JPH03223150A - Production of sintered material of apatite - Google Patents

Production of sintered material of apatite

Info

Publication number
JPH03223150A
JPH03223150A JP2018181A JP1818190A JPH03223150A JP H03223150 A JPH03223150 A JP H03223150A JP 2018181 A JP2018181 A JP 2018181A JP 1818190 A JP1818190 A JP 1818190A JP H03223150 A JPH03223150 A JP H03223150A
Authority
JP
Japan
Prior art keywords
hydroxyapatite
cao
sintered
powder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018181A
Other languages
Japanese (ja)
Other versions
JP3012265B2 (en
Inventor
Tomoo Matsumoto
智勇 松本
Yukio Taniguchi
幸雄 谷口
Hitoshi Akiyama
秋山 仁史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP2018181A priority Critical patent/JP3012265B2/en
Publication of JPH03223150A publication Critical patent/JPH03223150A/en
Application granted granted Critical
Publication of JP3012265B2 publication Critical patent/JP3012265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered material of apatite having no CaO existing on the surface of the sintered material or an extremely smaller amount of CaO than a conventional method, by embedding a molded article of hydroxyapatite in ceramic powder and sintering. CONSTITUTION:A molded article of hydroxyapatite is embedded in ceramic powder and sintered. Hydroxyapatite, alumina, titania or kaolinite may be cited as the ceramic powder. The ceramic powder layer to embed the molded article in is required to have above >=0.3mm thickness from the surface of the molded article and is preferably 1-10mm in thickness.

Description

【発明の詳細な説明】 「利用分野」 本発明は、生体材料として有用なアパタイト焼結体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to a method for producing a sintered apatite body useful as a biomaterial.

「従来技術及びその問題点」 ハイドロキシアパタイトCa+o(P 04)6(OH
)zは、カルシウム化合物とリン酸化合物から湿式法に
より製造され、その焼結体は優れた生体親和性を有する
ため、人工骨、人工歯根、骨補填材、経皮素子などの生
体材料として利用されている。ハイドロキシアパタイト
焼結体は、通常、原料ハイドロキシアパタイトの成形体
を900〜1400°Cの温度で焼成することによって
製造されるが、原料として用いるハイドロキシアパタイ
トが上記の式で表わされる純粋なものであることは希で
あり、化学量論組成のハイドロキシアパタイトを製造し
ようとしても、Ca過剰のハイドロキシアパタイトとな
ることがある。このようなCa過剰のハイドロキシアパ
タイトから成る成形体を焼成すると、成形体の内部では
Caが吸収されて、より一層緻密なハイドロキシアパタ
イト焼結体となるが、その焼結体の表面にはCaOが残
留する。また、CaOが検出限界以下であっても、Ca
が僅かでも過剰であれば、そのハイドロキシアパタイト
の成形体を焼結させると、焼結中に表面部分で脱水が起
こり、CaOが生成していると考えられる。
"Prior art and its problems" Hydroxyapatite Ca+o (P 04) 6 (OH
)z is produced by a wet method from calcium compounds and phosphoric acid compounds, and its sintered body has excellent biocompatibility, so it can be used as biomaterials for artificial bones, artificial tooth roots, bone replacement materials, transdermal devices, etc. has been done. Hydroxyapatite sintered bodies are usually manufactured by firing a molded body of raw material hydroxyapatite at a temperature of 900 to 1400°C, but the hydroxyapatite used as the raw material is a pure one represented by the above formula. This is rare, and even if an attempt is made to produce hydroxyapatite with a stoichiometric composition, the resultant hydroxyapatite may contain excess Ca. When such a molded body made of hydroxyapatite with excess Ca is fired, Ca is absorbed inside the molded body, resulting in an even denser hydroxyapatite sintered body, but CaO is deposited on the surface of the sintered body. remain. Furthermore, even if CaO is below the detection limit, CaO
If the amount is even slightly excessive, it is considered that when the hydroxyapatite molded body is sintered, dehydration occurs at the surface portion during sintering, and CaO is generated.

しかしながら、ハイドロキシアパタイト焼結体を生体材
料として使用する場合に、その焼結体中にCaOが存在
すると、CaOが体液に溶解するため、焼結体の強度が
低下するおそれがあり、また、溶解によって生成するC
a(OH)*がアルカリ性であるため、周辺の組織を損
傷するおそれがあるという問題点がある。
However, when using a hydroxyapatite sintered body as a biomaterial, if CaO is present in the sintered body, the strength of the sintered body may decrease because CaO will dissolve in body fluids. C generated by
Since a(OH)* is alkaline, there is a problem in that it may damage surrounding tissues.

「発明の目的」 本発明は、焼結体の表面にもCaOが存在しないか、従
来に比べてCaO量が著しく減少したハイドロキシアパ
タイト焼結体を製造しうる方法を提供することを目的と
する。
"Objective of the Invention" An object of the present invention is to provide a method for producing a hydroxyapatite sintered body in which CaO does not exist on the surface of the sintered body or the amount of CaO is significantly reduced compared to the conventional one. .

「発明の構成」 本発明によるハイドロキシアパタイト焼結体の製造方法
は、ハイドロキシアパタイトの成形体をセラミックス粉
末中に埋め込んで焼結させることを特徴とする。
"Structure of the Invention" The method for manufacturing a hydroxyapatite sintered body according to the present invention is characterized in that a hydroxyapatite molded body is embedded in ceramic powder and sintered.

原料として用いるハイドロキシアパタイトは、湿式法で
°Ca/P比=10/6を目標に合成されたものであっ
て、熱処理後にX線回折図から測定すると、CaOが検
出され、Caが過剰であったと考えられるものである。
The hydroxyapatite used as a raw material was synthesized by a wet method with a target Ca/P ratio of 10/6, and when measured from an X-ray diffraction diagram after heat treatment, CaO was detected and Ca was found to be in excess. This is considered to be the case.

このようなハイドロキシアパタイト粉末から湿式法又は
乾式法で任意の形状の成形体を製造する。
A molded body of any shape is produced from such hydroxyapatite powder by a wet method or a dry method.

本発明の方法においては、上記のようなハイドロキシア
パタイトの成形体をセラミックス粉末中に埋め込んで焼
結させる。成形体をセラミックス粉末に埋め込む前に、
必要に応じて常法で仮焼することができる。埋め込みに
使用しうるセラミックスとしては、ハイドロキシアパタ
イト、アルミナ、チタニア、カオリナイトなどが挙げら
れる。
In the method of the present invention, a hydroxyapatite compact as described above is embedded in ceramic powder and sintered. Before embedding the compact into ceramic powder,
If necessary, it can be calcined in a conventional manner. Ceramics that can be used for embedding include hydroxyapatite, alumina, titania, and kaolinite.

これらのセラミックス粉末は、成形体のハイドロキシア
パタイトに対して不活性でなければならない。したがっ
て、セラミックス粉末を、必要に応じて加熱などの方法
で不活性化してから使用すべきである。殊に、セラミッ
クス粉末として、ハイドロキシアパタイトを用いる場合
には、包埋焼結によって焼結体に粉末が固着してしまう
おそれがあるので、成形体の焼結温度よりも高温で熱処
理を行う必要があり、焼結温度よりも50°C以上高温
、例えば1150〜1200 ”Cで熱処理することが
望ましい。さらに、この熱処理によって粉末が固まるの
で、これをほぐす程度に軽く粉砕して不活性化すること
が必要である。粉砕しすぎると、ハイドロキシアパタイ
ト粉末が活性化し、焼結体に付着して取れなくなる。
These ceramic powders must be inert to the hydroxyapatite of the compact. Therefore, the ceramic powder should be inactivated by heating or other methods as necessary before use. In particular, when using hydroxyapatite as the ceramic powder, there is a risk that the powder will stick to the sintered body due to embedding sintering, so it is necessary to perform heat treatment at a higher temperature than the sintering temperature of the compact. However, it is preferable to heat treat the powder at a temperature of 50°C or more higher than the sintering temperature, for example, 1150-1200''C.Furthermore, this heat treatment solidifies the powder, so it must be crushed lightly enough to loosen it to inactivate it. If the powder is crushed too much, the hydroxyapatite powder will be activated and will adhere to the sintered body, making it impossible to remove it.

また、包埋粉末層は、成形体表面から0.3 wa以上
の厚さとすることが必要であり、1〜10mの厚さとす
るのが好ましい。この厚さが0.3−未満であると、効
果が発現しない、この粉末層を0.3腫付近に薄くする
場合は、前記の粉砕後にさらにふるい(#80程度)を
通して粗大物を除去した包埋粉末を用いるのが好ましい
Further, the embedded powder layer needs to have a thickness of 0.3 wa or more from the surface of the compact, and preferably has a thickness of 1 to 10 m. If this thickness is less than 0.3 mm, the effect will not be expressed.If this powder layer is to be thinned to around 0.3 mm, coarse particles are removed by passing it through a sieve (about #80) after the above-mentioned crushing. Preferably, an embedding powder is used.

本発明の方法によりハイドロキシアパタイト成形体をセ
ラミックス粉末中に埋め込んで焼結させると、表面にC
aOが存在しない(検出限界以下)か又は従来に比べて
著しく減少した焼結体が得られる。このメカニズムは、
完全には解明されていないが、表面を覆うことによって
成形体内部と同様に表面においても焼結の際にCaOの
吸収が起こり、緻密化が進行すること及び成形体の表面
から熱処理による脱水量が減少することに基づくものと
考えられる。
When a hydroxyapatite molded body is embedded in ceramic powder and sintered by the method of the present invention, the surface of the hydroxyapatite molded body is carbonized.
A sintered body in which aO does not exist (below the detection limit) or is significantly reduced compared to the conventional method can be obtained. This mechanism is
Although it is not completely understood, by covering the surface CaO is absorbed during sintering as well as inside the molded body, and densification progresses, and the amount of water removed from the surface of the molded body due to heat treatment. This is thought to be based on the decrease in

「発明の実施例」 次に、実施例に基づいて本発明をさらに詳しく説明する
が、本発明はこれに限定されるものではない。
"Examples of the Invention" Next, the present invention will be described in more detail based on Examples, but the present invention is not limited thereto.

実施例1 湿式合成法により製造したCa/P比1.67のハイド
ロキシアパタイト粉末のスラリーから直径25閣、厚さ
10閣の円柱形の成形体を製作した。
Example 1 A cylindrical molded body with a diameter of 25 mm and a thickness of 10 mm was manufactured from a slurry of hydroxyapatite powder with a Ca/P ratio of 1.67 produced by a wet synthesis method.

得られた成形体を下記の第1表に示す包埋粉末中に、成
形体の周囲を5〜6閣の厚さで覆うように埋め込み、1
050℃に4時間保持して焼結させた。得られた焼結体
の表面のX線回折図を作製し、検量線からCaO量を算
出し、結果を第1表に示す、さらに、成形体をセラミッ
クス粉末に埋め込まずに焼結させる従来法の場合と比べ
たCaO量の減少率(%)を第1表に示す。
The obtained molded body was embedded in the embedding powder shown in Table 1 below so as to cover the periphery of the molded body to a thickness of 5 to 6 mm.
It was held at 050° C. for 4 hours to sinter. An X-ray diffraction diagram of the surface of the obtained sintered body was prepared, and the amount of CaO was calculated from the calibration curve, and the results are shown in Table 1.Further, the conventional method of sintering the compact without embedding it in ceramic powder Table 1 shows the reduction rate (%) of the amount of CaO compared to the case of .

なお、包埋粉末のうち、ハイドロキシアパタイト粉末は
予め1150℃で熱処理し、アルミナ粉末は1200°
Cで熱処理し、不活性化させ、塊をほぐす程度に軽く粉
砕して用いた。なお、表中、HAp はハイ ドロキシアバタイ トを示す。
Of the embedding powders, hydroxyapatite powder was heat-treated at 1150°C, and alumina powder was heat-treated at 1200°C.
It was heat-treated with C to inactivate it, and was used after being lightly ground to break up the lumps. In addition, in the table, HAp indicates hydroxy abatite.

実施例2 実施例1と同じハイドロキシアパタイト成形体を実施例
1で包埋粉末として用いたのと同じハイドロキシアパタ
イト粉末中に実施例と同様に包埋して1100°Cで4
時間焼結させた。得られた焼結体の表面のCaO量を測
定したところ、0.18重量%であり、従来法の場合に
比べてCaO量が40.0%減少していた。
Example 2 The same hydroxyapatite molded body as in Example 1 was embedded in the same hydroxyapatite powder used as the embedding powder in Example 1, and heated at 1100°C for 4 hours.
Sintered for hours. When the amount of CaO on the surface of the obtained sintered body was measured, it was 0.18% by weight, which was 40.0% lower than that in the conventional method.

実施例3 湿式法で合成した直径25m、厚さ10ma+の円柱形
のハイドロキシアパタイト成形体を従来法により105
0°Cに4時間保持して焼結させ、得られた表面のCa
O量が0.6重量%のHAp焼結体の表面のX線回折図
を第1図に示した。
Example 3 A cylindrical hydroxyapatite molded body with a diameter of 25 m and a thickness of 10 m+ synthesized by a wet method was made into 105 m by a conventional method.
The resulting surface Ca
FIG. 1 shows the X-ray diffraction pattern of the surface of the HAp sintered body containing 0.6% by weight of O.

同じハイドロキシアパタイト成形体を1150°Cで熱
処理したハイドロキシアパタイト粉末で5〜6+amの
厚さで覆って包埋した以外は、上記と同じ条件で焼結さ
せたHAp焼結体の表面のX線回折図を第2図に示す。
X-ray diffraction of the surface of an HAp sintered body sintered under the same conditions as above, except that the same hydroxyapatite compact was covered with hydroxyapatite powder heat-treated at 1150°C to a thickness of 5 to 6+ am and embedded. A diagram is shown in FIG.

第1図において、aはCaOのピークを示す。このaの
ピークは、第2図には見られず、このHAp焼結体の表
面にはCaOが存在しないことが判る。
In FIG. 1, a indicates the peak of CaO. This peak a is not seen in FIG. 2, indicating that no CaO exists on the surface of this HAp sintered body.

「発明の効果」 本発明の方法によれば、表面にCaOが存在しない(検
出限界以下)か又はCaO量が従来の1/2程度に減少
したハイドロキシアパタイト焼結体が得られる。この焼
結体は、CaO量が従来に比べて著しく少ないので、使
用中に強度低下が起こらず、生体材料として好適である
"Effects of the Invention" According to the method of the present invention, a hydroxyapatite sintered body is obtained in which either no CaO exists on the surface (below the detection limit) or the amount of CaO is reduced to about 1/2 of the conventional amount. Since this sintered body has a significantly lower amount of CaO than conventional sintered bodies, its strength does not decrease during use, making it suitable as a biomaterial.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例3で従来法で製造したハイドロキシアパ
タイト焼結体の表面のX線回折図、第2図は実施例3で
本発明の方法により製造したハイドロキシアバタイ ト焼結体の表面のX線回折図で ある。 符号の説明 CaOのピーク
FIG. 1 is an X-ray diffraction diagram of the surface of a hydroxyapatite sintered body manufactured by the conventional method in Example 3, and FIG. 2 is an X-ray diffraction diagram of the surface of a hydroxyapatite sintered body manufactured by the method of the present invention in Example 3. It is an X-ray diffraction diagram. Symbol explanation CaO peak

Claims (2)

【特許請求の範囲】[Claims] 1.ハイドロキシアパタイトの成形体をセラミックス粉
末中に埋め込んで焼結させることを特徴とするアパタイ
ト焼結体の製造方法。
1. A method for producing an apatite sintered body, which comprises embedding a hydroxyapatite molded body in ceramic powder and sintering it.
2.セラミックス粉末がハイドロキシアパタイト、アル
ミナ、チタニア、カオリナイトなどである請求項1記載
のアパタイト焼結体の製造方法。
2. 2. The method for producing an apatite sintered body according to claim 1, wherein the ceramic powder is hydroxyapatite, alumina, titania, kaolinite, or the like.
JP2018181A 1990-01-29 1990-01-29 Method for producing apatite sintered body Expired - Fee Related JP3012265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018181A JP3012265B2 (en) 1990-01-29 1990-01-29 Method for producing apatite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018181A JP3012265B2 (en) 1990-01-29 1990-01-29 Method for producing apatite sintered body

Publications (2)

Publication Number Publication Date
JPH03223150A true JPH03223150A (en) 1991-10-02
JP3012265B2 JP3012265B2 (en) 2000-02-21

Family

ID=11964446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018181A Expired - Fee Related JP3012265B2 (en) 1990-01-29 1990-01-29 Method for producing apatite sintered body

Country Status (1)

Country Link
JP (1) JP3012265B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146740A (en) * 2001-11-13 2003-05-21 Pentax Corp Method of manufacturing sintered compact and sintered compact
JP2012249570A (en) * 2011-06-02 2012-12-20 Kinki Univ Biocompatible transparent sheet, method for producing the same and cell sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146740A (en) * 2001-11-13 2003-05-21 Pentax Corp Method of manufacturing sintered compact and sintered compact
JP4540905B2 (en) * 2001-11-13 2010-09-08 Hoya株式会社 Method for manufacturing sintered body
JP2012249570A (en) * 2011-06-02 2012-12-20 Kinki Univ Biocompatible transparent sheet, method for producing the same and cell sheet

Also Published As

Publication number Publication date
JP3012265B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
US5034352A (en) Calcium phosphate materials
EP0253506B1 (en) Implant material and process for producing the same
JPS62501332A (en) Method for manufacturing implantable bone replacement materials
JPS5941946B2 (en) porcelain
EP0291016B1 (en) Method for producing calcium phosphate-based material
Roudan et al. Thermal phase stability and properties of hydroxyapatite derived from bio-waste eggshells
ITOH et al. A new porous hydroxyapatite ceramic prepared by cold isostatic pressing and sintering synthesized flaky powder
Varma et al. Dense hydroxy apatite ceramics through gel casting technique
Hirota et al. Pressure sintering of apatite-collagen composite
KR101907408B1 (en) Manufacturing Method Of Calcium Phosphate Using Eggshell And Phosphate-ammonia solution
EP0250570A1 (en) Ceramic processing and products
JPH03223150A (en) Production of sintered material of apatite
KR100579155B1 (en) Calcium metaphosphate coated dental implant and manufacturing method thereof
JPH0411215B2 (en)
Patel et al. Comparison of sintering and mechanical properties of hydroxyapatite and silicon-substituted hydroxyapatite
Hapuhinna et al. Synthesis of bone cement from a natural mineral for biomedical industry
Veljković et al. Sintering behaviour of nanosized HAP powder
JP3933716B2 (en) Method for producing α-tricalcium phosphate ceramic
JPH0575427B2 (en)
JPH01301543A (en) Curable composition
Lee et al. Fabrication of biphasic calcium phosphate bioceramics from the recycling of bone ash
JP2525012B2 (en) Calcium phosphate compact and method for producing the same
Sobczak-Kupiec et al. Studies on bone-derived calcium phosphate materials
JP2934090B2 (en) Biological implant material
JPH01108143A (en) Beta-tcp sintered form and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees