JP2934090B2 - Biological implant material - Google Patents

Biological implant material

Info

Publication number
JP2934090B2
JP2934090B2 JP3350422A JP35042291A JP2934090B2 JP 2934090 B2 JP2934090 B2 JP 2934090B2 JP 3350422 A JP3350422 A JP 3350422A JP 35042291 A JP35042291 A JP 35042291A JP 2934090 B2 JP2934090 B2 JP 2934090B2
Authority
JP
Japan
Prior art keywords
calcium phosphate
hydroxyapatite
implant material
porosity
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3350422A
Other languages
Japanese (ja)
Other versions
JPH05161707A (en
Inventor
雅彦 奥山
昌晃 服部
和夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Original Assignee
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tokushu Togyo KK filed Critical Nippon Tokushu Togyo KK
Priority to JP3350422A priority Critical patent/JP2934090B2/en
Publication of JPH05161707A publication Critical patent/JPH05161707A/en
Application granted granted Critical
Publication of JP2934090B2 publication Critical patent/JP2934090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は骨に置換され得る生体材
料(インプラント材料)において、特に機械加工性及び
生体親和性に優れたインプラント材料に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biomaterial (implant material) which can be replaced by bone, and more particularly to an implant material having excellent machinability and biocompatibility.

【0002】[0002]

【従来の技術】リン酸カルシウム化合物は生体親和性に
優れ、その焼結体は骨、歯に置換される生体材料として
使用されることが知られている。
2. Description of the Related Art It is known that a calcium phosphate compound is excellent in biocompatibility, and a sintered body thereof is used as a biomaterial to be substituted for bone and teeth.

【0003】一般に生体の増殖性に重点をおいて、数十
μm〜数百μmの連続気孔を有するリン酸カルシウム系
多孔質インプラント材料が使用されているが、極めて強
度が低い。
In general, a calcium phosphate porous implant material having continuous pores of several tens μm to several hundred μm is used with emphasis on the proliferative properties of a living body, but the strength is extremely low.

【0004】そこで、本発明者らは既に生体親和性が高
くかつ高強度なリン酸カルシウム焼結体の製造方法とし
て、特公昭60−25383号公報において、カルシウ
ム/リンの原子比が1.4〜1.75のリン酸カルシウ
ム塩を主体とする粉末に、焼成後のリン酸カルシウム成
分に対して0.1〜15重量%のリン酸を添加混合し、
焼結する方法により、常圧焼成法において、強度の高い
緻密質リン酸カルシウム焼結体を提供した。
Therefore, the present inventors have already disclosed a method for producing a calcium phosphate sintered body having a high biocompatibility and a high strength, as disclosed in Japanese Patent Publication No. 60-25383, in which the atomic ratio of calcium / phosphorus is 1.4-1. 0.75% by weight of phosphoric acid based on the calcium phosphate component after firing, and mixing
By the sintering method, a dense calcium phosphate sintered body having high strength was provided in the normal pressure firing method.

【0005】更に特公昭60−50744号公報におい
て、カルシウム/リン原子比1.4〜1.75のリン酸
カルシウム塩を主体とする粉末に、焼成後のリン酸カル
シウム焼結体に対し0.5〜15重量%のアルカリ金
属、亜鉛及び/又はアルカリ土類金属の酸化物−リン酸
系フリットを含有せしめ焼結する方法、及びカルシウム
/リン原子比1.4〜1.75のリン酸カルシウム塩を
主体とする粉末に焼成後のリン酸カルシウム焼結体に対
し0.5〜15重量%のアルカリ金属、亜鉛及び/又は
アルカリ土類金属の酸化物−リン酸系フリット及びY2
33〜23重量%を含有せしめ焼結する方法を提供し
た。これにより、抗折力の範囲が前者の場合およそ13
3〜177MPaに、後者の場合には200MPa以上
におよぶ高強度の新規なリン酸カルシウム焼結体が得ら
れた。これらのインプラント材料を生体に移植すると骨
組織と化学的に結合し、高強度のため容易に破損するこ
となく、良好な結果を示した。
Further, Japanese Patent Publication No. 50744/1985 discloses that a powder mainly composed of a calcium phosphate having a calcium / phosphorus atomic ratio of 1.4 to 1.75 is added in an amount of 0.5 to 15 wt. % Oxide / phosphate frit of alkali metal, zinc and / or alkaline earth metal and sintering, and powder mainly composed of calcium phosphate having a calcium / phosphorus atomic ratio of 1.4 to 1.75 0.5 to 15% by weight, based on the calcined calcium phosphate sintered body, of an oxide-phosphoric acid frit of an alkali metal, zinc and / or alkaline earth metal and Y 2
A method for sintering containing 3 to 23% by weight of O3 is provided. As a result, the range of the transverse rupture force is approximately 13 in the former case.
A new calcium phosphate sintered body having a high strength of 3 to 177 MPa and in the latter case 200 MPa or more was obtained. When these implant materials were implanted into a living body, they were chemically bonded to bone tissue, and showed good results without being easily broken due to high strength.

【0006】[0006]

【発明が解決しようとする課題】従来のインプラント材
料はあらかじめ移植部分の形状に合わせて粉末成形時に
加工し、焼成後さらに精密加工することにより製造され
ている。
The conventional implant material is manufactured by previously processing the powder in accordance with the shape of the transplanted portion at the time of powder molding, and further performing precision processing after firing.

【0007】しかし、インプラントされる側の生体組織
は病巣の進行等により形状が変化するため、インプラン
ト前にあらかじめ製造されたインプラント材料と生体組
織との形状がインプラント時(手術時)に合わなくなる
という不具合が生じることがあった。従って、インプラ
ント時に容易に寸法加工が可能でかつ生体親和性に優れ
たインプラント材料の開発が望まれていた。前述のイン
プラント材料は緻密質であるため焼成後の加工性が低
く、ダイヤモンド砥石を用いた加工で切削速度を高める
とチッピング、クラック等で破損してしまっていた。一
般に多孔質材料は焼成後の加工は容易であるが、特にリ
ン酸カルシウム系多孔体の場合は極めて強度が低くもろ
いため、加工時にカケ等が発生し破損してしまうことが
多かった。
[0007] However, since the shape of the living tissue on the side to be implanted changes due to the progress of a lesion or the like, the shape of the implant material and the living tissue manufactured in advance before the implant does not match at the time of implanting (at the time of surgery). Problems sometimes occurred. Therefore, development of an implant material that can be easily dimensioned at the time of implant and has excellent biocompatibility has been desired. The aforementioned implant material is dense and has low workability after firing. If the cutting speed is increased by processing using a diamond grindstone, the implant material is broken by chipping, cracking, or the like. In general, porous materials are easy to process after firing, but in particular, calcium phosphate-based porous materials have extremely low strength and are fragile, so that chips and the like often occur during processing and are often damaged.

【0008】本発明は上述の問題を解決し、加工時にチ
ッピング、カケ、クラック等が発生せず、良好な加工性
を有し、かつ比較的高強度で、かつ生体親和性に優れた
インプラント材料を提供することを目的とする。
[0008] The present invention solves the above-mentioned problems, and does not generate chipping, chipping, cracks, or the like during processing, has good workability, has relatively high strength, and is excellent in biocompatibility. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】本発明によれば以下のも
のにより、上記目的を達成できる。
According to the present invention, the above object can be achieved by the following.

【0010】(1)リン酸カルシウム化合物から本質上
なり、該焼結体の平均結晶粒子径が1μm以下であり平
均気孔径が1μm以下であり、気孔率が5〜55%であ
り、曲げ強度が40MPa以上であることを特徴とする
生体インプラント材料。
(1) Consisting essentially of a calcium phosphate compound, the sintered body has an average crystal grain size of 1 μm or less, an average pore size of 1 μm or less, and a porosity of 5 to 55%.
And a bending strength of 40 MPa or more .

【0011】(2)前記リン酸カルシウム化合物のカル
シウム/リン原子比が1.4〜1.75であることを特
徴とする前記(1)記載の生体インプラント材料。
(2) The biological implant material according to (1), wherein the calcium phosphate compound has a calcium / phosphorus atomic ratio of 1.4 to 1.75.

【0012】(3)前記リン酸カルシウム化合物が水酸
アパタイトを主結晶とするものであることを特徴とする
前記(1)又は(2)記載の生体インプラント材料。
(3) The biological implant material according to (1) or (2), wherein the calcium phosphate compound has hydroxyapatite as a main crystal.

【0013】(4)前記リン酸カルシウム化合物が水酸
アパタイトと第三リン酸カルシウムとの複合体であるこ
とを特徴とする前記(1)〜(3)の一に記載の生体イ
ンプラント材料。
(4) The biological implant material according to any one of (1) to (3), wherein the calcium phosphate compound is a complex of hydroxyapatite and tricalcium phosphate.

【0014】(5)平均粒子径1μm以下の水酸アパタ
イト粒子99.5〜85重量%とリン酸カルシウム系ガ
ラスフリット0.5〜15重量%より調製されることを
特徴とする前記(1)〜(4)のいずれかに記載の生体
インプラント材料。
(5) The above-mentioned (1) to (1), which is prepared from 99.5 to 85% by weight of hydroxyapatite particles having an average particle diameter of 1 μm or less and 0.5 to 15% by weight of a calcium phosphate glass frit. The biological implant material according to any one of 4).

【0015】[0015]

【好適な実施の態様】本発明の生体インプラント材料の
好適な態様は、水酸アパタイトを主結晶とするリン酸カ
ルシウム化合物から本質上なり、該焼結体の平均結晶粒
子径が1μm以下であり平均気孔径が1μm以下であ
り、気孔率が5〜55%であり、曲げ強度が40MPa
以上であることを特徴とする。
Preferred Embodiment A preferred embodiment of the bioimplant material of the present invention consists essentially of a calcium phosphate compound having hydroxyapatite as a main crystal, and the sintered body has an average crystal particle diameter of 1 μm or less and an average air permeability. pore size is at 1μm or less, a porosity of Ri 5-55% der, flexural strength 40MPa
It is characterized by the above.

【0016】本発明でいうリン酸カルシウム化合物は生
体親和性に優れる水酸アパタイトが好ましいが、特に水
酸アパタイトと第三リン酸カルシウムとの複合体が好ま
しい。これはインプラント後に第三リン酸カルシウムが
生体内で溶出し、生体組織の侵入が容易な寸法の気孔を
生じるためである。
The calcium phosphate compound referred to in the present invention is preferably hydroxyapatite which is excellent in biocompatibility, particularly preferably a complex of hydroxyapatite and tribasic calcium phosphate. This is because tribasic calcium phosphate elutes in the living body after the implant, and generates pores of a size that allows easy penetration of living tissue.

【0017】本発明で、水酸アパタイトを主結晶とする
とは、X線回折により解析した時に水酸アパタイトを示
すピークが最大となることをいう。水酸アパタイトと第
三リン酸カルシウムとの結晶相構成比率は公知のX線回
折法により求められる。具体的には、CuKα線を用
い、水酸アパタイトの(2 1 1)面のピーク高さI
HAPと第三リン酸カルシウムの(0 2 10)面及び
(2 1 7)面のピーク高さITCPとから次式により
求めることができる。
In the present invention, the term "hydroxyapatite as the main crystal" means that the peak showing hydroxyapatite becomes the maximum when analyzed by X-ray diffraction. The crystal phase composition ratio of hydroxyapatite and tricalcium phosphate can be determined by a known X-ray diffraction method. Specifically, the peak height I of the (2 1 1) plane of hydroxyapatite was measured using CuKα radiation.
It can be obtained from HAP and the peak height I TCP of the (0 2 10) plane and the (2 17) plane of tricalcium phosphate by the following equation.

【0018】 CTCP={ITCP/(IHAP+ITCP)}×100 (%) CTCP:第三リン酸カルシウムの含有率C TCP = {I TCP / (I HAP + I TCP )} × 100 (%) C TCP : content of tricalcium phosphate

【0019】好ましい第三リン酸カルシウムの含有率は
10〜50%である。
The preferred content of tribasic calcium phosphate is 10 to 50%.

【0020】本発明でいうリン酸カルシウム系ガラスフ
リットとは、そのガラス成分として、CaO及びP25
を50重量%以上含有するものである。特に好ましいガ
ラスフリットの組成は特公昭60−50744号に記載
のものであり、P2540〜75モル%及びBaO,C
aO,MgO,ZnO,Na2O及びK2Oから成る群か
ら選ばれた1以上のアルカリ金属、亜鉛及び/又はアル
カリ土類金属の酸化物20〜55モル%を含有し、かつ
これらの合量がフリット全体の90モル%以上あるもの
で、フリットの残部成分はB23,Fe23,Ti
2,Al23,SiO2等が通例フリット溶融、原料自
体、その他の調製工程等から混入するが、これら不純物
は合計でフリット全体の約10モル%以内であればよ
い。
The calcium phosphate-based glass frit referred to in the present invention includes CaO and P 2 O 5 as glass components.
Is contained in an amount of 50% by weight or more. A particularly preferred composition of the glass frit are those described in JP-B-60-50744, P 2 O 5 40~75 mol% and BaO, C
aO-, MgO, containing ZnO, 1 or more alkali metals selected from the group consisting of Na 2 O and K 2 O, an oxide 20-55 mole% of zinc and / or alkaline earth metals, and these engagement The amount of the frit is 90 mol% or more of the whole frit, and the remaining components of the frit are B 2 O 3 , Fe 2 O 3 , Ti
O 2 , Al 2 O 3 , SiO 2, and the like are usually mixed in from the frit melting, the raw material itself, other preparation steps, and the like. These impurities may be in a total amount of about 10 mol% or less of the entire frit.

【0021】例えば、モル%で、P2547%,CaO
44%,ZnO9%となる様にH3PO4,CaCO3
ZnOを混合し、該混合物を1300〜1400℃でア
ルミナ質るつぼ中にて溶解し、その溶融物を水中急冷し
てガラスカレットとし、これをボールミル(例えばアル
ミナ質)を用いて粉砕することにより得られる比表面積
約5m2/gのガラスフリットを用いるとよい。
For example, in terms of mol%, P 2 O 5 47%, CaO
H 3 PO 4 , CaCO 3 ,
ZnO is mixed, the mixture is melted in an alumina crucible at 1300 to 1400 ° C., and the melt is quenched in water to form a glass cullet, which is pulverized using a ball mill (for example, alumina). It is preferable to use a glass frit having a specific surface area of about 5 m 2 / g.

【0022】本発明のインプラント材料は上記項目を満
たせばその製造方法を特に限定しないが、例えば以下の
方法で製造される。
The method for producing the implant material of the present invention is not particularly limited as long as the above items are satisfied. For example, the implant material is produced by the following method.

【0023】出発材料としては平均粒子径1μm以下の
水酸アパタイト粒子と、リン酸カルシウム系ガラスフリ
ットの組合わせが好ましく、焼成中の粒子成長も少な
く、またガラスフリットが焼成中に粘度の低い融液と微
細な粒子間を濡らし、ネックの焼結を促進させるものと
考えられ、目的の組織が容易に得られる。ガラスフリッ
トのかわりにメタリン酸カルシウム等のメタリン酸塩も
使用可能であり、同様の効果を生むが、但しその効果は
低い。その他にはピロリン酸カルシウム、第一リン酸カ
ルシウム等のリン酸カルシウム原料に、炭酸カルシウム
等のカルシウム塩を添加して水酸アパタイトまたは第三
リン酸カルシウムに近似の組成になるように調合し、7
00〜1400℃の熱処理(仮焼)により得られる粉末
を使用することもできる。
As a starting material, a combination of a hydroxyapatite particle having an average particle diameter of 1 μm or less and a calcium phosphate glass frit is preferable, the particle growth during firing is small, and the glass frit has a low viscosity during firing. It is considered that this wets the space between the fine particles and promotes sintering of the neck, so that the target structure can be easily obtained. A metaphosphate such as calcium metaphosphate can be used instead of the glass frit, and produces the same effect, but the effect is low. In addition, a calcium salt such as calcium carbonate is added to a calcium phosphate raw material such as calcium pyrophosphate and monobasic calcium phosphate to prepare a composition similar to that of hydroxyapatite or tribasic calcium phosphate.
Powder obtained by heat treatment (calcination) at 00 to 1400 ° C. can also be used.

【0024】以下、本発明の生体インプラント材料の製
造方法の一例を含め、本発明の好適な実施の態様につい
てさらに詳細に説明する。
Hereinafter, preferred embodiments of the present invention will be described in more detail, including an example of the method for producing a biological implant material of the present invention.

【0025】平均粒子径1μm以下の水酸アパタイト粒
子99.5〜85.0重量%とリン酸カルシウム系ガラ
スフリット0.5〜15重量%よりなる混合成形物を9
00〜1300℃で焼成する。好ましくは、平均粒子径
0.3〜0.8μmの水酸アパタイト粒子99.0〜9
3.0重量%と、リン酸カルシウム系ガラスフリット1
〜7重量%の混合物を成形し、1000〜1200℃で
焼成する。
A mixed molded article comprising 99.5 to 85.0% by weight of hydroxyapatite particles having an average particle diameter of 1 μm or less and 0.5 to 15% by weight of a calcium phosphate glass frit was prepared by mixing 9
Bake at 00 to 1300 ° C. Preferably, hydroxyapatite particles having an average particle size of 0.3 to 0.8 μm are 99.0 to 9
3.0% by weight and calcium phosphate glass frit 1
混合 7% by weight of the mixture is shaped and fired at 1000-1200 ° C.

【0026】ガラスフリットの配合割合については、
0.5重量%未満では粒子間のネックの成長が起こりに
くく、ネックの成長を促進させるために焼成温度を高く
すると粒子自身の成長が起こり、平均粒子径、平均気孔
径が増大し、気孔率が低下してしまい、強度が低く、切
削性の劣る焼成体が得られる。
Regarding the mixing ratio of the glass frit,
If the content is less than 0.5% by weight, neck growth between particles is unlikely to occur, and if the firing temperature is increased to promote neck growth, the particles themselves will grow, and the average particle diameter and average pore diameter will increase, and the porosity will increase. And a fired body having low strength and poor machinability can be obtained.

【0027】一方、15重量%を越えると、ガラスフリ
ットと水酸アパタイトとが反応して第三リン酸カルシウ
ムを生成し、第三リン酸カルシウムが100%の焼成体
または第三リン酸カルシウムとリン過剰のガラス相とか
らなる焼成体となってしまい水酸アパタイトが0%とな
るため、水酸アパタイトを主結晶とするものないしは水
酸アパタイトと第三リン酸カルシウムとの複合体を得る
ことができない。
On the other hand, when the content exceeds 15% by weight, the glass frit reacts with hydroxyapatite to form tribasic calcium phosphate. Therefore, a hydroxyapatite containing 0% of hydroxyapatite or a complex of hydroxyapatite and tribasic calcium phosphate cannot be obtained.

【0028】好ましいガラスフリットの配合割合は上記
の通り1〜7重量%であり、これは1%未満では有意の
効果が思うように得られず、7%を超えると粒子径、気
孔径の増大した組織が一部にみられる様になるからであ
る。
The preferred glass frit content is 1 to 7% by weight as described above. If it is less than 1%, a significant effect cannot be obtained as expected, and if it exceeds 7%, the particle size and pore size increase. This is because some of the organizations will be found.

【0029】前記の製法ではホットプレスのように気孔
率を低下させず、各粒子間のネッキングが良好に進行す
るので、本発明のインプラント材料を安価に良好に製造
可能である。
According to the above-mentioned production method, the porosity is not reduced unlike the hot press, and the necking between the particles proceeds favorably. Therefore, the implant material of the present invention can be produced inexpensively and favorably.

【0030】本発明の生体インプラント材料は、平均結
晶粒子径1μm以下の結晶粒子(本質上リン酸カルシウ
ム化合物)からなり、さらに平均気孔径1μm以下の気
孔を有することにより、比較的高い曲げ強度(40〜7
0MPa)と極めて優れた加工性を示すことが見い出さ
れた。この平均結晶粒子径及び平均気孔径は走査型電子
顕微鏡(SEM)観察で測定される。具体的にはSEM
像を写真撮影した後、各粒子または気孔についてそれぞ
れ最長径及び最短径を測定し、その積の平方根を平均粒
子径または平均気孔径として求めることができる。ま
た、平均気孔径については、水銀圧入法を用いると更に
精度よく求めることができる。本発明品の細孔径分布曲
線の例を図1に示すが、これによると平均気孔径は最大
ピーク点の約0.5μmにあり、1μmより大きい気孔
の無いことが確認できる。平均結晶粒子径が1μmより
も大きくなると平均気孔径も増加する傾向があり、また
その強度も低下するが、最も著しい効果としてその加工
性、特に加工時のカケ等が発生しやすくなった。
The bioimplant material of the present invention is composed of crystal particles (essentially a calcium phosphate compound) having an average crystal particle diameter of 1 μm or less, and further has pores having an average pore diameter of 1 μm or less, so that a relatively high bending strength (40 to 40 μm) is obtained. 7
0 MPa), which is extremely excellent in workability. The average crystal particle diameter and the average pore diameter are measured by observation with a scanning electron microscope (SEM). Specifically, SEM
After photographing the image, the longest diameter and the shortest diameter of each particle or pore are measured, and the square root of the product can be determined as the average particle diameter or the average pore diameter. Further, the average pore diameter can be obtained with higher accuracy by using a mercury intrusion method. An example of the pore diameter distribution curve of the product of the present invention is shown in FIG. 1. According to this, the average pore diameter is at the maximum peak point of about 0.5 μm, and it can be confirmed that there is no pore larger than 1 μm. When the average crystal particle diameter is larger than 1 μm, the average pore diameter tends to increase, and its strength also decreases. However, as its most remarkable effect, its workability, particularly chipping during processing, is liable to occur.

【0031】また平均気孔径が1μmよりも大きくなる
と強度の著しい低下がみられ、これらは気孔率を低下さ
せることにより改善させるが、その一方で、加工時にチ
ッピングが発生しやすくなった。
When the average pore diameter is larger than 1 μm, the strength is remarkably reduced. These are improved by lowering the porosity. On the other hand, chipping is liable to occur during processing.

【0032】気孔率は、開気孔と閉気孔を合わせた全気
孔率を示すものであり、かさ比重と真比重とから次式を
用いて求めることができる。
The porosity indicates the total porosity of the open pores and the closed pores, and can be determined from the bulk specific gravity and the true specific gravity using the following equation.

【0033】気孔率={1−(かさ比重/真比重)}×
100 (%)
Porosity = {1− (bulk specific gravity / true specific gravity)} ×
100 (%)

【0034】かさ比重は、例えば試料の外形寸法より求
めた体積と重量から求めることができる。真比重は、試
料を粉砕し、比重ビンを用いる公知の方法により求める
ことができる。気孔率は加工性(切削速度)及び強度と
密接な関係を示し、気孔率が増加すると加工性は向上す
るが強度は低下する。気孔率が5%未満では良好な加工
性が得られず、また55%を越えると曲げ強度が著しく
低くなる(例えば10MPa)。気孔率は20%以上5
0%以下が強度と加工性のバランスの点で特に好まし
い。
The bulk specific gravity can be obtained, for example, from the volume and weight obtained from the external dimensions of the sample. The true specific gravity can be determined by a known method using a specific gravity bottle obtained by crushing a sample. The porosity shows a close relationship with the workability (cutting speed) and the strength. As the porosity increases, the workability improves but the strength decreases. If the porosity is less than 5%, good workability cannot be obtained, and if it exceeds 55%, the flexural strength becomes extremely low (for example, 10 MPa). Porosity is more than 20% 5
0% or less is particularly preferable in terms of balance between strength and workability.

【0035】本発明の効果は、本質的に強度が低くもろ
いリン酸カルシウム化合物において、上記のような平均
粒子径、平均気孔径、及び気孔率を持つ構造物とするこ
とによりはじめて得られるものであり、それらの相乗効
果によるものと思われる。
The effect of the present invention can be obtained only when a calcium phosphate compound having a low strength and a fragility is formed into a structure having the above-mentioned average particle diameter, average pore diameter, and porosity. It seems to be due to their synergistic effect.

【0036】[0036]

【作用】従来よりインプラント材料として用いられてい
る多孔体は生体組織の侵入を考慮し数十μm〜数百μm
の気孔を形成させているため、その気孔が欠陥として働
き、強度が低い。それに対して本発明品では平均結晶粒
子径が1μm以下と微細なため、リン酸カルシウム化合
物の各粒子が隣接しあう他の粒子と焼結により形成する
ネックも1μm以下となり、このネックが多数存在する
ために、比較的高い強度を示す。
The porous body conventionally used as an implant material has a thickness of several tens μm to several hundred μm in consideration of invasion of living tissue.
The pores serve as defects and have low strength. On the other hand, in the product of the present invention, since the average crystal particle diameter is as fine as 1 μm or less, the neck formed by sintering each particle of the calcium phosphate compound with other particles adjacent to each other is also 1 μm or less, and there are many such necks. Shows relatively high strength.

【0037】加工性は通常、主として気孔率に依存し、
気孔率が大きいほど加工性が優れていると考えられてい
るが、本発明品では大きなネックがないため、チッピン
グ、クラック等のガラス的破壊性状を示さないため気孔
率が大きいにもかかわらず、優れた加工性が得られると
考えられる。また、リン酸カルシウム系のガラスフリッ
トを添加すると、焼成中にガラスフリットが粒子のネッ
ク部分に拡散して粒成長を抑制し、ネック部の焼結を進
める。これにより更に強度が増し、チッピング等も発生
しずらくなるので、加工性も増すものと考えられる。
The workability usually depends mainly on the porosity,
Although it is considered that the larger the porosity, the better the workability is, but the product of the present invention does not have a large neck, and although the porosity is large because it does not show glassy breaking properties such as chipping and cracks, It is considered that excellent workability can be obtained. Further, when a calcium phosphate-based glass frit is added, the glass frit diffuses into the neck portion of the particles during firing, thereby suppressing grain growth and promoting sintering of the neck portion. This further increases the strength and makes it difficult for chipping or the like to occur, so that workability is considered to be increased.

【0038】このように本発明のインプラント材料は、
その平均結晶粒子径、平均気孔径及び気孔率の相乗効果
により、優れた加工性と比較的高い強度を有する。
As described above, the implant material of the present invention
Due to the synergistic effect of the average crystal particle diameter, average pore diameter and porosity, it has excellent workability and relatively high strength.

【0039】[0039]

【実施例】以下実施例を用いて本発明を更に詳しく説明
する。
The present invention will be described in more detail with reference to the following examples.

【0040】(実施例1) 平均粒子径0.6μmの水酸アパタイト粉末に5重量%
のリン酸カルシウム系ガラスフリット及びアクリル系バ
インダー3重量%を添加しアセトン中で混合後、乾燥
し、成形圧800kg/cmにて金型成形し、さらに
成形圧4000kg/cmにて冷間静水圧加圧成形
し、得られた成形体を電気炉にて昇温速度300℃/時
間、1100℃で5時間保持の焼成を行なった。この焼
成体の断面の走査型電子顕微鏡写真を図2に示す。この
焼成体について諸特性を測定したところ、平均結晶粒子
径0.7μm、平均気孔径0.5μm、気孔率40%
で、結晶相の構成は水酸アパタイト(約80%)と、β
−第三リン酸カルシウム(約20%)であった。また、
この焼成体では曲げ強度が70MPaを示した。これを
歯科用の棒状ダイヤモンド砥石(120番)を用いて回
転数15000rpmで湿式にて貫通孔の研削加工を試
みたところ、クラック、チッピング、カケ等が無く良好
に切削できた。また、生体に移植したところ、良好な生
体親和性を示し、インプラント材料内部への生体骨の侵
入がみられた。
Example 1 5% by weight of hydroxyapatite powder having an average particle diameter of 0.6 μm
Of calcium phosphate-based glass frit and 3% by weight of acrylic binder, mixed in acetone, dried, molded at a molding pressure of 800 kg / cm 2 , and further subjected to cold isostatic pressure at a molding pressure of 4000 kg / cm 2 The molded body was pressed and baked in an electric furnace at a heating rate of 300 ° C./hour and 1100 ° C. for 5 hours. FIG. 2 shows a scanning electron micrograph of a cross section of the fired body. When various characteristics of this fired body were measured, the average crystal particle diameter was 0.7 μm, the average pore diameter was 0.5 μm, and the porosity was 40%.
The crystal phase is composed of hydroxyapatite (about 80%) and β
-Tribasic calcium phosphate (about 20%). Also,
This fired body had a bending strength of 70 MPa. Using a dental rod-shaped diamond grindstone (No. 120) to grind the through-hole by a wet method at a rotation speed of 15000 rpm, it could be cut well without cracks, chipping, chipping or the like. In addition, when implanted in a living body, it exhibited good biocompatibility, and penetration of living bone into the interior of the implant material was observed.

【0041】(実施例2)冷間静水圧加圧成形を行わな
い他は、実施例1と同様にして焼成体を作製した。この
焼成体について諸特性を測定したところ、平均結晶粒子
径0.6μm、平均気孔径0.6μm、気孔率51%
で、結晶相の構成は水酸アパタイト(約80%)とβ−
第三リン酸カルシウム(約20%)であった。また、こ
の焼成体では曲げ強度が45MPaを示した。
Example 2 A fired body was produced in the same manner as in Example 1 except that cold isostatic pressing was not performed. When various characteristics of this fired body were measured, the average crystal particle diameter was 0.6 μm, the average pore diameter was 0.6 μm, and the porosity was 51%.
The composition of the crystal phase is hydroxyapatite (about 80%) and β-
Tricalcium phosphate (about 20%). Further, this fired body had a bending strength of 45 MPa.

【0042】(比較例1)<特公昭60−50744号
における実施例に対応> 平均粒子径1.5μmの水酸アパタイト粉末を用いて実
施例2と同様にして成形体を作製し、これを1300℃
で5時間保持の焼成を行なった。この焼成体について諸
特性を測定したところ、平均結晶粒子径3μm、平均気
孔径2μm、気孔率3%で、結晶相の構成は水酸アパタ
イト(約80%)とβ−第三リン酸カルシウム(約20
%)であった。また、この焼成体では曲げ強度が120
MPaを示した。しかし、これを実施例1と同様にして
ダイヤモンド砥石で湿式研削を試みたところ加工が困難
で、無理に行うとチッピング、クラックが発生し破損し
た。
(Comparative Example 1) <Corresponding to Example in Japanese Examined Patent Publication No. 60-50744> A molded article was prepared in the same manner as in Example 2 using a hydroxyapatite powder having an average particle diameter of 1.5 μm. 1300 ° C
For 5 hours. Various properties of this calcined product were measured. The calcined product had an average crystal particle diameter of 3 μm, an average pore diameter of 2 μm, and a porosity of 3%. The crystal phases were composed of hydroxyapatite (about 80%) and β-tertiary calcium phosphate (about 20%).
%)Met. Further, in this fired body, the bending strength is 120.
MPa was indicated. However, when wet grinding was performed with a diamond grindstone in the same manner as in Example 1, machining was difficult, and if forcedly performed, chipping and cracks occurred and were broken.

【0043】(比較例2)平均粒子径20μmの水酸ア
パタイト粉末を用いて実施例2と同様にして成形体を作
製し、これを1100℃で5時間保持の焼成を行なっ
た。この焼成体について諸特性を測定したところ、平均
結晶粒子径20μm、平均気孔径12μm、気孔率40
%で、結晶相の構成は水酸アパタイト(約80%)とβ
−第三リン酸カルシウム(約20%)であった。また、
この焼成体では曲げ強度が20MPaと低く、これを実
施例1と同様にしてダイヤモンド砥石で湿式研削すると
2〜5mmのカケが発生した。
(Comparative Example 2) A molded article was produced in the same manner as in Example 2 using a hydroxyapatite powder having an average particle diameter of 20 µm, and baked at 1100 ° C for 5 hours. When various characteristics of this fired body were measured, the average crystal particle diameter was 20 μm, the average pore diameter was 12 μm, and the porosity was 40 μm.
%, The crystal phase is composed of hydroxyapatite (about 80%) and β
-Tribasic calcium phosphate (about 20%). Also,
This fired body had a low bending strength of 20 MPa, and when this was wet-ground with a diamond grindstone in the same manner as in Example 1, a chip of 2 to 5 mm was generated.

【0044】(比較例3)実施例1と同様な粉末原料を
用い、成形圧500kg/cm2の加圧成形以外は実施
例2と同様にして成形体を作製し、これを1050℃で
2時間保持の焼成を行なった。この焼成体について諸特
性を測定したところ、平均結晶粒子径0.7μm、平均
気孔径0.5μm、気孔率60%で、結晶相の構成は水
酸アパタイト(約80%)とβ−第三リン酸カルシウム
(約20%)であった。また、この焼成体では曲げ強度
は20MPa以下で、これを実施例1と同様にしてダイ
ヤモンド砥石で湿式研削するとカケ(インプラント材の
部分的脱落)が発生した。
[0044] (Comparative Example 3) Using the same powder material as Example 1, except pressing the molding pressure 500 kg / cm 2 in the same manner as in Example 2 to prepare a molded body, which 2 at 1050 ° C. Time holding calcination was performed. Various properties of this fired body were measured. The average crystal grain diameter was 0.7 μm, the average pore diameter was 0.5 μm, the porosity was 60%, and the crystal phase was composed of hydroxyapatite (about 80%) and β-third. Calcium phosphate (about 20%). Further, in this fired body, the bending strength was 20 MPa or less, and when this was wet-ground with a diamond grindstone in the same manner as in Example 1, chipping (partial detachment of the implant material) occurred.

【0045】本発明による生体インプラント材料は、加
工性に優れ、比較的高い機械的強度(曲げ強度40MP
a以上)を有し、かつ生体親和性に優れたものであるの
で、インプラント時(手術中)にチッピング、クラッ
ク、カケ等を起こすことなく移植部の形状に合わせて加
工することが可能であり、インプラント時の寸法形状の
不具合を著しく低減せしめるものである。
The bioimplant material according to the present invention has excellent workability and relatively high mechanical strength (flexural strength of 40MP).
a) or more , and is excellent in biocompatibility, so that it can be processed according to the shape of the transplanted portion without causing chipping, cracking, chipping, etc. at the time of implantation (during surgery). In addition, it is possible to remarkably reduce dimensional defects at the time of implant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明品の細孔径分布曲線を示す。FIG. 1 shows a pore size distribution curve of the product of the present invention.

【図2】実施例1における本発明品の断面の結晶の状態
を示す走査型電子顕微鏡写真である。
FIG. 2 is a scanning electron micrograph showing a crystal state of a cross section of the product of the present invention in Example 1.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−191963(JP,A) 特開 平2−30653(JP,A) 特開 昭63−125259(JP,A) 特開 昭56−54841(JP,A) 特開 昭55−140756(JP,A) (58)調査した分野(Int.Cl.6,DB名) A61L 27/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-191963 (JP, A) JP-A-2-30653 (JP, A) JP-A-63-125259 (JP, A) JP-A-56-125 54841 (JP, A) JP-A-55-140756 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) A61L 27/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リン酸カルシウム化合物から本質上なり、
該焼結体の平均結晶粒子径が1μm以下であり平均気孔
径が1μm以下であり、気孔率が5〜55%であり、曲
げ強度が40MPa以上であることを特徴とする生体イ
ンプラント材料。
(1) It is essentially composed of a calcium phosphate compound,
The average pore diameter average crystal grain size of the sintered body is not more 1μm or less is not more 1μm or less, a porosity of Ri 5-55% der, songs
A bioimplant material having a breaking strength of 40 MPa or more .
【請求項2】前記リン酸カルシウム化合物のカルシウム
/リン原子比が1.4〜1.75であることを特徴とす
る請求項1記載の生体インプラント材料。
2. The implant material according to claim 1, wherein the calcium phosphate compound has a calcium / phosphorus atomic ratio of 1.4 to 1.75.
【請求項3】前記リン酸カルシウム化合物が水酸アパタ
イトを主結晶とするものであることを特徴とする請求項
1又は2記載の生体インプラント材料。
3. The implant material according to claim 1, wherein the calcium phosphate compound has hydroxyapatite as a main crystal.
【請求項4】前記リン酸カルシウム化合物が水酸アパタ
イトと第三リン酸カルシウムとの複合体であることを特
徴とする請求項1〜3の一に記載の生体インプラント材
料。
4. The implant material according to claim 1, wherein said calcium phosphate compound is a complex of hydroxyapatite and tricalcium phosphate.
【請求項5】平均粒子径1μm以下の水酸アパタイト粒
子99.5〜85重量%と、リン酸カルシウム系ガラス
フリット0.5〜15重量%より調製されることを特徴
とする請求項1〜4の一に記載の生体インプラント材
料。
5. The composition according to claim 1, wherein the composition is prepared from 99.5 to 85% by weight of hydroxyapatite particles having an average particle size of 1 μm or less and 0.5 to 15% by weight of a calcium phosphate glass frit. The biological implant material according to one of the above.
JP3350422A 1991-12-11 1991-12-11 Biological implant material Expired - Lifetime JP2934090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3350422A JP2934090B2 (en) 1991-12-11 1991-12-11 Biological implant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3350422A JP2934090B2 (en) 1991-12-11 1991-12-11 Biological implant material

Publications (2)

Publication Number Publication Date
JPH05161707A JPH05161707A (en) 1993-06-29
JP2934090B2 true JP2934090B2 (en) 1999-08-16

Family

ID=18410391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3350422A Expired - Lifetime JP2934090B2 (en) 1991-12-11 1991-12-11 Biological implant material

Country Status (1)

Country Link
JP (1) JP2934090B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7214635B2 (en) 2003-10-14 2007-05-08 Pentax Corporation CaO-MgO-SiO2-based bioactive glass and sintered calcium phosphate glass using same
US7332452B2 (en) 2002-07-15 2008-02-19 Pentax Corporation CaO-SiO2-based bioactive glass and sintered calcium phosphate using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679570B2 (en) * 1997-03-14 2005-08-03 ペンタックス株式会社 Bone prosthetic material and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332452B2 (en) 2002-07-15 2008-02-19 Pentax Corporation CaO-SiO2-based bioactive glass and sintered calcium phosphate using same
US7214635B2 (en) 2003-10-14 2007-05-08 Pentax Corporation CaO-MgO-SiO2-based bioactive glass and sintered calcium phosphate glass using same

Also Published As

Publication number Publication date
JPH05161707A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
US5232878A (en) Process for producing inorganic biomaterial
US4652534A (en) High-strength glass ceramic containing apatite crystals and a large quantity of wollastonite crystals and process for producing same
US4960733A (en) Inorganic biomaterial and process for producing the same
JP3793532B2 (en) CaO-MgO-SiO2 bioactive glass and sintered calcium phosphate using the same
US4560666A (en) High strength glass-ceramic containing apatite and alkaline earth metal silicate crystals and process for producing the same
US4643982A (en) High-strength glass-ceramic containing anorthite crystals and process for producing the same
US20090118114A1 (en) Bioactive graded zirconia-based structures
JPS63270061A (en) Surface modification of inorganic bio-compatible material
KR100465985B1 (en) Bioactive Biphasic Ceramic Compositions for Artificial Bone and Method for Making the Same
JPH0624585B2 (en) Biocompatible composite manufacturing method
JPH0154291B2 (en)
Myat-Htun et al. Tailoring mechanical and in vitro biological properties of calcium‒silicate based bioceramic through iron doping in developing future material
JP2934090B2 (en) Biological implant material
EP0577342A1 (en) Sintered hydroxyapatite compositions and method for the preparation thereof
JPH0555150B2 (en)
JPH06205794A (en) Composite implant to living body and its manufacture
JPH01115360A (en) Inorganic living body material and preparation thereof
EP1189851B1 (en) Sintered hydroxyapatite compositions and method for the preparation thereof
JPS60137853A (en) High-strength crystallized glass containing apatite crystal and its production
JPS61141660A (en) Hot press sintered apatite composite ceramics
JPH0191865A (en) Inorganic biomaterial and its manufacture
JPS6382670A (en) Inorganic vital material
JPH0247417B2 (en)
JPH01145064A (en) Preparation of inorganic bio-material
JPS60131849A (en) High-strength glass containing large quantity of apatite crystal and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 13