JPH0643263B2 - Curable composition - Google Patents

Curable composition

Info

Publication number
JPH0643263B2
JPH0643263B2 JP63131529A JP13152988A JPH0643263B2 JP H0643263 B2 JPH0643263 B2 JP H0643263B2 JP 63131529 A JP63131529 A JP 63131529A JP 13152988 A JP13152988 A JP 13152988A JP H0643263 B2 JPH0643263 B2 JP H0643263B2
Authority
JP
Japan
Prior art keywords
reaction
hydroxyapatite
powder
reaction product
kneading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63131529A
Other languages
Japanese (ja)
Other versions
JPH01301543A (en
Inventor
修 岩本
稔 稲葉
潤子 升野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP63131529A priority Critical patent/JPH0643263B2/en
Publication of JPH01301543A publication Critical patent/JPH01301543A/en
Publication of JPH0643263B2 publication Critical patent/JPH0643263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は生体の骨欠損部及び空隙部、又は歯牙の欠損部
を充填する新規な硬化性組成物に関する。詳しくは、水
との接触により、速やかにヒドロキシアパタイト硬化体
を生成し、優れた親和性を有する充填材となる硬化性組
成物である。
TECHNICAL FIELD The present invention relates to a novel curable composition for filling bone defects and voids of a living body, or tooth defects. More specifically, it is a curable composition that promptly forms a hydroxyapatite cured product upon contact with water and becomes a filler having excellent affinity.

〔従来の技術〕[Conventional technology]

外科、整形外科領域においては、交通事故、骨腫瘍切除
等、また歯科領域においては歯槽膿漏、歯槽骨吸収、抜
歯及びう触歯牙切除等により、骨欠損部あるいは空隙部
が生じる。このような骨欠損部あるいは空隙部の充填、
補綴のために自骨、高分子、金属、セラミックス等種々
の材料が使用されている。中でも、自家骨は骨形成能に
優れ、拒絶反応が少ないなどの点で非常に優れている。
しかしながら、自家骨は本人の正常な組織から採取せね
ばならず、手術による大きな苦痛を伴うばかりでなく、
十分な量を確保できない場合も多い。
In the surgical and orthopedic fields, bone defects or voids are caused by traffic accidents, bone tumor resection, etc., and in the dental field, alveolar pyorrhea, alveolar bone resorption, tooth extraction, and carotid tooth resection. Filling of such bone defects or voids,
Various materials such as self-bones, polymers, metals, and ceramics are used for prosthesis. Among them, autologous bone is excellent in bone forming ability and has little rejection reaction.
However, the autologous bone must be collected from the normal tissue of the person, which is not only a great pain in the operation,
There are many cases where a sufficient amount cannot be secured.

そこで近年は、自家骨に代わる材料としてヒドロキシア
パタイトが使用され始めている。ヒドロキシアパタイト
は合成または動物の骨を焼成し、有機成分を除去する等
により得られ、生体親和性が非常に酔いことが知られて
いる。しかしながら、ヒドロキシアパタイを微粉末又は
顆粒状で充填材として使用した場合、血液も体液による
流出あるいは縫合後も異物として漏出されると言う問題
点が指摘されている。
Therefore, in recent years, hydroxyapatite has begun to be used as a material to replace autologous bone. Hydroxyapatite is obtained by synthesizing or burning animal bones to remove organic components, and it is known that its biocompatibility is extremely sick. However, it has been pointed out that when hydroxyapatai is used as a filler in the form of fine powder or granules, blood also leaks out as a foreign substance after body fluid or after suturing.

上記問題点を解決する方法として、リン酸四カルシウム
と他のリン酸カルシウム塩混合物を、粉末のまま、ある
いは水で練和して充填することにより、ヒドロキシアパ
タイトを生成し、しかも硬化するという組成物が提案さ
れている。(USP4518430)しかしながら、こ
の組成物は硬化時間が20〜30分と遅いため骨充填の
場合の血液や体液による漏出、あるいは歯牙の裏層材と
して用いた場合に次の操作に移れないなどの問題点が指
摘されている。そこで硬化時間を速くする方法として、
フッ化ナトリウム、フッ化カルシウム等のフッ化物、あ
るいは水酸化カルシウムとリン酸、或いは硝酸カルシウ
ム、酢酸カルシウム等のカルシウム塩をリン酸水素カリ
ウム、リン酸水素アンモニウム等のリン酸塩より得られ
たヒドロキシアパタイトの添加等が検討されている。し
かしながら、フッ化物は体内充填材として使用する場合
には為害性の問題があり、また、上記ヒドロキシアパタ
イトの添加は24〜43%と大量の添加が必要なため、
操作性が非常に悪くなる、あるいは圧縮強度が低下する
等の問題点がある。
As a method for solving the above problems, a composition in which a mixture of tetracalcium phosphate and another calcium phosphate salt, as a powder, or by kneading and filling with water to form hydroxyapatite, and further hardening, is obtained. Proposed. (USP4518430) However, since the curing time of this composition is as slow as 20 to 30 minutes, leakage due to blood or body fluid in the case of bone filling, or the problem that the composition cannot be transferred to the next operation when used as a tooth backing material Points are pointed out. Therefore, as a method to accelerate the curing time,
Hydroxy obtained from fluorides such as sodium fluoride and calcium fluoride, or calcium hydroxide and phosphoric acid, or calcium salts such as calcium nitrate and calcium acetate, from phosphates such as potassium hydrogen phosphate and ammonium hydrogen phosphate. Addition of apatite is under consideration. However, fluoride has a problem of toxicity when used as a filling material in the body, and since the addition of the hydroxyapatite requires a large amount of 24-43%,
There is a problem that the operability is very poor or the compressive strength is lowered.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は上記問題点を解決すべく鋭意研究を重ね
た。その結果、リン酸四カルシウムとCa/P原子比が1.
67未満のリン酸カルシウムとよりなる硬化性組成物にお
いて、該組成物にリン酸四カルシウムとCa/P原子比が
1.67未満のリン酸カルシウムとの反応によって得られる
ヒドロキシアパタイト及び/又はその前駆体を添加する
ことにより、為害性、操作性等の問題点を生ずることな
く、硬化時間が著しく速くなることを見いだし、本発明
を完成するに至った。
The present inventors have conducted intensive studies to solve the above problems. As a result, the Ca / P atomic ratio of tetracalcium phosphate was 1.
A curable composition consisting of calcium phosphate of less than 67, wherein the composition contains tetracalcium phosphate and a Ca / P atomic ratio of
It was found that by adding hydroxyapatite and / or its precursor obtained by the reaction with calcium phosphate of less than 1.67, curing time can be remarkably accelerated without causing problems such as toxicity and operability. Has been completed.

本発明は、リン酸四カルシウム、Ca/P原子比が1.67未
満のリン酸カルシウム及びリン酸四カルシウムとCa/P
原子比が1.67未満のリン酸カルシウムとの反応によって
得られるヒドロキシアパタイト及び/又はその前駆体
(以下、これらを総称してHAP反応生成物という)よ
りなる硬化性組成物である。
The present invention relates to tetracalcium phosphate, calcium phosphate having a Ca / P atomic ratio of less than 1.67, and tetracalcium phosphate and Ca / P.
A curable composition comprising hydroxyapatite and / or a precursor thereof (hereinafter collectively referred to as HAP reaction product) obtained by reaction with calcium phosphate having an atomic ratio of less than 1.67.

本発明の硬化性組成物に用いられるリン酸四カルシウム
(以下、C4Pと略す。)は、いかなる方法で製造した
もであっても良い。原料はCa源としてCaCO3、CaO、Ca(OH)
2、P源としてP2O5、H3PO4、NH4H2PO4、(NH4)2HPO4、CaとP
の両方を含有するCaHPO4・2H2O、CaHP4、Ca(H2PO4)2、Ca2P2
O7等が考えられ、原料によって種々の製造方法がある
が、公知のCaHPO4・2H2Oを焼成して得たγ−Ca2P2O7をCa
CO3と混和焼成する乾式製造法が好適である。
The tetracalcium phosphate (hereinafter abbreviated as C4P) used in the curable composition of the present invention may be produced by any method. The raw materials are CaCO 3 , CaO, Ca (OH) as a Ca source.
2 , as a P source, P 2 O 5 , H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , Ca and P
CaHPO 4 · 2H 2 O, CaHP 4 , Ca (H 2 PO 4 ) 2 , Ca 2 P 2 containing both
O 7 etc. are considered and there are various production methods depending on the raw material, but γ-Ca 2 P 2 O 7 obtained by firing known CaHPO 4 .2H 2 O is Ca
A dry manufacturing method of mixing with CO 3 and firing is preferable.

この反応は、 2CaHPO4・2H2O→γ−Ca2P2O7+5H2O Ca2P2O7+2CaCO3→Ca2P2O9+2CO2 の反応式で示され、1200℃以上で焼成後炉外で急冷
するか、窒素雰囲気中で1200℃以上で焼成すれば、
ヒドロキシアパタイトに転移することなく純粋なC4P
が得られる。
This reaction is represented by the reaction formula 2CaHPO 4 · 2H 2 O → γ -Ca 2 P 2 O 7 + 5H 2 O Ca 2 P 2 O 7 + 2CaCO 3 → Ca 2 P 2 O 9 + 2CO 2, 1200 ℃ or higher After firing, quenching outside the furnace or firing at 1200 ° C or higher in a nitrogen atmosphere,
Pure C4P without transfer to hydroxyapatite
Is obtained.

また本発明において、前記したC4Pと混合されるCa/
Pモル比が1.67未満のリン酸カルシウム(以下、HPC
Pと略す。)は、種々のものが使用できる。例えば、Ca
(H2PO4)2・H2O、CaHPO4・2H2O,CaHPO4,Ca8H2(PO4)6・5H2O,C
a3(PO4)2,Ca2P2O7が挙げられるが、そのうちCaHPO4・2H2
O,CaHPO4は、硬化体の力学的性質、操作性、保存安定性
の点で、特に好適である。例えばHPCPとしてCaHPO4
・2H2Oを用いた場合、反応式は次式のように表され、ヒ
ドロキシアパタイトが生成する。
Moreover, in the present invention, Ca / C which is mixed with the above-mentioned C4P
Calcium phosphate with a P molar ratio of less than 1.67 (hereinafter referred to as HPC
Abbreviated as P. ), Various ones can be used. For example, Ca
(H 2 PO 4 ) 2・ H 2 O, CaHPO 4・ 2H 2 O, CaHPO 4 ,, Ca 8 H 2 (PO 4 ) 6・ 5H 2 O, C
a 3 (PO 4 ) 2 and Ca 2 P 2 O 7 can be mentioned, of which CaHPO 4・ 2H 2
O and CaHPO 4 are particularly preferable in terms of mechanical properties, operability and storage stability of the cured product. For example, HPCP as CaHPO 4
・ When 2H 2 O is used, the reaction formula is represented by the following formula, and hydroxyapatite is produced.

2Ca4P2O9+2CaHPO4・2H2O→ Ca10(PO4)6(OH)2+2H2O 本発明において、上記のHPCPとC4Pの混合物の混
合比はCa/Pモル比が1.3〜1.8の割合になるように調節
することが、ヒドロキシアパタイトを効率よく生成さ
せ、得られる硬化体の強度を高めるために好ましい。
In 2Ca 4 P 2 O 9 + 2CaHPO 4 · 2H 2 O → Ca 10 (PO 4) 6 (OH) 2 + 2H 2 O The present invention, mixing ratio Ca / P molar ratio of the mixture of the above HPCP and C4P is 1.3 It is preferable to adjust the ratio to 1.8 so that hydroxyapatite can be efficiently produced and the strength of the obtained cured product is increased.

また、上記のHPCP及びC4Pは、一般に粉末状で使
用される。この場合の粒径、形状は特に制限されない
が、硬化速度を速めるためと、水との混合における粉液
比を向上させるために、HPCPは平均粒径50μm未
満、好ましくは0.1〜10μmが、またC4Pは平均粒
径0.1〜100μm、好ましくは0.5〜50μmの粒径を
有するものを、各々使用するのが好適である。また形状
は、球状が特に好ましい。
The HPCP and C4P are generally used in powder form. The particle size and shape in this case are not particularly limited, but HPCP has an average particle size of less than 50 μm, preferably 0.1 to 10 μm, in order to accelerate the curing speed and to improve the powder-liquid ratio in the mixing with water. It is preferable to use C4P having an average particle size of 0.1 to 100 μm, preferably 0.5 to 50 μm. Further, the shape is particularly preferably spherical.

本発明の硬化組成物の特徴は、前記したHPCP及びC4P
と共に、HAP反応生成物を含むことにある。
The characteristic of the cured composition of the present invention is that HPCP and C4P described above are used.
In addition, it is to contain the HAP reaction product.

本発明において、HAP反応生成物は、全てがヒドロキ
シアパタイトであってもよいが、特に一部又は全部がヒ
ドロキシアパタイト前駆体であることが好ましい。かか
るヒドロキシアパタイト前駆体を含むHAP反応生成物
は、HPCPとC4Pと水の存在下で反応させる過程に
おいて生成するものであれば特に制限なく使用できる。
中でも、X線回折において、原料であるC4Pのピーク
高さが反応前の約90%以下、好ましくは10〜80%
の状態で反応を止めたものが、得られる硬化性組成物の
硬化時間の短縮効果に優れているため好適である。
In the present invention, the HAP reaction product may be all hydroxyapatite, but it is particularly preferable that a part or all thereof is a hydroxyapatite precursor. The HAP reaction product containing such a hydroxyapatite precursor can be used without particular limitation as long as it is produced in the process of reacting HPCP with C4P in the presence of water.
Among them, in X-ray diffraction, the peak height of C4P as a raw material is about 90% or less before reaction, preferably 10 to 80%.
The one in which the reaction is stopped in this state is preferable because it has an excellent effect of shortening the curing time of the resulting curable composition.

またHPCPとしては、前記例示のうち、CaHPO4・2H2O
及びCaHPO4が好適である。
Further, as the HPCP, CaHPO 4 .2H 2 O among the above examples is used.
And CaHPO 4 are preferred.

上記HAP反応生成物の製造方法は特に制限れない。代
表的な製造方法を例示すれば、C4PとHPCPとをCa
/P原子比が1.3〜1.8の割合になるように混合した混合
物を水で緩和した後、反応途中で乾燥する方法が挙げら
れる。該混合物と水との混合比は、10/1〜1/1
0、更に好ましくは5/1〜1/2の範囲が好適であ
る。練和後の保持温度は、0℃以上であれば制限されな
いが、反応速度及び乾燥を考慮すると20〜60℃の範
囲が好適である。
The method for producing the HAP reaction product is not particularly limited. If a typical manufacturing method is illustrated, C4P and HPCP are Ca
A method may be mentioned in which the mixture mixed so that the / P atomic ratio is 1.3 to 1.8 is relaxed with water and then dried during the reaction. The mixing ratio of the mixture and water is 10/1 to 1/1
The range of 0, more preferably 5/1 to 1/2 is suitable. The holding temperature after kneading is not limited as long as it is 0 ° C. or higher, but a range of 20 to 60 ° C. is preferable in view of reaction rate and drying.

上記C4P、HPCP及び水の練和物は水の存在下で反
応が進行するため、反応途中で乾燥を行い、水分を除去
することにより反応を停止することができる。乾燥方法
は特に制限されないが、凍結乾燥法、有機溶媒浸漬法、
スプレードライ法、加熱濃縮法等が一般に用いられる。
中でも、反応を短時間で停止できる方法として、凍結乾
燥法と有機溶媒浸漬法が好適である。凍結乾燥法は、練
和物を冷凍庫、ドライアイス、液体窒素等で凍結させた
後、真空脱水することによりHAP反応生成物を得るこ
とができる。有機溶媒浸漬法は、水と可溶な有機溶媒、
例えばメタノール、エタノール、イソプロピルアルコー
ル、アセトン等に練和物を浸漬することにより、脱水を
行い反応を停止させる。続いて、濾過、乾燥を行いHA
P反応生成物を得ることができる。
Since the reaction of the kneaded product of C4P, HPCP and water proceeds in the presence of water, the reaction can be stopped by drying in the middle of the reaction to remove water. The drying method is not particularly limited, freeze-drying method, organic solvent immersion method,
A spray drying method, a heating concentration method and the like are generally used.
Among them, the freeze-drying method and the organic solvent immersion method are preferable as the method capable of stopping the reaction in a short time. In the freeze-drying method, the kneaded product is frozen in a freezer, dry ice, liquid nitrogen or the like and then dehydrated in a vacuum to obtain a HAP reaction product. The organic solvent immersion method is an organic solvent soluble in water,
For example, the kneaded product is immersed in methanol, ethanol, isopropyl alcohol, acetone or the like to dehydrate and stop the reaction. Subsequently, HA is filtered and dried.
A P reaction product can be obtained.

上記反応は、X線回折分析によると、練和初期において
は、原料のピークは小さくなるが、生成物のピークが現
れず、一定時間以上経過すると徐々にヒドロキシアパタ
イトが生成してくる。従って、練和初期においてはヒド
ロキシアパタイトに近い組成の無定形物質が生成してい
るものと考えられ、かかつ過程において水の除去を行う
ことにより、ヒドロキシアパタイト前駆体を残存させる
ことができる。
According to the X-ray diffraction analysis of the above reaction, the peak of the raw material is small in the initial stage of the kneading, but the peak of the product does not appear, and hydroxyapatite is gradually produced after a certain period of time or longer. Therefore, it is considered that an amorphous substance having a composition close to that of hydroxyapatite is formed in the initial stage of kneading, and the hydroxyapatite precursor can be left by removing water in the process.

本発明においてHAP反応生成物は、HPCPとC4P
との反応により得られる完全なヒドロキシアパタイトよ
りも、その前駆体を含むもの又は該前駆体のみを添加す
る方が、より効果が大きく好適である。
In the present invention, the HAP reaction product includes HPCP and C4P.
It is preferable to add the one containing the precursor thereof or the addition of only the precursor thereof, rather than the complete hydroxyapatite obtained by the reaction with

本発明において、HAP反応生成物の使用割合は、使用
目的及びどの段階のHAP反応生成物を添加するかによ
って多少異なるが、一般に、未反応の原料のHPCP及
びC4Pを除いたヒドロキシアパタイト及び/又はその
前駆体がHPCP及びC4Pの合計量に対して、0.1〜2
0wt%、好ましくは0.2〜10wt%が好適である。即ち、H
AP反応生成物の使用割合が上記範囲より少ない場合
は、硬化時間の短縮効果が少さく、多い場合は硬化体の
強度が低下する傾向がある。
In the present invention, the use ratio of the HAP reaction product is slightly different depending on the purpose of use and the stage of the addition of the HAP reaction product, but in general, unreacted raw materials such as hydroxyapatite and / or hydroxyapatite excluding C4P and / or C4P are generally used. The precursor is 0.1-2 with respect to the total amount of HPCP and C4P.
0 wt%, preferably 0.2-10 wt% is suitable. That is, H
When the use ratio of the AP reaction product is less than the above range, the effect of shortening the curing time is small, and when it is more than the above range, the strength of the cured product tends to decrease.

本発明の硬化性組成物は、必要に応じて硬化性に著しい
悪影響を与えない範囲で、他の成分を添加することがで
きる。例えば、X線造影性を持たせるために、硫酸バリ
ウム、バリウムガラス、ストロンチウムガラス、ジルコ
ニア、ヨードホルム等を硬化性組成物100重量部に対
して10〜50重量部添加するのが好適である。また、
操作性及び強度を調節するために、シリカ、フッ化カル
シウム、二酸化チタン、水酸化カルシウム、アルミナ、
リン酸ナトリウム、リン酸アンモニウム等を添加するこ
とが出来る。
Other components may be added to the curable composition of the present invention, if necessary, within a range that does not significantly affect the curability. For example, it is preferable to add 10 to 50 parts by weight of barium sulfate, barium glass, strontium glass, zirconia, iodoform or the like to 100 parts by weight of the curable composition in order to impart X-ray contrast. Also,
Silica, calcium fluoride, titanium dioxide, calcium hydroxide, alumina, in order to adjust the operability and strength,
Sodium phosphate, ammonium phosphate and the like can be added.

本発明の硬化性組成物は使用目的に応じて、粉末のまま
使用して体内の水分と反応硬化させる場合と、予め練和
液で練和して使用する場合がある。練和液を使用するば
あいは、一般に水または生理食塩水が用いられる。ま
た、該練和液には必要に応じて、他の成分を添加するこ
とが出来る。例えば、硬化時間を調節するためにリン
酸、フッ化ナトリウム、カルボン酸、カルボキシル基を
持つポリマー等を0.001〜50%添加するのが好適であ
る。
Depending on the purpose of use, the curable composition of the present invention may be used in the form of powder as it is for reaction curing with water in the body, or may be used by kneading with a kneading solution in advance. When a kneading solution is used, water or physiological saline is generally used. Further, other components can be added to the kneading liquid, if necessary. For example, it is preferable to add 0.001 to 50% of phosphoric acid, sodium fluoride, carboxylic acid, a polymer having a carboxyl group or the like in order to adjust the curing time.

また、本発明の硬化組成物はあらかじめ液状有機化合物
を練和液としてワンペースト化し、歯内または体内埋入
後、体液と反応して硬化するようにすることもできる。
In addition, the curable composition of the present invention can be made into a one-paste solution by previously mixing a liquid organic compound as a kneading liquid, and after being embedded in a tooth or in the body, it is cured by reacting with a body fluid.

本発明の水硬性組成物の粉末と練和液の粉液比は、用途
に応じて好適な粘度となるように適宜決定すれば良い。
一般には、得られる練和物の練和1分後の粘度が10〜
10000ポイズ、好ましくは100〜7000ボイズ
の範囲内となるように粉液比を調節すれば良い。たとえ
ば根管充填材として使用する場合は、練和物の粘度が1
00〜5000ボイズとなるように粉液比を調節するこ
とが望ましい。
The powder-liquid ratio of the powder of the hydraulic composition of the present invention to the kneading liquid may be appropriately determined so as to obtain a suitable viscosity depending on the application.
Generally, the viscosity of the obtained kneaded product after 1 minute of kneading is from 10 to 10.
The powder-liquid ratio may be adjusted so that it is within the range of 10,000 poise, preferably 100 to 7,000 poise. For example, when used as a root canal filling material, the viscosity of the kneaded product is 1
It is desirable to adjust the powder-liquid ratio so that it is from 00 to 5000 voise.

〔作用〕[Action]

本発明において、HAP反応生成物の添加により、得ら
れる硬化性組成物の硬化時間が短縮する理由は、明らか
でないが、本発明者等は、該HAP反応生成物が単に結
晶核の役目をするのみでなく、結晶成長の促進剤として
作用するため、C4PとHPCPだけの場合或は他の方
法で得られたヒドロキシアパタイトを添加する場合よ
り、結晶を形成する時間が短縮されるためと考えられ
る。
In the present invention, the reason why the addition of the HAP reaction product shortens the curing time of the resulting curable composition is not clear, but the present inventors have found that the HAP reaction product merely serves as a crystal nucleus. Not only that, it acts as a promoter for crystal growth, and it is considered that the time for forming crystals is shortened as compared with the case of only C4P and HPCP or the case of adding hydroxyapatite obtained by another method. .

〔効果〕〔effect〕

本発明の効果性組成物は、C4P及びHPCPよりなる
硬化性成分に、HAP反応生成物を添加することによ
り、操作性、安全性、強度等の性質を損なうことなく、
硬化時間を効果的に短縮できる。従って、裏層材、合着
セメント、充填セメント、根管充填材、覆罩材、歯周ボ
ケット充填材などの歯科用修復材、あるいは骨充填材、
骨セメントなどの整形外科用修復材として好適に使用す
ることが出来る。
The effect composition of the present invention, by adding the HAP reaction product to the curable component consisting of C4P and HPCP, without impairing the properties such as operability, safety and strength,
The curing time can be effectively shortened. Therefore, a dental restoration material such as a backing material, a cemented cement, a filling cement, a root canal filling material, a covering material, a periodontal vocket filling material, or a bone filling material,
It can be suitably used as an orthopedic repair material such as bone cement.

〔実施例〕〔Example〕

以下、実施例によって本発明を具体的に説明するが、本
発明はこれらの実施例に限定されるものではない。尚、
本文中並びに実施例中に示した材料の性状に関する諸量
の定義及びそれらの測定方法についは次の通りである。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. still,
The definitions of the various quantities relating to the properties of the materials shown in the text and the examples and the measuring methods thereof are as follows.

(1)平均粒子径 得られた粒子をイソプロピルアルコールに分散させて、
粒度分布計(CAPA−500、堀場製作所製)で測定
した。測定原理は遠心沈降法である。
(1) Average particle size Disperse the obtained particles in isopropyl alcohol,
It was measured with a particle size distribution meter (CAPA-500, manufactured by Horiba Ltd.). The measuring principle is the centrifugal sedimentation method.

(2)構造 X線回折測定装置(日本電子)を用いて反応生成物のX
線回折を測定し、原料の残量及び反応生成物の構造を同
定した。
(2) Structure X of the reaction product was measured using an X-ray diffractometer (JEOL).
The line diffraction was measured to identify the residual amount of the raw material and the structure of the reaction product.

(3)練和物の硬化時間 内径が20mm、厚さ3mmのポリ塩化ビニル製モールド
に、1分間練和した練和物を満たし、その表面を平らに
した。練和の開始から2分30秒を経過したときこれを
温度37℃、相対湿度100%の恒温槽中に移した。そ
の後、重量114.12gのギルモア針(針の断面積4.91mm)
を試験片の面に静かに落とし、針跡がつかなくなった時
を、練和開始時から起算して硬化時間とした。
(3) Curing time of kneaded product A polyvinyl chloride mold having an inner diameter of 20 mm and a thickness of 3 mm was filled with the kneaded product kneaded for 1 minute to flatten the surface. When 2 minutes and 30 seconds had passed from the start of kneading, the mixture was transferred into a constant temperature bath having a temperature of 37 ° C. and a relative humidity of 100%. After that, Gilmour needle weighing 114.12 g (needle cross-sectional area 4.91 mm)
Was gently dropped on the surface of the test piece, and the time when no needle mark was left was counted from the start of kneading as the curing time.

(4)圧縮強度 JIS T−66002のリン酸亜鉛セメントの破砕抗
力試験に準じた。
(4) Compressive strength According to the crushing resistance test of zinc phosphate cement of JIS T-66002.

すなわち、1分間練和した練和物をモールドに入れ、こ
れを温度37℃、相対湿度100%の恒温槽中に1時間
保ってから、硬化体をモールドから取り出した。試験片
の大きさ及び形状は12mm×6mmφの円柱状である。そ
の後、この試験片をさらに37℃の蒸留水中に23時間
保った後、万能試験機テンシロン(東洋ボールドウイン
社製)を使用してクロスヘッドスピード毎分0.5mmで試
験片が破砕するまで加圧した。このときの破砕抗力を圧
縮強度(kg/cm2とした。
That is, the kneaded product kneaded for 1 minute was put into a mold, and the kneaded product was kept in a constant temperature bath at a temperature of 37 ° C. and a relative humidity of 100% for 1 hour, and then the cured product was taken out from the mold. The size and shape of the test piece is a cylinder of 12 mm × 6 mmφ. After that, this test piece was further kept in distilled water at 37 ° C for 23 hours, and then pressed using a universal testing machine Tensilon (manufactured by Toyo Baldwin Co., Ltd.) at a crosshead speed of 0.5 mm per minute until the test piece was crushed. did. The crushing resistance at this time was defined as compressive strength (kg / cm 2 ).

製造例1 CaHPO4・2H2Oを500℃で2時間焼成してγ−Ca2P2O7
得た。この粉末とCaCO3粉末を1:2(モル比)で混合
し、空気中1400℃で2時間焼成した後、炉外で急冷
した。生成した粉末はC4PであることをX線回折から
確認した。このC4Pをアルミナ製ボールミルにかけ、
10時間粉砕した。これを250メッシュの目開きのふ
るいにかけ、C4P粉末(平均粒径5.3μm)を得た。
Production Example 1 CaHPO 4 .2H 2 O was calcined at 500 ° C. for 2 hours to obtain γ-Ca 2 P 2 O 7 . This powder and CaCO 3 powder were mixed at a ratio of 1: 2 (molar ratio), calcined in air at 1400 ° C. for 2 hours, and then rapidly cooled outside the furnace. It was confirmed by X-ray diffraction that the produced powder was C4P. Place this C4P on an alumina ball mill,
Grinded for 10 hours. This was passed through a sieve with a 250 mesh opening to obtain C4P powder (average particle size 5.3 μm).

上記C4Pとリン酸水素カルシウム・2水和物(平均粒
径5.2μm)とをCa/P原子比が1.67となるように混合
した。この混合物とイオン交換水を2.0の粉液比で練和
し、練和開始2分30秒後に相対湿度100%、37℃
の恒温槽中に移し、練和開始15分後、30分後、1時
間後、3時間後、5時間後、10時間後、24時間後に
練和物の1部を取り出して、液体窒素で凍結し、反応を
停止させた。このサンプルを真空デシケーターに移し、
真空ポンプで凍結乾燥を行った後、ボールミルで粉砕し
(平均粒径2.2μm)反応物を得た。
The above C4P and calcium hydrogen phosphate dihydrate (average particle size: 5.2 μm) were mixed so that the Ca / P atomic ratio was 1.67. This mixture and ion-exchanged water were kneaded at a powder-liquid ratio of 2.0, and 2 minutes 30 seconds after the start of kneading, the relative humidity was 100% and the temperature was 37 ° C.
15 minutes, 30 minutes, 1 hour, 3 hours, 5 hours, 10 hours, and 24 hours after the start of the kneading, a part of the kneaded product was taken out and washed with liquid nitrogen. Freeze and stop the reaction. Transfer this sample to a vacuum dessicator,
After freeze-drying with a vacuum pump, it was pulverized with a ball mill (average particle size: 2.2 μm) to obtain a reaction product.

X線回折により反応生成物中のC4Pの残量割合(29.2
°における練和前と練和後のピーク比)及びヒドロキシ
アパタイトの生成状態を測定し、HAP反応生成物の割
合を求めた。結果を第1表に示す。
The residual ratio of C4P in the reaction product by X-ray diffraction (29.2
The peak ratio before and after kneading) and the state of hydroxyapatite formation were measured to determine the proportion of HAP reaction product. The results are shown in Table 1.

実施例1 比較例1 製造例1のC4Pとリン酸水素カルシウム無水物をCa/
P原子比1.67で混合した。この混合物と製造例1で得
た。NO.1−1〜NO.1−4の反応物を、HAP反応生成
物が全体の2wt%になるように混合し、硬化性組成物を
得た。それぞれの硬化性組成物をイオン交換水と粉液比
2.5で練和し硬化時間、操作性及び圧縮強度の測定を行
った。結果を第2表に示す。比較として、HAP反応生
成物を添加しないものの結果を比較例1に示す。
Example 1 Comparative Example 1 C4P of Production Example 1 and calcium hydrogen phosphate anhydrous were replaced with Ca /
The P atomic ratio was 1.67. Obtained from this mixture and Preparation 1. The reaction products of NO.1-1 to NO.1-4 were mixed so that the HAP reaction product would be 2 wt% of the whole to obtain a curable composition. The ratio of each curable composition to ion-exchanged water and powder liquid
The mixture was kneaded at 2.5 and the curing time, operability and compressive strength were measured. The results are shown in Table 2. For comparison, Comparative Example 1 shows the results obtained without adding the HAP reaction product.

実施例2 比較例2 製造例1のC4Pとリン酸水素カルシウム2水和物をCa
/P原子比1.67で混合した。この混合物に製造例1NO.
1−3の反応物を、HAP反応生成物がそれぞれ第3表
に示す割合となるように添加し、硬化性組成物を調製し
た。これを生理食塩水により2.5の粉液比で練和し、硬
化時間の測定を行った。測定結果を第3表に示す。比較
例として反応生成物を添加しない場合の結果を比較例2
に示す。
Example 2 Comparative Example 2 C4P of Production Example 1 and calcium hydrogen phosphate dihydrate were mixed with Ca.
The P / P atomic ratio was 1.67. No. 1 of Production Example 1 was added to this mixture.
The curable composition was prepared by adding the reaction products of 1-3 such that the HAP reaction products were in the proportions shown in Table 3, respectively. This was kneaded with physiological saline at a powder / liquid ratio of 2.5, and the curing time was measured. The measurement results are shown in Table 3. As a comparative example, the result when the reaction product is not added is shown in Comparative Example 2.
Shown in.

製造例2 製造例1のC4Pとリン酸水素カルシウム無水和物(平
均粒径4.3μm)をCa/P原子比が1.7となるように混合
した。この混合物とイオン交換水を粉液比2.5で練和
し、練和開始2分30秒後に相対温度100%、50℃
の恒温槽中に移した。練和開始15分後、30分後、1
時間後、3時間後、5時間後、10時間後に練和物を2
0gづつ取り出し、軽く粉砕を行い200mのメタノ
ールに浸漬、攪拌を行い反応を停止した。これを濾過
し、室温で真空乾燥した後、ボールミルで粉砕して(平
均粒径3.1μm)の反応物を得た。
Production Example 2 C4P of Production Example 1 and calcium hydrogen phosphate anhydrate (average particle size 4.3 μm) were mixed so that the Ca / P atomic ratio was 1.7. This mixture and ion-exchanged water were kneaded at a powder-liquid ratio of 2.5, and 2 minutes and 30 seconds after the start of kneading, a relative temperature of 100% and 50 ° C
It was transferred to a constant temperature bath. 15 minutes after kneading, 30 minutes after, 1
After 2 hours, 3 hours, 5 hours, and 10 hours, knead mixture 2
Each 0 g was taken out, lightly crushed, immersed in 200 m of methanol and stirred to stop the reaction. This was filtered, vacuum dried at room temperature, and then pulverized with a ball mill to obtain a reaction product (average particle size 3.1 μm).

X線回折により反応物中のC4Pの残量割合(29.2゜に
おける練和前と練和後のピーク比)及びヒドロキシアパ
タイトの生成状態を測定し、 HAP反応生成物の割合を求めた。結果を第4表に示
す。
The proportion of residual C4P in the reaction product (peak ratio before and after kneading at 29.2 °) and the state of hydroxyapatite formation were measured by X-ray diffraction to determine the proportion of HAP reaction product. The results are shown in Table 4.

実施例3 実施例1に於て、製造例1で得た反応生成物の代わりに
製造例2で得たNO.4−1〜NO.4−4の反応物を、HA
P反応生成物が全体の1.5wt%なるように混合し、同様な
測定を行った。結果を第5表に示す。
Example 3 In Example 1, the reaction products of NO.4-1 to NO.4-4 obtained in Production Example 2 were replaced with HA instead of the reaction product obtained in Production Example 1.
The P reaction product was mixed so as to be 1.5 wt% of the whole, and the same measurement was performed. The results are shown in Table 5.

実施例4 製造例1のC4Pと表6の種々のHPCPをCa/P原子
比が1.67となるように混合し、イオン交換水と2.5の粉
液比で練和し、練和開始2分30秒後に相対湿度100
%、37℃恒温槽中に移し、練和開始3時間後に凍結乾
燥を行った。
Example 4 C4P of Production Example 1 and various HPCPs of Table 6 were mixed so as to have a Ca / P atomic ratio of 1.67, and kneaded with ion-exchanged water at a powder-liquid ratio of 2.5, and kneading started for 2 minutes 30. Relative humidity 100 after seconds
%, The mixture was transferred to a 37 ° C. constant temperature bath and freeze-dried 3 hours after the start of kneading.

上記反応物を実施例1の反応物の代わりに用い、HAP
反応生成物が1.5wt%になるよう混合し、硬化時間の測定
を行った。結果を第6表に示す。
The above reactants were used in place of the reactants of Example 1 and HAP
The reaction product was mixed so as to be 1.5 wt% and the curing time was measured. The results are shown in Table 6.

比較例3〜5 製造例1のC4Pとリン酸水素カルシウム2水和物Ca/
P原子比が1.67で混合し、この混合物に以下の乾式法又
は湿式法によって合成したヒドロキシアパタイトをそれ
ぞれ2、10、40wt%添加した。これを生理食塩水と
2.5の粉液比で練和し、硬化時間及び操作性を測定し
た。結果を第7表に示す。
Comparative Examples 3 to 5 C4P of Production Example 1 and calcium hydrogen phosphate dihydrate Ca /
The P atomic ratio was 1.67, and hydroxyapatite synthesized by the following dry method or wet method was added to the mixture at 2, 10 and 40 wt%, respectively. This with saline
The mixture was kneaded at a powder / liquid ratio of 2.5, and the curing time and operability were measured. The results are shown in Table 7.

〔乾式法ヒドロキシアパタイト〕[Dry method hydroxyapatite]

CaHPO4・2H2O粉末とCaCO3粉末をCa/P原子比が1.67とな
るように混合し、70℃飽和水蒸気を含む空気を毎分6
吹き込みながら、1300℃で4時間焼成した。この
粉末をボールミルで粉砕し、250メッシュのフルイに
かけ、乾式法ヒドロキシアパタイト粉末を得た。
CaHPO 4 · 2H 2 O powder and CaCO 3 powder were mixed so that the Ca / P atomic ratio was 1.67, and air containing saturated steam at 70 ° C was added at 6 per minute.
While blowing, it was baked at 1300 ° C. for 4 hours. This powder was crushed with a ball mill and passed through a 250-mesh sieve to obtain a dry process hydroxyapatite powder.

〔湿式法ヒドロキシアパタイト〕[Wet method hydroxyapatite]

0.5mo/の水酸化カルシウム懸濁液と0.3mo/
のリン酸水溶液をCa/P原子比が1.67となるように4
0℃で混合し、24時間攪拌した。該反応溶液の沈澱を
濾過し、120℃で乾燥を行った。この粉末を乳鉢で粉
砕し、25メッシュのフルイにかけ、湿式法ヒドロキシ
アパタイト粉末(1)を得た。
0.5mo / calcium hydroxide suspension and 0.3mo /
The phosphoric acid aqueous solution of 4 to adjust the Ca / P atomic ratio to 1.67.
Mix at 0 ° C. and stir for 24 hours. The precipitate of the reaction solution was filtered and dried at 120 ° C. This powder was ground in a mortar and sieved with a 25-mesh sieve to obtain wet-type hydroxyapatite powder (1).

2mo/硝酸カルシウム溶液0.5と1.2mo/リ
ン酸二水素カリウム溶液0.5をイオン交換水4にpH
が7.2〜7.6の範囲になるように滴下し、40℃で24時
間攪拌した。該反応溶液の沈澱を濾過し、120℃で乾
燥した。この粉末を乳鉢で粉砕し、250メッシュのフ
ルイにかけ湿式法ヒドロキシアパタイト粉末(2)を得
た。
PH of 2mo / calcium nitrate solution 0.5 and 1.2mo / potassium dihydrogen phosphate solution 0.5 in ion-exchanged water 4
Was added dropwise so as to be in the range of 7.2 to 7.6, and the mixture was stirred at 40 ° C. for 24 hours. The precipitate of the reaction solution was filtered and dried at 120 ° C. This powder was crushed in a mortar and then sieved with a 250-mesh sieve to obtain a wet method hydroxyapatite powder (2).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リン酸四カルシウム、Ca/P原子比が1.67
未満のリン酸カルシウム及びリン酸四カルシウムとCa/
P原子比が1.67未満のリン酸カルシウムとの反応によっ
て得られるヒドロキシアパタイト及び/又はその前駆体
よりなる硬化性組成物。
1. Tetracalcium phosphate having a Ca / P atomic ratio of 1.67.
Less than calcium phosphate and tetracalcium phosphate and Ca /
A curable composition comprising hydroxyapatite and / or a precursor thereof obtained by reaction with calcium phosphate having a P atom ratio of less than 1.67.
JP63131529A 1988-05-31 1988-05-31 Curable composition Expired - Fee Related JPH0643263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63131529A JPH0643263B2 (en) 1988-05-31 1988-05-31 Curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63131529A JPH0643263B2 (en) 1988-05-31 1988-05-31 Curable composition

Publications (2)

Publication Number Publication Date
JPH01301543A JPH01301543A (en) 1989-12-05
JPH0643263B2 true JPH0643263B2 (en) 1994-06-08

Family

ID=15060201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63131529A Expired - Fee Related JPH0643263B2 (en) 1988-05-31 1988-05-31 Curable composition

Country Status (1)

Country Link
JP (1) JPH0643263B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128062A (en) * 1989-10-16 1991-05-31 Natl Inst For Res In Inorg Mater Water-curable type calcium phosphate cement composition
US5522893A (en) 1993-03-12 1996-06-04 American Dental Association Health Foundation Calcium phosphate hydroxyapatite precursor and methods for making and using the same
US7294187B2 (en) 2001-01-24 2007-11-13 Ada Foundation Rapid-hardening calcium phosphate cement compositions
US7709029B2 (en) 2001-01-24 2010-05-04 Ada Foundation Calcium-containing restoration materials
JP2002226241A (en) * 2001-01-30 2002-08-14 Mitsui Constr Co Ltd Method for recycling concrete material by vacuum freeze drying
CN115025282A (en) * 2022-04-14 2022-09-09 湖南师范大学 Lignin/nano hydroxyapatite-based composite material and preparation method thereof

Also Published As

Publication number Publication date
JPH01301543A (en) 1989-12-05

Similar Documents

Publication Publication Date Title
US5092888A (en) Hardening material
JP5028090B2 (en) Quick-hardening calcium phosphate cement composition
Chow Development of self-setting calcium phosphate cements
US5336264A (en) Situ prepared calcium phosphate composition and method
JP3658172B2 (en) A storage stable formulation for calcium phosphate minerals prepared in situ
JPS6117409A (en) Preparation of amorphous calcium phosphate and bio-compatible composition composed mainly thereof
JPS6242625B2 (en)
JPH0734816B2 (en) Medical and dental curable materials
JP2563187B2 (en) Method for producing calcium phosphate-based cured product
JPH0643263B2 (en) Curable composition
JP2505545B2 (en) Method for curing curable composition
JPH10216219A (en) Curable composition for medical treatment and production therefor
JP2537121B2 (en) Curable composition
JP2563186B2 (en) Method for producing calcium phosphate-based cured product
JPS62153204A (en) Root canal filling material for dental use
JPH0588623B2 (en)
JP3423951B2 (en) Calcium phosphate hardened powder
JPS62270164A (en) Substitute material for repairing living body hard tissue
JPS61236644A (en) Calcium phosphate hardenable composition
JPS61234868A (en) Curable composition
JP2022500447A (en) Dental and medical compositions with multiple metal ion sources
JPH01166763A (en) Medical and dental curable material
JPH01166762A (en) Medical and dental curable material
JP4116791B2 (en) Curing time control method of hydration hardening type calcium phosphate paste
JP2001269399A (en) Material composition for therapy of hard tissue

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees