride, aluminum nitride, or a mixture thereof on a molten metal contact surface of a metal silicon preform in a weight ratio to metal silicon (95: 5) to (1 to 99) after coating with a coating agent prepared by dispersing in a mixing ratio, and then in a nitrogen gas atmosphere 11
A method for producing a reaction-sintered silicon nitride bonded sintered body having excellent resistance to molten metal casting, which is characterized by performing reactive sintering at 00 to 1800 ° C.

更に、本願の第三の発明は、金属けい素予成形体の溶湯
接触面に、金属けい素を分散させて成る下地処理剤によ
る被覆に続いて、窒化硼素又は窒化アルミニウム或いは
その混合体からなる耐金属溶湯鋳付き材を金属けい素と
重量比で(95対5)乃至(1対99)の配合比率で分散さ
せて成るコーティング剤を被覆した後、窒素ガス雰囲気
下で1100〜1800℃にて反応焼結させることを特徴とする
耐金属溶湯鋳付き性に優れた反応焼結型窒化けい素結合
質焼結体の製造方法である。
Further, the third invention of the present application is such that the molten metal contact surface of the metal silicon preform is coated with a base treating agent in which metal silicon is dispersed, followed by boron nitride or aluminum nitride or a mixture thereof. After coating with a coating agent made by dispersing a metal-resistant molten metal casting material with metal silicon in a weight ratio of (95: 5) to (1:99), the temperature is raised to 1100 to 1800 ° C in a nitrogen gas atmosphere. A method for producing a reaction-sintered silicon nitride bonded sintered body having excellent resistance to molten metal casting, which is characterized in that reaction sintering is performed.

ここで金属けい素予成形体とは、金属けい素単体又は金
属けい素に1〜90重量%の炭化けい素を混合したものか
ら成る金属けい素混合体100重量部に対して水3〜20重
量部、好ましくは5〜15重量部と、有機バインダー、例
えばメチルセルローズ・ポリビニルアルコール・ポリア
クリル酸エステル等を0.05〜5重量部、好ましくは0.5
〜3重量部とを配合して混合機などで混練し続いて所望
の形状に成形したものである。その場合、所望の最終形
状に応じて、押出成形法・金型プレス法・振動成形法・
泥漿鋳込法・ラバープレス法等の適宜の成形手段が適用
出来る。例えば、特開昭62-132606号公報などに開示さ
れる方法も適用される。この場合、金属けい素及び炭化
けい素は、99重量%以上の純度で、0.1μm〜10mmの粒
径のものであることが望ましい。
The term "metal silicon preform" as used herein means 3 to 20 parts by weight of water based on 100 parts by weight of a metal silicon mixture consisting of metal silicon alone or metal silicon mixed with 1 to 90% by weight of silicon carbide. Parts by weight, preferably 5 to 15 parts by weight, and 0.05 to 5 parts by weight, preferably 0.5, of an organic binder such as methylcellulose, polyvinyl alcohol, polyacrylic acid ester, etc.
3 to 3 parts by weight are blended, kneaded with a mixer or the like, and subsequently molded into a desired shape. In that case, depending on the desired final shape, extrusion molding method, die pressing method, vibration molding method,
Appropriate forming means such as slurry casting method and rubber pressing method can be applied. For example, the method disclosed in JP-A-62-132606 can be applied. In this case, it is desirable that the silicon metal and silicon carbide have a purity of 99% by weight or more and a particle size of 0.1 μm to 10 mm.

続いて成形体は、室温養生を経て100〜250℃で1〜50時
間養生乾燥させ、水分を除去すると共に有機バインダー
の硬化を完了させて十分な保形強度を持たせ、予成形体
とされる。
Subsequently, the molded body is subjected to room temperature curing, and then cured and dried at 100 to 250 ° C. for 1 to 50 hours to remove moisture and complete curing of the organic binder to have sufficient shape retention strength, and thus, it is a preformed body. It

次いで、金属けい素予成形体の表面にコーティング剤が
直接又は下地処理剤を介して10μm〜1mmの層厚で被覆
される。
Then, the surface of the metal silicon preform is coated with a coating agent directly or through a surface treatment agent in a layer thickness of 10 μm to 1 mm.

ここで、コーティング剤は、重量比で窒化硼素と窒化ア
ルミニウムを単独又はそれぞれを混合したもの(2:3〜
3:2の混合比)と金属けい素とが重量比で(95対5)乃
至(1対99)、より好ましくは(70対30)乃至(20対8
0)の配合比率で配合したもの100重量部に対して水又
は、エタノール・ブタノール・ヘキサン等の非酸化性有
機溶媒を50〜200重量部、好ましくは80〜150重量部と、
更に所望に応じて前述と同様の有機バインダーを10〜30
重量部、好ましくは15〜20重量部、又は分散剤、例えば
オレイン酸、アクリル系の共重合体、ポリカルボン酸型
表面活性剤等を1〜5重量部、好ましくは2〜4重量部
を混合・攪拌して調製されるものである。
Here, the coating agent is a mixture of boron nitride and aluminum nitride in a weight ratio, or a mixture thereof (2: 3 to
(3: 2 mixing ratio) and metal silicon are in a weight ratio of (95: 5) to (1:99), more preferably (70:30) to (20: 8).
Water or non-oxidizing organic solvent such as ethanol, butanol, and hexane is added to 50 parts by weight, preferably 80 to 150 parts by weight, relative to 100 parts by weight of the compounded in the mixing ratio of 0).
If desired, an organic binder similar to the above may be added in an amount of 10 to 30.
1 to 5 parts by weight, preferably 15 to 20 parts by weight, or 1 to 5 parts by weight, preferably 2 to 4 parts by weight of a dispersant such as oleic acid, an acrylic copolymer or a polycarboxylic acid type surfactant. -It is prepared by stirring.

この場合、窒化硼素と窒化アルミニウムとは、それぞれ
98重量%以上の純度のもので、且つ窒化けい素体母体よ
りも細粒のものとするのが好ましく、平均粒度が30μm
以下、好ましくは0.1〜5μmであるのが望ましい。更
に窒化硼素の場合には、不純物としての酸化硼素が反応
焼結時にガラス化して中心部への窒素ガスの通気性を阻
害するので、酸化硼素が0.1重量%以下の含有量のもの
を使用するのが好ましい。
In this case, boron nitride and aluminum nitride are
It is preferable that it has a purity of 98% by weight or more and is finer than the silicon nitride matrix, and the average grain size is 30 μm.
The following is preferably 0.1 to 5 μm. Further, in the case of boron nitride, boron oxide as an impurity vitrifies during reaction sintering and impedes the gas permeability of nitrogen gas to the center, so use a boron oxide content of 0.1% by weight or less. Is preferred.

又、この場合使用する金属けい素は、予成形体に用いる
金属けい素と同等のものでよいが、より細粒のものとす
るのが好ましく、平均粒度が30μm以下、好ましくは0.
1〜5μmのものがよい。
Further, the metal silicon used in this case may be the same as the metal silicon used for the preformed body, but finer particles are preferable, and the average particle size is 30 μm or less, preferably 0.
It is preferably 1 to 5 μm.

下地処理剤は、金属けい素100重量部に対して、水又は
エタノール・ブタノール・ヘキサン等の非酸化性有機溶
媒を50〜200重量部、好ましくは80〜150重量部と、更に
所望に応じて予成形体の製造に用いる有機バインダーと
同様のものを10〜30重量部、好ましくは15〜20重量部、
又は分散剤、例えばオレイン酸、アクリル系の共重合
体、ポリカルボン酸型表面活性剤等を1重量部以下を混
合・攪拌して調製され、10μm〜500μmの層厚で被覆
されるものである。この下地処理剤に用いられる金属け
い素は、コーティング剤に用いるものと同一性状のもの
でよい。
The surface treatment agent is 50 to 200 parts by weight, preferably 80 to 150 parts by weight of water or a non-oxidizing organic solvent such as ethanol, butanol, and hexane, with respect to 100 parts by weight of metal silicon, and further, if desired. 10 to 30 parts by weight, preferably 15 to 20 parts by weight, the same as the organic binder used in the production of the preformed body,
Alternatively, it is prepared by mixing and stirring 1 part by weight or less of a dispersant such as oleic acid, an acrylic copolymer, and a polycarboxylic acid type surfactant, and is coated with a layer thickness of 10 μm to 500 μm. . The metal silicon used for the base treatment agent may have the same properties as those used for the coating agent.

これらコーティング剤と下地処理剤の予成形体への被覆
手段は、刷毛塗装・スプレー塗布・ドブ漬塗布等の手段
を予成形体の形状特性に応じて適宜適用される。被覆後
は、乾燥又は養生乾燥を100〜250℃で行ない表層として
定着させる。従って、下地層を介する場合には、下地処
理剤とコーティング剤による被覆の各段階毎に乾燥又は
養生乾燥を繰返すことになる。
As a means for coating the preform with the coating agent and the base treatment agent, brush coating, spray application, dobbing application, or the like is appropriately applied according to the shape characteristics of the preform. After coating, drying or curing drying is performed at 100 to 250 ° C. to fix as a surface layer. Therefore, in the case of interposing the underlying layer, the drying or curing drying is repeated at each step of coating with the undercoating agent and the coating agent.

乾燥した表層を形成した予成形体は、続いて窒化反応焼
結炉に搬入され、0.05〜0.8気圧程度の窒素ガス雰囲気
下で1100〜1800℃、より好ましくは1300〜1500℃にて50
〜100時間窒化反応焼結させる。
The preformed body on which the dried surface layer is formed is subsequently carried into a nitriding reaction sintering furnace, and is 1100 to 1800 ° C under a nitrogen gas atmosphere of about 0.05 to 0.8 atm, more preferably 1300 to 1500 ° C at 50 ° C.
Sinter for 100 hours for nitriding reaction.

これによって、表層から予成形体母体の中心部まで金属
けい素が窒化けい素に同時に転換される。その際、表層
内に於いて金属けい素粉に窒素分子の結合がなされ、表
層部内の気孔率が低下するので表層内の窒化硼素や窒化
アルミニウムが焼き締められると共に、そのバインダー
である生成窒化けい素が反応焼結型窒化けい素結合質焼
結母体と一体的になっているので、形成される表層は反
応焼結型窒化けい素結合質焼結母体と堅固に一体的にな
っている。
As a result, silicon metal is simultaneously converted to silicon nitride from the surface layer to the center of the preform body. At that time, nitrogen molecules are bonded to the metal silicon powder in the surface layer, and the porosity in the surface layer portion is reduced, so that boron nitride and aluminum nitride in the surface layer are hardened and the binder silicon nitride produced is formed. Since the element is integrated with the reaction-sintered silicon nitride bonded sintered matrix, the surface layer formed is firmly integrated with the reaction-sintered silicon nitride bonded sintered matrix.

実施例 純度99.9重量%で粒度10μmアンダーの金属けい素を50
重量部と純度99.8重量%で粒度10μmアンダーの炭化け
い素を50重量部とを10重量%濃度のポリビニルアルコー
ル水溶液3重量部とをニーダーで混練し、内径500mmφ
で長さ500mmの円柱状ゴム製成形型内に充填し、1000kg/
cm2の冷間静水圧下で等方圧成形加工(CIP)した後に脱
型し、室温で5時間室温養生した後、150℃の乾燥炉で1
0時間乾燥・養生させ予成形体を製作した。
Example 50 A metal silicon having a purity of 99.9% by weight and a particle size of 10 μm under is used.
50 parts by weight of silicon carbide having a purity of 99.8% by weight and a particle size of 10 μm under and 3 parts by weight of an aqueous solution of polyvinyl alcohol having a concentration of 10% by weight are kneaded with a kneader, and the inner diameter is 500 mmφ.
With a cylindrical rubber mold with a length of 500 mm, 1000 kg /
After isostatic pressing (CIP) under a cold isostatic pressure of cm 2 , the mold was removed, and the mixture was aged at room temperature for 5 hours and then dried in a drying oven at 150 ° C for 1 hour.
A preform was produced by drying and curing for 0 hours.

一方、コーティング剤を、各々粒度10μmアンダーで純
度98重量%の窒化硼素と窒化アルミニウムと粒度10μm
アンダーの金属けい素とを以下に示す割合で混合したも
のをそれぞれが100重量部に対し、水120重量部を加えて
攪拌することによって調製した。また、下地処理剤とし
て、粒度10μmアンダーの金属けい素100重量部と水150
重量部とを混合攪拌し調製した。
On the other hand, the coating agent was boron nitride and aluminum nitride with a particle size of 10 μm each and a purity of 98% by weight, and a particle size of 10 μm.
It was prepared by adding 120 parts by weight of water to 100 parts by weight of a mixture of the undermetal silicon and the mixture at the ratio shown below and stirring the mixture. Also, as a surface treatment agent, 100 parts by weight of metal silicon having a particle size of 10 μm and water 150
Part by weight was mixed and stirred to prepare.

これらのコーティング剤及び下地処理剤を用い予成形体
の全外表面に所定の膜厚でそれぞれ刷毛塗布し、乾燥さ
せて表層を形成した。
A brush was applied to the entire outer surface of the preform with a predetermined film thickness using these coating agents and base treatment agents, and dried to form a surface layer.

続いて、0.5気圧の窒素ガス雰囲気の反応焼結炉に搬入
し、1250℃で20時間保持し、1400℃で20時間保持する2
段階昇温加熱法で反応焼結処理を行なった。
Then, it is carried into a reaction sintering furnace in a nitrogen gas atmosphere of 0.5 atm and kept at 1250 ° C for 20 hours and 1400 ° C for 20 hours. 2
Reactive sintering was performed by the stepwise heating method.

得られた窒化けい素反応焼結体を300℃に予熱した後
に、アルゴンガス雰囲気とした試験炉中の鋳造用アルミ
ニウム合金であるJIS規格のAC−4C合金の730℃に保持し
た溶湯中に完全浸漬して、耐金属溶湯鋳付き性と耐溶湯
汚染性を所定期間後に評価した。
After preheating the obtained silicon nitride reaction sintered body to 300 ° C, it was completely immersed in the molten metal held at 730 ° C of JIS standard AC-4C alloy which is an aluminum alloy for casting in a test furnace in an argon gas atmosphere. After immersion, the resistance to metal casting and the resistance to metal contamination were evaluated after a predetermined period.

なお、比較のため、コーティング剤及び下地処理剤中に
金属けい素を配合しないもの、及び何んらの表層を形成
しなかったもの等を製作し、その後は同一条件の窒化反
応焼結処理を施こしたものを製作して評価実験に供し
た。また、これらは別に同材質の金属けい素予成形体の
表面を未処理のまま同一条件の窒化反応焼結を施して製
造した窒化けい素反応焼結体に市販のコロイダル窒化硼
素を1.8重量%と有機バインダー1重量%を溶媒に分散
させた窒化硼素スプレー剤を使用して窒化硼素の表層を
形成した比較材を製作し、同様に評価実験に供した。
For comparison, a coating agent and an undercoating agent that do not contain metallic silicon, and those that do not form any surface layer were manufactured, and then subjected to nitriding reaction sintering treatment under the same conditions. The applied product was manufactured and subjected to an evaluation experiment. Separately, 1.8% by weight of commercially available colloidal boron nitride is added to the silicon nitride reaction sintered body produced by subjecting the surface of the metal silicon preform of the same material to the nitriding reaction sintering under the same condition without treatment. A comparative material having a surface layer of boron nitride formed by using a boron nitride spray agent in which 1% by weight of an organic binder was dispersed in a solvent was prepared and subjected to the same evaluation experiment.

これらの評価結果を次の表に示す。The results of these evaluations are shown in the following table.

発明の効果 本発明は、反応焼結による焼結体の窒化けい素をバイン
ダーとして窒化硼素又は窒化アルミニウム或いはその混
合体からなる耐金属溶湯鋳付き材を該焼結体の表層に該
焼結体と一体的に形成した反応焼結型窒化けい素結合質
焼結体であり、またこのような焼結体を窒化硼素又は窒
化アルミニウム或いはその混合体からなる耐金属溶湯鋳
付き材を焼結体の焼結と同時に焼結して製造するので、 1)剥離が生じ難く溶湯汚染が少なく、優れた耐金属溶
湯鋳付き性を有し耐久性があり長期間使用できる。
EFFECTS OF THE INVENTION The present invention provides a metal melt-resistant cast material made of boron nitride, aluminum nitride, or a mixture thereof using silicon nitride of a sintered body obtained by reaction sintering as a binder on the surface layer of the sintered body. Is a reaction-sintered silicon nitride-bonded sintered body formed integrally with the sintered body, and such a sintered body is a molten metal casting material made of boron nitride, aluminum nitride, or a mixture thereof. Since it is manufactured by sintering at the same time as 1), 1) peeling is less likely to occur, there is little contamination of the molten metal, it has excellent resistance to metal melt casting, and it is durable and can be used for a long time.

2)少ない工程で簡便に得られる。2) It can be easily obtained in a small number of steps.

等の実用性に優れた効果が発揮される。The effect that is excellent in practicality such as is exhibited.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】反応焼結型窒化けい素結合質焼結体の溶湯
の接触する表層が、該焼結体の窒化けい素をバインダー
として窒化硼素又は窒化アルミニウム或いはその混合体
からなる耐金属溶湯鋳付き材で形成され、該耐金属溶湯
鋳付き材と前記焼結体とが該焼結体の窒化けい素によっ
て一体化されていることを特徴とする耐金属溶湯鋳付き
性に優れた反応焼結型窒化けい素結合質焼結体。
1. A metal-resistant molten metal whose surface layer in contact with the molten metal of a reaction-sintered silicon nitride-bonded sintered body comprises boron nitride, aluminum nitride, or a mixture thereof using silicon nitride of the sintered body as a binder. A reaction excellent in castability against molten metal, characterized in that it is formed from a cast material, and the cast material against molten metal and the sintered body are integrated by silicon nitride of the sintered body. Sintered silicon nitride bonded sintered body.
【請求項2】金属けい素予成形体の溶湯接触面に、窒化
硼素又は窒化アルミニウム或いはその混合体からなる耐
金属溶湯鋳付き材を金属けい素と重量比で(95対5)乃
至(1対99)の配合比率で分散させて成るコーティング
剤を被覆した後、窒素ガス雰囲気下で1100〜1800℃にて
反応焼結させることを特徴とする耐金属溶湯鋳付き性に
優れた反応焼結型窒化けい素結合質焼結体の製造方法。
2. A molten metal-resistant cast material made of boron nitride, aluminum nitride, or a mixture thereof is provided on the molten metal contact surface of the metal silicon preform in a weight ratio of metal silicon to (95: 5) to (1). The reaction mixture is coated with a coating agent that is dispersed at a compounding ratio of 99 to 99), and then is reactively sintered at 1100 to 1800 ° C in a nitrogen gas atmosphere. -Type silicon nitride bonded sintered body manufacturing method.
【請求項3】金属けい素予成形体の溶湯接触面に、金属
けい素を分散させて成る下地処理剤による被覆に続い
て、窒化硼素又は窒化アルミニウム或いはその混合体か
らなる耐金属溶湯鋳付き材を金属けい素と重量比で(95
対5)乃至(1対99)の配合比率で分散させて成るコー
ティング剤を被覆した後、窒素ガス雰囲気下で1100〜18
00℃にて反応焼結させることを特徴とする耐金属溶湯鋳
付き性に優れた反応焼結型窒化けい素結合質焼結体の製
造方法。
3. A metal-resistant molten metal casting made of boron nitride, aluminum nitride, or a mixture thereof is coated on a molten metal contact surface of a metal silicon preform with a surface-treating agent in which metal silicon is dispersed. The weight ratio of the material to metal silicon (95
After coating with a coating agent that is dispersed at a compounding ratio of 5 to 5 to 1:99, 1100 to 18 in a nitrogen gas atmosphere.
A method for producing a reaction-sintered silicon nitride-bonded sintered body having excellent resistance to molten metal casting, which comprises performing reaction sintering at 00 ° C.
JP2016079A 1990-01-29 1990-01-29 Reaction sintering type silicon nitride bonded sintered body having excellent resistance to molten metal casting and method for producing the same Expired - Lifetime JPH0712990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016079A JPH0712990B2 (en) 1990-01-29 1990-01-29 Reaction sintering type silicon nitride bonded sintered body having excellent resistance to molten metal casting and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016079A JPH0712990B2 (en) 1990-01-29 1990-01-29 Reaction sintering type silicon nitride bonded sintered body having excellent resistance to molten metal casting and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03223192A JPH03223192A (en) 1991-10-02
JPH0712990B2 true JPH0712990B2 (en) 1995-02-15

Family

ID=11906550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016079A Expired - Lifetime JPH0712990B2 (en) 1990-01-29 1990-01-29 Reaction sintering type silicon nitride bonded sintered body having excellent resistance to molten metal casting and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0712990B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710664A (en) * 1993-06-23 1995-01-13 Kyocera Corp Member for aluminum melt and its production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527003B2 (en) * 1972-04-12 1977-02-26
JP2588554B2 (en) * 1987-12-29 1997-03-05 日立金属株式会社 Member for molten aluminum and method for producing the same
JPH0383862A (en) * 1989-08-28 1991-04-09 Nichias Corp Production of silicon nitride-boron nitride multiple sintered compact

Also Published As

Publication number Publication date
JPH03223192A (en) 1991-10-02

Similar Documents

Publication Publication Date Title
JP4889843B2 (en) Porous material infiltration method
JP4261130B2 (en) Silicon / silicon carbide composite material
JPH0139989B2 (en)
US5141683A (en) Method of producing reinforced materials
JP2760134B2 (en) Noble metal molding plastic composition
JPH0712990B2 (en) Reaction sintering type silicon nitride bonded sintered body having excellent resistance to molten metal casting and method for producing the same
JP3498989B2 (en) Silicon carbide based composite material and method for producing the same
JP2663028B2 (en) Silicon nitride sintered body
WO2019123223A1 (en) Method of making a porous preform in silicon carbide with controlled porosity and silicon carbide porous preform
JPH1149568A (en) Graphite-silicon carbide crucible for nonferrous molten metal and its production
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JP2968882B2 (en) SiC-based sintered body and method of firing the same
JP3297547B2 (en) Method for producing silicon carbide sintered body
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
JPH08175871A (en) Silicon carbide-based sintered body and its production
JP3520998B2 (en) Heat-resistant silicon nitride sintered body and method for producing the same
JPH0873286A (en) Silicon nitride sintered compact and its production and member for molten metal using the same
US5246896A (en) Ceramic composition
JPH0224789B2 (en)
JP4279366B2 (en) Method for producing metal-ceramic composite material
JP2762520B2 (en) Method for producing TiAl intermetallic compound sintered member
JP4167318B2 (en) Method for producing metal-ceramic composite material
JPH0227306B2 (en)
JP2000302573A (en) SiC-MoSi2 COMPOSITE MATERIAL AND ITS PRODUCTION

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 15

EXPY Cancellation because of completion of term