JPH01301543A - Curable composition - Google Patents

Curable composition

Info

Publication number
JPH01301543A
JPH01301543A JP63131529A JP13152988A JPH01301543A JP H01301543 A JPH01301543 A JP H01301543A JP 63131529 A JP63131529 A JP 63131529A JP 13152988 A JP13152988 A JP 13152988A JP H01301543 A JPH01301543 A JP H01301543A
Authority
JP
Japan
Prior art keywords
hydroxyapatite
reaction
hpcp
curable composition
hap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63131529A
Other languages
Japanese (ja)
Other versions
JPH0643263B2 (en
Inventor
Osamu Iwamoto
修 岩本
Minoru Inaba
稔 稲葉
Jiyunko Masuno
升野 潤子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP63131529A priority Critical patent/JPH0643263B2/en
Publication of JPH01301543A publication Critical patent/JPH01301543A/en
Publication of JPH0643263B2 publication Critical patent/JPH0643263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

PURPOSE:To obtain a curable composition, consisting of tetracalcium phosphate, calcium phosphate at a prescribed atomic ratio (Ca/P) and hydroxyapatite prepared by reaction of both and capable of rapidly forming a cured product of hydroxyapatite and providing a filler having excellent affinity. CONSTITUTION:The above-mentioned curable composition is constituted of tetracalcium phosphate (C4P), calcium phosphate (HPCP) at <1.67 atomic ratio (Ca/P) and hydroxyapatite and/or precursor (HAP reaction product) obtained by reaction of both the afore-mentioned phosphates. If the mixing ratio of the mixture of the above-mentioned HPCP with the C4P is regulated so as to provide 1.3-1.8 molar ratio (Ca/P), the HAP is efficiently produced to enhance the strength of the cured product. The HPCP and C4P are used in a powdery form. The HPCP having <50mum average particle diameter and the C4P having 0.1-100mum average particle diameter are respectively preferably used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は生体の骨欠損部及び空隙部、又は歯牙の欠損部
を充填する新規な硬化性組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel curable composition for filling bone defects and voids in living organisms, or tooth defects.

詳しくは、水との接触により、速やかにヒドロキシアパ
タイト硬化体を生成し、優れた親和性を有する充填材と
なる硬化性組成物である。
Specifically, it is a curable composition that rapidly forms a cured hydroxyapatite upon contact with water and becomes a filler with excellent affinity.

〔従来の技術〕[Conventional technology]

外科、整形外科領域においては、交通事故、骨腫瘍切除
等、また歯科領域においては歯槽膿漏、歯槽骨吸収、抜
歯及びう触歯牙削除等により、骨欠損部あるいは空隙部
が生じる。このような骨欠損部あるいは空隙部の充填、
補綴のために白骨、高分子、金属、セラミックス等種々
の材料が使用されている。中でも、自家骨は骨形成能に
優れ、拒絶反応が少ないなどの点で非常に優れている。
In the field of surgery and orthopedics, bone defects or voids occur due to traffic accidents, bone tumor resection, etc., and in the field of dentistry, due to alveolar pyorrhea, alveolar bone resorption, tooth extraction, caries removal, etc. Filling such bone defects or voids,
Various materials are used for prosthetics, such as bone bones, polymers, metals, and ceramics. Among these, autologous bone is extremely superior in terms of its excellent osteogenic ability and low rejection reaction.

しかしながら、自家骨は本人の正常な組織から採取せね
ばならず、手術による大きな苦痛を伴うばかりでなく、
十分な量を確保できない場合も多い。
However, autologous bone must be harvested from the patient's normal tissue, which not only involves great pain during surgery, but also
In many cases, it is not possible to secure sufficient quantities.

そこで近年は、自家骨に代わる材料としてヒドロキシア
パタイトが使用され始めている。ヒドロキシアパタイト
は合成または動物の骨を焼成し、有機成分を除去する等
により得られ、生体親和性が非常に酔いことが知られて
いる。しかしながら、ヒドロキシアパタイトを微粉末又
は顆粒状で充填材として使用した場合、血液も体液によ
る流出あるいは縫合後も異物として漏出されると言う問
題点が指摘されている。
Therefore, in recent years, hydroxyapatite has begun to be used as a material to replace autologous bone. Hydroxyapatite can be synthesized or obtained by burning animal bones and removing organic components, and is known to have very high biocompatibility. However, when hydroxyapatite is used as a filler in the form of fine powder or granules, it has been pointed out that there is a problem that blood may leak out due to body fluids or leak as foreign matter even after suturing.

上記問題点を解決する方法として、リン酸四カルシウム
と他のリン酸カルシウム塩混合物を、粉末のまま、ある
いは水で練和して充填することにより、ヒドロキシアパ
タイトを生成し、しかも硬化するという組成物が提案さ
れている。(USP4s18430)Lかしながら、こ
の組成物は硬化時間が20〜30分と遅いため骨充填の
場合の血液や体液による漏出、あるいは歯牙の裏層材と
して用いた場合に次の操作に移れないなどの問題点が指
摘されている。そこで硬化時間を速くする方法として、
フッ化ナトリウム、フッ化カルシウム等のフッ化物、あ
るいは水酸化カルシウムとリン酸、或いは硝酸カルシウ
ム、酢酸カルシウム等のカルシウム塩をリン酸水素カリ
ウム、リン酸水素アンモニウム等のリン酸塩より得られ
たヒドロキシアパタイトの添加等が検討されている。し
かしながら、フン化物は体内充填材として使用する場合
には為害性の問題があり、また、上記ヒドロキシアパタ
イトの添加は24〜43%と大量の添加が必要なため、
操作性が非常に悪くなる、あるいは圧縮強度が低下する
等の問題点がある。
As a method to solve the above problems, a composition that generates hydroxyapatite and hardens by filling a mixture of tetracalcium phosphate and other calcium phosphate salts either as powder or after kneading with water is proposed. Proposed. (USP 4s18430)L However, this composition has a slow curing time of 20 to 30 minutes, which prevents leakage due to blood and body fluids during bone filling, or when used as a tooth lining material, making it impossible to proceed to the next operation. Problems such as these have been pointed out. Therefore, as a way to speed up the curing time,
Fluorides such as sodium fluoride and calcium fluoride, or calcium hydroxide and phosphoric acid, or calcium salts such as calcium nitrate and calcium acetate, and hydroxyl obtained from phosphates such as potassium hydrogen phosphate and ammonium hydrogen phosphate. Addition of apatite, etc. is being considered. However, when using fluoride as a filler in the body, there is a problem that it is harmful, and addition of the above-mentioned hydroxyapatite requires a large amount of 24 to 43%.
There are problems such as extremely poor operability and decreased compressive strength.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は上記問題点を解決すべく鋭意研究を重ねた
。その結果、リン酸四カルシウムhca/P原子比が1
.67未満のリン酸カルシウムとよりなる硬化性組成物
において、該組成物にリン酸四カルシウムとCa/P原
子比が1.67未満のリン酸カルシウムとの反応によっ
て得られるヒドロキシアパタイト及び/又はその前駆体
を添加することにより、為害性、操作性等の問題点を生
ずることなく、硬化時間が著しく速くなることを見いだ
し、本発明を完成するに至った。
The present inventors have conducted extensive research in order to solve the above problems. As a result, the tetracalcium phosphate hca/P atomic ratio was 1.
.. In a curable composition comprising calcium phosphate having a Ca/P atomic ratio of less than 1.67, hydroxyapatite and/or its precursor obtained by the reaction of tetracalcium phosphate and calcium phosphate having a Ca/P atomic ratio of less than 1.67 is added to the composition. It was discovered that by doing so, the curing time can be significantly accelerated without causing problems such as toxicity and operability, and the present invention has been completed.

本発明は、リン酸四カルシウム、Ca/P原子比が1.
67未満のリン酸カルシウム及びリン酸四カルシウムと
Ca/P原子比が1.67未満のリン酸カルシウムとの
反応によって得られるヒドロキシアパタイト及び/又は
その前駆体(以下、これらを総称してHAP反応生成物
という)よりなる硬化性組成物である。
In the present invention, tetracalcium phosphate has a Ca/P atomic ratio of 1.
Hydroxyapatite and/or its precursor obtained by the reaction of calcium phosphate and tetracalcium phosphate with a Ca/P atomic ratio of less than 1.67 (hereinafter collectively referred to as HAP reaction products) This is a curable composition consisting of:

本発明の硬化性組成物に用いられるリン酸四カルシウム
(以下、C4Pと略す。)は、いかなる方法で製造した
もであっても良い。原料は、Ca源としてCaC0,、
CaO1Ca (OH) t、P源としてP2O5゜H
2PO4,NHJzPO4、(NH4)11)IPO4
、CaとPの両方を含有するCa1lPO4・2HzO
、CaHPa 、 Ca(HzPOn)z、Ca2Pz
Ot等が考えられ、原料によって種々の製造方法がある
が、公知のCaHPO4・2H,Oを焼成して得たγ−
Ca、P、07をCaCO5と混和焼成する乾式製造法
が好適である。
Tetracalcium phosphate (hereinafter abbreviated as C4P) used in the curable composition of the present invention may be produced by any method. The raw material is CaC0, as a Ca source.
CaO1Ca (OH) t, P2O5゜H as P source
2PO4, NHJzPO4, (NH4)11) IPO4
, Ca1lPO4・2HzO containing both Ca and P
, CaHPa, Ca(HzPOn)z, Ca2Pz
Although there are various manufacturing methods depending on the raw materials, γ- obtained by calcining known CaHPO4.2H,O
A dry manufacturing method in which Ca, P, and 07 are mixed and fired with CaCO5 is suitable.

この反応は、 2CaHPOa・2HzO−T  CazPzOy +
 58zOCazPzOt + 2CaCO3−Ca2
P2O,+ 2CO2の反応式で示され、1200℃以
上で焼成後炉外で急冷するか、窒素雰囲気中で1200
℃以−Fで焼成すれば、ヒドロキシアパタイトに転移す
ることなく純粋なC4Pが得られる。
This reaction is 2CaHPOa・2HzO−T CazPzOy +
58zOCazPzOt + 2CaCO3-Ca2
It is shown by the reaction formula of P2O, + 2CO2, and is either quenched outside the furnace after firing at 1200°C or higher, or heated at 1200°C in a nitrogen atmosphere.
If fired at temperatures below -F, pure C4P can be obtained without being transformed into hydroxyapatite.

また本発明において、前記したC4Pと混合されるCa
/Pモル比が1.67未満のリン酸カルシウム(以下、
HPCPと略す、)は、種々のものが使用できる。例え
ば、Ca(HzPOi)i・HgO,CaHPO4゜2
HzO+ Ca)IP04.Caalt(PO4)b・
5)1zO1Caz(POs)z+C’a z P z
’o ?が挙げられるが、そのうちCa11P04・2
112o。
In addition, in the present invention, Ca mixed with the above-mentioned C4P
/P molar ratio of less than 1.67 calcium phosphate (hereinafter referred to as
Various types of HPCP (abbreviated as HPCP) can be used. For example, Ca(HzPOi)i・HgO, CaHPO4゜2
HzO+ Ca) IP04. Caalt(PO4)b・
5) 1zO1Caz(POs)z+C'a z P z
'o? Among them, Ca11P04・2
112 o.

CaHPOaは、硬化体の力学的性質、操作性、保存安
定性の点で、特に好適である。例えばHPCPとしてC
aHPO4・2■20を用いた場合、反応式は次式のよ
うに表され、ヒドロキシアパタイトが生成する。
CaHPOa is particularly suitable in terms of mechanical properties, operability, and storage stability of the cured product. For example, as HPCP
When aHPO4.2■20 is used, the reaction formula is expressed as the following formula, and hydroxyapatite is produced.

2 CaaPzOq + 2CaHPO4・2HzO−
Calo(POa>b(OH)t + 21bO本発明
において、上記のHPCPとC4Pの混合物の混合比は
Ca/Pモル比が1.3〜1.8の割合になるように調
節することが、ヒドロキシアパタイトを効率よく生成さ
せ、得られる硬化体の強度を高めるために好ましい。
2 CaaPzOq + 2CaHPO4・2HzO−
Calo(POa>b(OH)t + 21bO In the present invention, the mixing ratio of the mixture of HPCP and C4P described above may be adjusted so that the Ca/P molar ratio is 1.3 to 1.8. This is preferred in order to efficiently generate hydroxyapatite and increase the strength of the resulting cured product.

また、上記のHPCP及びC4Pは、−gに粉末状で使
用される。この場合の粒径、形状は特に制限されないが
、硬化速度を速めるためと、水との混合における粉液比
を向上させるために、HPcpは平均粒径50μ鍋未満
、好ましくは0.1〜10μ編が、またC4Pは平均粒
径0.1〜100μm、好ましくは0.5〜50μ鴎の
粒径を有するものを、各々使用するのが好適である。ま
た、形状は、球状が特に好ましい。
Moreover, the above-mentioned HPCP and C4P are used in powder form in -g. In this case, the particle size and shape are not particularly limited, but in order to accelerate the curing speed and improve the powder-liquid ratio when mixed with water, HPcp has an average particle size of less than 50μ, preferably 0.1 to 10μ. It is preferable to use particles having an average particle size of 0.1 to 100 μm, preferably 0.5 to 50 μm, respectively. Further, the shape is particularly preferably spherical.

本発明の硬化組成物の特徴は、前記したHPCP及びC
4Pと共に、HAP反応生成物を含むことにある。
The characteristics of the cured composition of the present invention are the above-mentioned HPCP and C
It contains HAP reaction products along with 4P.

本発明において、HAP反応生成物は、全てがヒドロキ
シアパタイトであってもよいが、特に−部又は全部がヒ
ドロキシアパタイト前駆体であることが好ましい。かか
るヒドロキシアパタイト前駆体を含むHA P反応生成
物は、HPCPとC4Pとを水の存在下で反応させる過
程において生成するものであれば特に制限なく使用でき
る。
In the present invention, the HAP reaction product may be entirely hydroxyapatite, but it is particularly preferable that part or all of it is a hydroxyapatite precursor. The HAP reaction product containing such a hydroxyapatite precursor can be used without particular limitation as long as it is produced in the process of reacting HPCP and C4P in the presence of water.

中でも、X線回折において、原料であるC4Pのピーク
高さが反応前の約90%以下、好ましくは10〜80%
の状態で反応を止めたものが、得られる硬化性組成物の
硬化時間の短縮効果に優れているため好適である。
Among them, in X-ray diffraction, the peak height of the raw material C4P is about 90% or less, preferably 10 to 80% of that before reaction.
The one in which the reaction is stopped in this state is preferable because it has an excellent effect of shortening the curing time of the resulting curable composition.

また、HPCPとしては、前記例示のうち、Ca)lP
O4・2)1go及びCa)lPO4が好適である。
In addition, among the above-mentioned examples, examples of HPCP include Ca)lP
O4.2)1go and Ca)1PO4 are preferred.

上記HAP反応生成物の製造方法は特に制限れない。代
表的な製造方法を例示すれば、C4PとHPCPとをC
a/P原子比が1.3〜1.8の割合になるように混合
した混合物を水で練和した後、反応途中で乾燥する方法
が挙げられる。該混合物と水との混合比は、10/1−
1/10、更に好ましくは571〜l/2の範囲が好適
である。練和後の保持温度は、0℃以上であれば制限さ
れないが、反応速度及び乾燥を考慮すると20〜60℃
の範囲が好適である。
The method for producing the HAP reaction product is not particularly limited. To give an example of a typical manufacturing method, C4P and HPCP are
An example of the method is to knead a mixture with water so that the a/P atomic ratio is 1.3 to 1.8, and then dry the mixture during the reaction. The mixing ratio of the mixture and water is 10/1-
A range of 1/10, more preferably 571 to 1/2 is suitable. The holding temperature after kneading is not limited as long as it is 0°C or higher, but considering the reaction rate and drying, it is 20 to 60°C.
A range of is suitable.

上記C4P、HPCP及び水の練和物は水の存在下で反
応が進行するため、反応途中で乾燥を行い、水分を除去
することにより反応を停止することができる。乾燥方法
は特に制限されないが、凍結乾燥法、有機溶媒浸漬法、
スプレードライ法、加熱濃縮法等が一般に用いられる。
Since the reaction of the mixture of C4P, HPCP and water proceeds in the presence of water, the reaction can be stopped by drying during the reaction and removing water. The drying method is not particularly limited, but may include freeze-drying, organic solvent immersion,
Spray drying methods, heating concentration methods, etc. are generally used.

中でも、反応を短時間で停止できる方法として、凍結乾
燥法と有機溶媒浸漬法が好適である。凍結乾燥法は、練
和物を冷凍庫、ドライアイス、液体窒素等で凍結させた
後、真空脱水することによりHAP反応生成物を得るこ
とができる。有機溶媒浸漬法は、水と可溶な有機溶媒、
例えばメタノール、エタノール、イソプロピルアルコー
ル、アセトン等に練和物を浸漬することにより、脱水を
行い反応を停止させる。続いて、濾過、乾燥を行いHA
P反応生成物を得ることができる。
Among these, the freeze-drying method and the organic solvent immersion method are suitable as methods that can stop the reaction in a short time. In the freeze-drying method, a HAP reaction product can be obtained by freezing a kneaded product in a freezer, dry ice, liquid nitrogen, etc., and then dehydrating it in vacuum. The organic solvent immersion method uses an organic solvent that is soluble in water,
For example, the kneaded product is immersed in methanol, ethanol, isopropyl alcohol, acetone, etc. to dehydrate and stop the reaction. Next, filter and dry the HA.
A P reaction product can be obtained.

上記反応は、X線回折分析によると、練和初期において
は、原料のピークは小さくなるが、生成物のピークが現
れず、一定時間以上経過すると徐々にヒドロキシアパタ
イトが生成してくる。従って、練和初期においてはヒド
ロキシアパタイトに近い組成の無定形物質が生成してい
るものと考えられ、かかる過程において水の除去を行う
ことにより、ヒドロキシアパタイト前駆体を残存させる
ことができる。
According to X-ray diffraction analysis of the above reaction, in the early stage of kneading, the peak of the raw material becomes small, but the peak of the product does not appear, and after a certain period of time passes, hydroxyapatite gradually forms. Therefore, it is considered that an amorphous substance having a composition close to that of hydroxyapatite is produced in the initial stage of kneading, and by removing water during this process, the hydroxyapatite precursor can remain.

本発明においてHA P反応生成物は、HPCPとC4
Pとの反応により得られる完全なヒドロキシアパタイト
よりも、その前駆体を含むもの又は該前駆体のみを添加
する方が、より効果が大きく好適である。
In the present invention, the HAP reaction product is HPCP and C4
Rather than complete hydroxyapatite obtained by reaction with P, it is more effective and preferable to add one containing its precursor or only the precursor.

本発明において、HAP反応生成物の使用割合は、使用
目的及びどの段階のHAP反応生成物を添加するかによ
って多少異なるが、一般に、未反応の原料のHPCP及
びC4Pを除いたヒドロキシアパタイト及び/又はその
前駆体がHPCP及びC4Pの合計量に対して、0.1
〜20Wtχ、好ましくは0.2〜1Ovtχが好適で
ある。即ち、HAP反応生成物の使用割合が上記範囲よ
り少ない場合は、硬化時間の短縮効果が少さく、多い場
合は硬化体の強度が低下する傾向がある。
In the present invention, the proportion of the HAP reaction product to be used varies somewhat depending on the purpose of use and at which stage the HAP reaction product is added, but in general, it is hydroxyapatite and/or The precursor is 0.1% relative to the total amount of HPCP and C4P.
~20 Wtχ, preferably 0.2~1 Ovtχ is suitable. That is, when the proportion of the HAP reaction product used is less than the above range, the effect of shortening the curing time is small, and when it is greater, the strength of the cured product tends to decrease.

本発明の硬化性組成物は、必要に応じて硬化性に著しい
悪影響を与えない範囲で、他の成分を添加することがで
きる。例えば、X線造影性を持たせるために、硫酸バリ
ウム、バリウムガラス、ストロンチウムガラス、ジルコ
ニア、ヨードホルム等を硬化性組成物100重量部に対
して10〜50重量部添加するのが好適である。また、
操作性及び強度を調節するために、シリカ、フン化カル
シウム、二酸化チタン、水酸化カルシウム、アルミナ、
リン酸ナトリウム、リン酸アンモニウム等を添加するこ
とが出来る。
Other components can be added to the curable composition of the present invention, if necessary, within a range that does not significantly adversely affect the curability. For example, in order to provide X-ray contrast properties, it is preferable to add 10 to 50 parts by weight of barium sulfate, barium glass, strontium glass, zirconia, iodoform, etc. to 100 parts by weight of the curable composition. Also,
Silica, calcium fluoride, titanium dioxide, calcium hydroxide, alumina,
Sodium phosphate, ammonium phosphate, etc. can be added.

本発明の硬化性組成物は使用目的に応じて、粉末のまま
使用して体内の水分と反応硬化させる場合と、予め練和
液で練和して使用する場合がある。
Depending on the purpose of use, the curable composition of the present invention may be used as a powder and cured by reaction with moisture in the body, or it may be used after being kneaded with a kneading liquid in advance.

練和液を使用するばあいは、一般に水または生理食塩水
が用いられる。また、該練和液には必要に応じて、他の
成分を添加することが出来る。例えば、硬化時間を調節
するためにリン酸、フン化ナトリウム、カルボン酸、カ
ルボキシル基を持つポリマー等を0.001〜50%添
加するのが好適である。
When using a kneading solution, water or physiological saline is generally used. Moreover, other components can be added to the kneading liquid as necessary. For example, in order to adjust the curing time, it is preferable to add 0.001 to 50% of phosphoric acid, sodium fluoride, carboxylic acid, a polymer having a carboxyl group, or the like.

また、本発明の硬化組成物はあらかじめ液状有機化合物
を練和液としてワンペースト化し、山内または体内埋入
後、体液と反応して硬化するようにすることもできる。
Furthermore, the cured composition of the present invention can be made into a paste by using a liquid organic compound as a kneading liquid in advance, and after being implanted in the body or in the body, it can be cured by reacting with body fluids.

本発明の水硬性組成物の粉末と練和液の粉液比は、用途
に応じて好適な粘度となるように適宜決定すれば良い。
The powder-liquid ratio of the powder of the hydraulic composition of the present invention and the kneading liquid may be determined as appropriate to obtain a suitable viscosity depending on the application.

一般には、得られる練和物の練和1分後の粘度がlO〜
10000ポイズ、好ましくは100〜7000ボイズ
の範囲内となるように粉液比を調節すれば良い。例えば
根管充填材として使用する場合には、練和物の粘度が1
00〜5000ボイズとなるように粉液比を調節するこ
とが望ましい。
Generally, the viscosity of the resulting kneaded product after 1 minute of kneading is lO~
The powder/liquid ratio may be adjusted to be within the range of 10,000 poise, preferably 100 to 7,000 poise. For example, when used as a root canal filling material, the viscosity of the kneaded material is 1
It is desirable to adjust the powder/liquid ratio so that it becomes 0.00 to 5000 voids.

〔作 用〕[For production]

本発明において、HAP反応生成物の添加により、得ら
れる硬化性組成物の硬化時間が短縮する理由は、明らか
ではないが、本発明者等は、該HAP反応生成物が単に
結晶核の役目をするのみでなく、結晶成長の促進剤とし
て作用するため、C4PとHPCPだけの場合或いは他
の方法で得られたヒドロキシアパタイトを添加する場合
より、結晶を形成する時間が短縮されるためと考えられ
る。
In the present invention, the reason why the curing time of the resulting curable composition is shortened by the addition of the HAP reaction product is not clear, but the present inventors believe that the HAP reaction product merely acts as a crystal nucleus. This is thought to be due to the fact that it not only acts as a crystal growth accelerator, so the time for crystal formation is shorter than when using only C4P and HPCP or when adding hydroxyapatite obtained by other methods. .

〔効 果〕〔effect〕

本発明の硬化性組成物は、C4P及びHPCPよりなる
硬化性成分に、HAP反応生成物を添加することにより
、操作性、安全性、強度等の性質を損なうことなく、硬
化時間を効果的に短縮できる。従って、裏層材、合着セ
メント、充填セメント、根管充填材、覆卓材、歯周ポケ
ット充填材などの歯科用修復材、あるいは骨充填材、骨
セメントなどの整形外科用修復材として好適に使用する
ことが出来る。
The curable composition of the present invention effectively increases the curing time without impairing properties such as operability, safety, and strength by adding a HAP reaction product to the curable component consisting of C4P and HPCP. Can be shortened. Therefore, it is suitable as a dental restorative material such as backing material, luting cement, filling cement, root canal filling material, covering material, periodontal pocket filling material, or orthopedic restorative material such as bone filling material and bone cement. It can be used for.

〔実施例〕〔Example〕

以下、実施例によって本発明を具体的に説明するが、本
発明はこれらの実施例に限定されるものではない。尚、
本文中並びに実施例中に示した材料の性状に関する諸量
の定義及びそれらの測定方法については次の通りである
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples. still,
The definitions of various quantities related to the properties of materials shown in the text and in the examples and the methods for measuring them are as follows.

(11平均粒子径 得られた粒子をイソプロピルアルコールに分散させて、
粒度分布計(CAPA−500、堀場製作所製)で測定
した。測定原理は遠心沈降法である。
(11 average particle size The obtained particles are dispersed in isopropyl alcohol,
Measurement was performed using a particle size distribution meter (CAPA-500, manufactured by Horiba, Ltd.). The measurement principle is centrifugal sedimentation.

(2)構造 X線回折測定装置(日本電子)を用いて反応生成物のX
線回折を測定し、原料の残量及び反応生成物の構造を同
定した。
(2) Using a structural X-ray diffraction measurement device (JEOL Ltd.) to measure the reaction product X
Linear diffraction was measured to identify the remaining amount of raw materials and the structure of the reaction product.

(3)練和物の硬化時間 内径が20mm、厚さ3鶴のポリ塩化ビニル製モールド
に、1分間練和した練和物を満たし、その表面を平らに
した。練和の開始から2分30秒を経過したときこれを
温度37℃、相対湿度100%の恒温槽中に移した。そ
の後、重量114.12gのギルモア針(針の断面積4
.91鰭)を試験片の面に静かに落とし、針跡がつかな
(なった時を、練和開始時から起算して硬化時間とした
(3) Curing time of kneaded product A polyvinyl chloride mold with an inner diameter of 20 mm and a thickness of 3 mm was filled with the kneaded product kneaded for 1 minute, and its surface was flattened. When 2 minutes and 30 seconds had passed from the start of kneading, the mixture was transferred to a constant temperature bath at a temperature of 37° C. and a relative humidity of 100%. Then, a Gilmore needle weighing 114.12 g (needle cross-sectional area 4
.. 91 fin) was gently dropped onto the surface of the test piece, and the time when no needle marks were left was defined as the curing time starting from the start of kneading.

(4)圧縮強度 JIS  T−66002のリン酸亜鉛セメントの破砕
抗力試験に準じた。
(4) Compressive strength According to JIS T-66002 zinc phosphate cement crushing drag test.

すなわち、1分間練和した練和物をモールドに入れ、こ
れを温度37℃、相対湿度100%の恒温槽中に1時間
保ってから、硬化体をモールドから取り出した。試験片
の大きさ及び形状は12鶴×6龍φの円柱状である。そ
の後、この試験片をさらに37℃の蒸留水中に23時間
保った後、万能試験機テンシロン(東洋ボールドウィン
社製)を使用してクロスヘツドスピード毎分0.5龍で
試験片が破砕するまで加圧した。
That is, the kneaded product kneaded for 1 minute was placed in a mold, kept in a constant temperature bath at a temperature of 37° C. and a relative humidity of 100% for 1 hour, and then the cured product was taken out from the mold. The size and shape of the test piece are cylindrical with 12 cranes x 6 dragons φ. After that, this test piece was further kept in distilled water at 37°C for 23 hours, and then processed using a universal testing machine Tensilon (manufactured by Toyo Baldwin) at a crosshead speed of 0.5 hours per minute until the test piece was crushed. I pressed it.

このときの破砕抗力を圧縮強度(kglolll)とし
た。
The crushing resistance at this time was defined as the compressive strength (kgloll).

製造例1 CaHPO,、−2H□Oを500℃で2時間焼成して
r  CazPz07を得た。この粉末とCaCO3粉
末をl:2 (モル比)で混合し、空気中1400℃で
2時間焼成した後、炉外で急冷した。生成した粉末はC
4PであることをX線回折から確認した。このC4Pを
アルミナ製ボールミルにかけ、10時間粉砕した。これ
を250メソシユの目開きのふるいにかけ、CAPFA
末(平均粒径5.3μm)を得た。
Production Example 1 CaHPO, -2H□O was calcined at 500°C for 2 hours to obtain rCazPz07. This powder and CaCO3 powder were mixed at a ratio of 1:2 (molar ratio), fired in air at 1400°C for 2 hours, and then rapidly cooled outside the furnace. The generated powder is C
It was confirmed from X-ray diffraction that it was 4P. This C4P was ground in an alumina ball mill for 10 hours. Pass this through a sieve with a mesh size of 250 mesh, and CAPFA
A powder (average particle size: 5.3 μm) was obtained.

上記C4Pとリン酸水素カルシウム・2水和物(平均粒
径5.2717m)とをCa/P原子比が1.67とな
るように混合した。この混合物とイオン交換水を2.0
の粉液比で練和し、練和開始2分30秒後に相対湿度1
00%、37℃の恒温槽中に移し、練和開始15分後、
30分後、1時間後、3時間後、5時間後、10時間後
、24時間後に練和物の1部を取り出して、液体窒素で
凍結し、反応を停止させた。このサンプルを真空デシケ
ータ−に移し、真空ポンプで凍結乾燥を行った後、ボー
ルミルで粉砕しく平均粒径2.2μm)反応物を得た。
The above C4P and calcium hydrogen phosphate dihydrate (average particle size 5.2717 m) were mixed so that the Ca/P atomic ratio was 1.67. Add this mixture and ion exchange water to 2.0
2 minutes and 30 seconds after starting kneading, the relative humidity was 1.
00%, transferred to a constant temperature bath at 37°C, and 15 minutes after starting kneading,
After 30 minutes, 1 hour, 3 hours, 5 hours, 10 hours, and 24 hours, a portion of the kneaded product was taken out and frozen with liquid nitrogen to stop the reaction. This sample was transferred to a vacuum desiccator, freeze-dried using a vacuum pump, and then pulverized using a ball mill to obtain a reaction product (average particle size: 2.2 μm).

X、v1回折により反応生成物中のC4Pの残量割合(
29,2°における練和前と練和後のピーク比)及びヒ
ドロキシアパタイトの生成状態を測定し、HAP反応生
成物の割合を求めた。結果を第1表に示す。
The residual proportion of C4P in the reaction product was determined by X, v1 diffraction (
The peak ratio before and after kneading at 29.2°) and the state of hydroxyapatite formation were measured, and the proportion of the HAP reaction product was determined. The results are shown in Table 1.

実施例1 比較例1 製造例1のC4Pとリン酸水素カルシウム無水物をCa
/P原子比1.67で混合した。この混合物と製造例1
で得た。N11−1〜l1hl−4の反応物を、HAP
反応生成物が全体の2wtχになるように混合し、硬化
性組成物を得た。それぞれの硬化性組成物をイオン交換
水と粉液比2.5で練和し硬化時間、操作性及び圧縮強
度の測定を行った。結果を第2表に示す。比較として、
HAP反応生成物を添加しないものの結果を比較例1に
示す。
Example 1 Comparative Example 1 C4P and calcium hydrogen phosphate anhydride of Production Example 1 were
/P atomic ratio of 1.67. This mixture and Production Example 1
I got it. The reaction products of N11-1 to l1hl-4 were converted into HAP
The reaction products were mixed so that the total weight was 2wtχ to obtain a curable composition. Each curable composition was kneaded with ion-exchanged water at a powder/liquid ratio of 2.5, and the curing time, operability, and compressive strength were measured. The results are shown in Table 2. As a comparison,
Comparative Example 1 shows the results without adding the HAP reaction product.

実施例2 比較例2 製造例1のC4Pとリン酸水素カルシウム2水和物をC
a/P原子比1.67で混合した。この混合物に製造例
1kkl−3の反応物を、HAP反応生成物がそれぞれ
第3表に示す割合となるように添加し、硬化性組成物を
調製した。これを生理食塩水により2.5の粉液比で練
和し、硬化時間の測定を行った。測定結果を第3表に示
す。比較例として反応生成物を添加しない場合の結果を
比較例2に示す。
Example 2 Comparative Example 2 C4P of Production Example 1 and calcium hydrogen phosphate dihydrate were
They were mixed at an a/P atomic ratio of 1.67. The reactant of Production Example 1kkl-3 was added to this mixture so that the HAP reaction products had the proportions shown in Table 3, to prepare a curable composition. This was mixed with physiological saline at a powder/liquid ratio of 2.5, and the curing time was measured. The measurement results are shown in Table 3. As a comparative example, the results obtained when no reaction product was added are shown in Comparative Example 2.

製造例2 製造例1のC4Pとリン酸水素カルシウム無水和物(平
均粒径4.3μm)をCa/P原子比が1.7となるよ
うに混合した。この混合物とイオン交換水を粉液比2.
5で練和し、練和開始2分30秒後に相対湿度100%
、50℃の恒温槽中に移した。練和開始15分後、30
分後、1時間後、3時間後、5時間後、10時間後に練
和物を20gづつ取り出し、軽く粉砕を行い200m+
2のメタノールに浸漬、攪拌を行い反応を停止した。こ
れを濾過し、室温で真空乾燥した後、ボールミルで粉砕
して(平均粒径3.1μm)反応物を得た。
Production Example 2 C4P from Production Example 1 and calcium hydrogen phosphate anhydrate (average particle size 4.3 μm) were mixed so that the Ca/P atomic ratio was 1.7. This mixture and ion-exchanged water were mixed at a powder/liquid ratio of 2.
5, and 2 minutes and 30 seconds after the start of mixing, the relative humidity is 100%.
, and transferred to a constant temperature bath at 50°C. 15 minutes after starting kneading, 30 minutes
After minutes, 1 hour, 3 hours, 5 hours, and 10 hours, take out 20g of the kneaded material and lightly crush it to 200m+
The reaction was stopped by immersion in methanol (No. 2) and stirring. This was filtered, dried under vacuum at room temperature, and then ground in a ball mill (average particle size: 3.1 μm) to obtain a reaction product.

X線回折により反応物中のC4Pの残量割合(29,2
°における練和前と練和後のピーク比)及びヒドロキシ
アパタイトの生成状態を測定し、HA P反応生成物の
割合を求めた。結果を第4表に示す。
The residual proportion of C4P in the reaction product was determined by X-ray diffraction (29,2
The ratio of the peaks before and after kneading at 50°C and the state of hydroxyapatite formation were measured, and the proportion of the HAP reaction product was determined. The results are shown in Table 4.

実施例3 実施例1に於て、製造例1で得た反応生成物の代わりに
製造例2で得たNl14−1−11h4−4の反応物を
、HAP反応生成物が全体の1.5wtχなるように混
合し、同様な測定を行った。結果を第5表に示す。
Example 3 In Example 1, the reaction product of Nl14-1-11h4-4 obtained in Production Example 2 was used instead of the reaction product obtained in Production Example 1, so that the total HAP reaction product was 1.5wtχ The mixture was mixed and the same measurements were performed. The results are shown in Table 5.

実施例4 製造例1のC4Pと表6の種々のHPCPをCa/P原
子比が1.67となるように混合し、イオン交換水と2
.5の粉液比で練和し、練和開始2分30秒後に相対湿
度100%、37℃恒温槽中に移し、練和開始3時間後
に凍結乾燥を行った。
Example 4 C4P of Production Example 1 and various HPCPs of Table 6 were mixed so that the Ca/P atomic ratio was 1.67, and mixed with ion-exchanged water.
.. The mixture was kneaded at a powder/liquid ratio of 5, and 2 minutes and 30 seconds after the start of kneading, the mixture was transferred to a constant temperature bath at 37° C. with a relative humidity of 100%, and freeze-dried 3 hours after the start of kneading.

上記反応物を実施例1の反応物の代わりに用い、HAP
反応生成物が1.5 wtXになるよう混合し、硬化時
間の測定を行った。結果を第6表に示す。
Using the above reactants in place of the reactants of Example 1, HAP
The reaction products were mixed to a concentration of 1.5 wtX, and the curing time was measured. The results are shown in Table 6.

比較例3〜5 製造例1のC4Pとリン酸水素カルシウム2水和物Ca
/P原子比1,67で混合し、この混合物に以下の乾式
法又は湿式法によって合成したヒドロキシアパタイトを
それぞれ2.10.40−Lχ添加した。これを生理食
塩水と2.5の粉液比で練和し、硬化時間及び操作性を
測定した。結果を第7表に示す。
Comparative Examples 3 to 5 C4P of Production Example 1 and calcium hydrogen phosphate dihydrate Ca
/P atomic ratio of 1.67, and to this mixture were added 2.10.40-Lχ of hydroxyapatite synthesized by the following dry method or wet method, respectively. This was mixed with physiological saline at a powder/liquid ratio of 2.5, and the curing time and operability were measured. The results are shown in Table 7.

〔乾式法ヒドロキシアパタイト〕[Dry method hydroxyapatite]

CatlPOa−2H20粉末と(1:acO+粉末を
Ca/P原子比が1.67となるように混合し、70℃
飽和水蒸気を含む空気を毎分61吹き込みながら、13
00°Cで4時間焼成した。この粉末をボールミルで粉
砕し、250メツシユのフルイにかけ、乾式法ヒドロキ
シアパタイト粉末を得た。
CatlPOa-2H20 powder and (1:acO+ powder were mixed so that the Ca/P atomic ratio was 1.67, and the mixture was heated at 70°C.
13 while blowing air containing saturated water vapor at 61 per minute.
It was baked at 00°C for 4 hours. This powder was ground in a ball mill and passed through a 250 mesh sieve to obtain a dry hydroxyapatite powder.

〔湿式法ヒドロキシアパタイト〕[Wet method hydroxyapatite]

0.5mol/βの水酸化カルシウム懸濁液と0.3m
o 1 / 1のリン酸水溶液をCa/P原子比が1.
67となるように40℃で混合し、24時間撹拌した。
0.5 mol/β calcium hydroxide suspension and 0.3 m
o 1/1 phosphoric acid aqueous solution with a Ca/P atomic ratio of 1.
The mixture was mixed at 40° C. and stirred for 24 hours.

該反応溶液の沈澱を濾過し、120℃で乾燥を行った。The precipitate of the reaction solution was filtered and dried at 120°C.

この粉末を乳鉢で粉砕し、25メソシユのフルイにかけ
、湿式法ヒドロキシアパタイト粉末(1)を得た。
This powder was ground in a mortar and passed through a 25 sieve sieve to obtain a wet hydroxyapatite powder (1).

2mo7!/j!硝酸カルシウム溶液0.51と1.2
mo l / 7!リン酸二水素カリウム溶液0.51
をイオン交換水41にpHが7.2〜7.6の範囲にな
るように滴下し、40°Cで24時間撹拌した。該反応
溶液の沈澱を濾過し、120℃で乾燥した。この粉末を
乳鉢で粉砕し、250メソシユのフルイにかけ湿式法ヒ
ドロキシアパタイト粉末(2)を得た。
2mo7! /j! Calcium nitrate solution 0.51 and 1.2
mol/7! Potassium dihydrogen phosphate solution 0.51
was added dropwise to ion-exchanged water 41 so that the pH was in the range of 7.2 to 7.6, and the mixture was stirred at 40°C for 24 hours. The precipitate of the reaction solution was filtered and dried at 120°C. This powder was ground in a mortar and passed through a 250 sieve sieve to obtain a wet hydroxyapatite powder (2).

・ −i −1で i−1・-i-1 for i-1

Claims (1)

【特許請求の範囲】[Claims]  リン酸四カルシウム、Ca/P原子比が1.67未満
のリン酸カルシウム及びリン酸四カルシウムとCa/P
原子比が1.67未満のリン酸カルシウムとの反応によ
って得られるヒドロキシアパタイト及び/又はその前駆
体よりなる硬化性組成物。
Tetracalcium phosphate, calcium phosphate with a Ca/P atomic ratio of less than 1.67, and tetracalcium phosphate and Ca/P
A curable composition comprising hydroxyapatite and/or its precursor obtained by reaction with calcium phosphate having an atomic ratio of less than 1.67.
JP63131529A 1988-05-31 1988-05-31 Curable composition Expired - Fee Related JPH0643263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63131529A JPH0643263B2 (en) 1988-05-31 1988-05-31 Curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63131529A JPH0643263B2 (en) 1988-05-31 1988-05-31 Curable composition

Publications (2)

Publication Number Publication Date
JPH01301543A true JPH01301543A (en) 1989-12-05
JPH0643263B2 JPH0643263B2 (en) 1994-06-08

Family

ID=15060201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63131529A Expired - Fee Related JPH0643263B2 (en) 1988-05-31 1988-05-31 Curable composition

Country Status (1)

Country Link
JP (1) JPH0643263B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128062A (en) * 1989-10-16 1991-05-31 Natl Inst For Res In Inorg Mater Water-curable type calcium phosphate cement composition
US6325992B1 (en) 1993-03-12 2001-12-04 American Dental Association Health Foundation Calcium phosphate hydroxyapatite precursor and methods for making and using the same
JP2002226241A (en) * 2001-01-30 2002-08-14 Mitsui Constr Co Ltd Method for recycling concrete material by vacuum freeze drying
US7294187B2 (en) 2001-01-24 2007-11-13 Ada Foundation Rapid-hardening calcium phosphate cement compositions
US8282396B2 (en) 2001-01-24 2012-10-09 Ada Foundation Calcium-containing restoration materials
CN115025282A (en) * 2022-04-14 2022-09-09 湖南师范大学 Lignin/nano hydroxyapatite-based composite material and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128062A (en) * 1989-10-16 1991-05-31 Natl Inst For Res In Inorg Mater Water-curable type calcium phosphate cement composition
JPH0528631B2 (en) * 1989-10-16 1993-04-26 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho
US6325992B1 (en) 1993-03-12 2001-12-04 American Dental Association Health Foundation Calcium phosphate hydroxyapatite precursor and methods for making and using the same
US7294187B2 (en) 2001-01-24 2007-11-13 Ada Foundation Rapid-hardening calcium phosphate cement compositions
US8282396B2 (en) 2001-01-24 2012-10-09 Ada Foundation Calcium-containing restoration materials
JP2002226241A (en) * 2001-01-30 2002-08-14 Mitsui Constr Co Ltd Method for recycling concrete material by vacuum freeze drying
CN115025282A (en) * 2022-04-14 2022-09-09 湖南师范大学 Lignin/nano hydroxyapatite-based composite material and preparation method thereof

Also Published As

Publication number Publication date
JPH0643263B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
CA2157890C (en) Calcium phosphate hydroxyapatite precursor and methods for making and using the same
US5336264A (en) Situ prepared calcium phosphate composition and method
CA2438742C (en) A new calcium phosphate cement composition and a method for the preparation thereof
US4677140A (en) Surgical cement containing α-tricalcium phosphate, poly(carboxylic acid) and water
Laurence et al. Formation of hydroxyapatite in cement systems
JPH0645487B2 (en) Curing material
JPH01301543A (en) Curable composition
JP2505545B2 (en) Method for curing curable composition
JP3987220B2 (en) Fast-setting calcium phosphate cement
US20040250729A1 (en) Fast-setting carbonated hydroxyapatite compositions and uses
JP2563186B2 (en) Method for producing calcium phosphate-based cured product
JPS62153204A (en) Root canal filling material for dental use
JPH01158965A (en) Curable composition
JPS61234868A (en) Curable composition
JP2652764B2 (en) Fixable dental and medical granular bone filling material and method for producing the same
JPS62270164A (en) Substitute material for repairing living body hard tissue
JP3423951B2 (en) Calcium phosphate hardened powder
JPS61236644A (en) Calcium phosphate hardenable composition
JP2548745B2 (en) Bone cement composition
US20240197575A1 (en) Premixed barium silicate cement for dental and medical applications, and methods of use
JPH01166762A (en) Medical and dental curable material
JPH06172007A (en) High-strength cement of calcium phosphate
JPH0331470B2 (en)
JP4116791B2 (en) Curing time control method of hydration hardening type calcium phosphate paste
JP2000169199A (en) Quick-hardening calcium phosphate cement

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees