JPH03222479A - Shockley diode - Google Patents

Shockley diode

Info

Publication number
JPH03222479A
JPH03222479A JP1979190A JP1979190A JPH03222479A JP H03222479 A JPH03222479 A JP H03222479A JP 1979190 A JP1979190 A JP 1979190A JP 1979190 A JP1979190 A JP 1979190A JP H03222479 A JPH03222479 A JP H03222479A
Authority
JP
Japan
Prior art keywords
type
region
concentration
ibo
base region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1979190A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yonetani
米谷 伸之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1979190A priority Critical patent/JPH03222479A/en
Publication of JPH03222479A publication Critical patent/JPH03222479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To obtain a desired IBO by setting an N-type substrate concentration to 2X10<15>-1.5X10<16>cm<-3>, setting the concentration of a P-type base to 3X10<16>-2.0X10<17>cm<-3> and further forming the P-type base region and an N-type cathode region with the widths of 1-5mum. CONSTITUTION:Since a shallow region can be formed with uniform concentration distribution by diffusing a P-type base region 9 in an ion implantation type, a substrate concentration is set to 2X1015-1.5X10<16>cm<-3>, the concentration of the region 9 is set to 3X10<16>-2.0X10<17>cm<-3> to control VBO, and since the concentration of the region 9 is uniform, the widths of the region 9 and an N-type cathode region 1 are set to 1-5mum to control IBO. Thus, the concentrations of the N-type and P-type bases and the widths of the regions 9, 1 are limited to improve the controllability of the IBO, VBO of the features of a Shockley diode. Thus, the diode of desired IBO value is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はショックレーダイオードに関し特にショックレ
ーダイオードによる着火回路用途の改良構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a Shockley diode, and more particularly to an improved structure for use in an ignition circuit using a Shockley diode.

〔従来の技術〕[Conventional technology]

従来の逆導通ショックレーダイオードの断面構造を第3
図に示す。ショックレーダイオード部は、N型サブスト
レート3にP型不純物を拡散しP型アノード領域4を形
成し、更にP型ベース領域2およびN型カソード領域1
を拡散して形成される。
The cross-sectional structure of the conventional reverse conduction Shockley diode is shown in the third figure.
As shown in the figure. In the Shockley diode section, a P-type impurity is diffused into an N-type substrate 3 to form a P-type anode region 4, and a P-type base region 2 and an N-type cathode region 1 are formed.
It is formed by diffusing.

逆導通部はショックレーダイオードの形成工程中でP空
領域9.N型領域5を拡散して形成される。
The reverse conducting portion is formed in the P empty region 9 during the Shockley diode formation process. It is formed by diffusing the N type region 5.

全工程の拡散は熱ガス拡散方式を使用している。Diffusion in the entire process uses hot gas diffusion method.

次に動作原理について説明する。印加電圧が素子のブレ
ークオーバー電圧(VBO)に達するとベースのフーナ
部で降伏が起り、降伏電流がショート穴に向って流れる
。この電流による電圧降下が約0.5vに達するとカソ
ードからの電子の注入が増加して波形は負性抵抗を示し
始める。このときカソード接合を約0.5■順バイアス
するのに必要な電流がIBOである。蓄積された電子に
より、Nベース層の電位がPアノードに対して下がり、
正孔の注入が起る。この正孔がPベースに到達してここ
に蓄積するとPベースの電位がカソードに対して上り、
カソードから更に電子が注入されるという正帰還がかか
り、素子はオン状態となる。
Next, the operating principle will be explained. When the applied voltage reaches the breakover voltage (VBO) of the device, breakdown occurs at the corner of the base, and breakdown current flows toward the short hole. When the voltage drop due to this current reaches about 0.5V, the injection of electrons from the cathode increases and the waveform begins to show negative resistance. At this time, the current required to forward bias the cathode junction by about 0.5 μm is IBO. The accumulated electrons lower the potential of the N base layer with respect to the P anode,
Hole injection occurs. When these holes reach the P base and accumulate there, the potential of the P base rises with respect to the cathode,
Positive feedback occurs in which more electrons are injected from the cathode, and the device turns on.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ショックレーダイオードは主に着火回路の着火素子とし
て使用されているが、回路の性質上、定のブレークオー
バー電圧(■l]。)とできるだけ低いブレークオーバ
ー電流(IBo)を持つ素子が要求される。このため■
□。、 VB。の制御性が、この素子を作るうえで最も
重要な要因となってくる。
Shockley diodes are mainly used as ignition elements in ignition circuits, but due to the nature of the circuit, a device with a constant breakover voltage (■l) and as low a breakover current (IBo) as possible is required. . For this reason■
□. , V.B. Controllability is the most important factor in making this device.

上述従来のショックレーダイオードでは、Pベース濃度
とNカソードの深さでIBOを、又、基板濃度とPベー
ス深さによりVBOをそれぞれコントロールしている。
In the conventional Shockley diode described above, the IBO is controlled by the P base concentration and the depth of the N cathode, and the VBO is controlled by the substrate concentration and the P base depth.

この際の拡散を熱ガス拡散方式としているが、この方式
だと拡散の際の濃度のばらつきが大きく不均一な濃度分
布となってしまう。
Diffusion at this time is performed using a hot gas diffusion method, but this method results in large variations in concentration during diffusion, resulting in a non-uniform concentration distribution.

その為、VEOの分布がウェハー面内の濃度のばらつき
に大きく影響されてしまい制御する為に基板濃度を5X
10”〜1.5 X 10 +sCm−3に制限しなけ
ればならなかった。又、濃度が不均一になる為、Pベー
ス領域とN型カソード領域の幅を制御して所望の18゜
を得ることが困難であるという問題点があった。
Therefore, the distribution of VEO is greatly affected by concentration variations within the wafer surface, and in order to control it, the substrate concentration must be increased by 5x.
It had to be limited to 10" to 1.5 x 10 +sCm-3. Also, since the concentration would be non-uniform, the widths of the P base region and N-type cathode region should be controlled to obtain the desired 18°. The problem was that it was difficult to

〔課題を解決するための手段〕[Means to solve the problem]

本発明のショックレーダイオードはPベース領域の拡散
をイオンインプラ方式とすることにより均一な濃度分布
で浅い領域を形成することができる為、基板濃度を2×
1015〜1.s〜1.5 X 1016cm−’とし
P型ベース領域の濃度を3×1015〜1.6〜2.0
×1017cm−’とすることにより■ゎ。を又、P型
ベース領域の濃度が均一な為、P型ベース領域とN型カ
ソード領域の幅を制御することによりIBOをそれぞれ
制御する様にしている。
In the Shockley diode of the present invention, by using the ion implantation method for diffusion of the P base region, it is possible to form a shallow region with a uniform concentration distribution.
1015-1. s ~ 1.5 x 1016 cm-' and the concentration of the P type base region is 3 x 1015 ~ 1.6 ~ 2.0
×1017cm-' By setting ■ゎ. Furthermore, since the concentration of the P-type base region is uniform, IBO is controlled by controlling the widths of the P-type base region and the N-type cathode region.

〔実施例〕〔Example〕

第1図は本発明の第1の実施例を示す。同図(a)は縦
断面図、同図(b)はそのときのデイメンジョンのデー
タである。
FIG. 1 shows a first embodiment of the invention. The figure (a) is a longitudinal sectional view, and the figure (b) is the dimension data at that time.

N型サブストレート3にP型アノード領域4゜P型ベー
ス領域9を形成する。次にイオンインプラ方式によりP
型ベース領域2を形成し更に従来の熱ガス拡散方式でN
型カソード領域1.独立したP型ベース領域の形成を行
い、最後にカンード電極7,7ノード電極8を形成する
A P-type anode region 4 and a P-type base region 9 are formed on the N-type substrate 3. Next, P by the ion implantation method.
The mold base region 2 is formed and further N is heated using a conventional hot gas diffusion method.
Type cathode region 1. An independent P-type base region is formed, and finally cando electrodes 7 and 7-node electrodes 8 are formed.

第2図は本発明の第2の実施例の縦断面図を示す。本実
施例では逆導通部を中央部にもってきた形となっている
。この場合カソード面積が大きくなる為サージ耐量が向
上するという利点がある。
FIG. 2 shows a longitudinal sectional view of a second embodiment of the invention. In this embodiment, the reverse conduction portion is placed in the center. In this case, since the cathode area becomes large, there is an advantage that surge resistance is improved.

尚、P−<−ス領域の形成については、第1の実施例と
同様イオンインプラ方式で行っている。
It should be noted that the formation of the P-<- region is performed by the ion implantation method as in the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明はN型ベース濃度、P型ベー
ス濃度、P型ベース領域とN型カソード領域との幅を限
定することによりショックレーダイオードの特徴である
IBOI VBOの制御性の向上及びIBO値の低減、
例えばVBOの制御において規格発生率の向上(従来よ
り約15%の向上)又、エヨ。値が、従来値平均で50
〜60μAあったものが、平均で約20μAまで下げる
ことができた。
As explained above, the present invention improves the controllability of IBOI VBO, which is a characteristic of Shockley diodes, by limiting the N-type base concentration, the P-type base concentration, and the width of the P-type base region and the N-type cathode region. Reduction of IBO value,
For example, in VBO control, the standard occurrence rate has improved (approximately 15% higher than before). The average value is 50
What used to be ~60 μA was able to be reduced to about 20 μA on average.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)はそれぞれ本発明の第1の実
施例の縦断面図及び条件を示す図、第2図は本発明の第
2の実施例を示す縦断面図、第3図は従来の技術による
ショックレーダイオードの縦断面図を示す。
FIGS. 1(a) and 1(b) are a longitudinal cross-sectional view and a diagram showing the conditions of the first embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of the second embodiment of the present invention, and FIG. The figure shows a longitudinal section through a Shockley diode according to the prior art.

Claims (2)

【特許請求の範囲】[Claims] (1)N型基板の一主面上にP型ベース領域を有し更に
Pベース領域中にNカソード領域を有し、前記Nカソー
ド領域はPベース領域まで達するショート穴を有し、そ
の反対の面はP型アノード領域を有するショックレーダ
イオードにおいて、N型基板濃度を2×10^1^5〜
1.5×10^1^6cm^−^3とし、P型ベース領
域の濃度を3×10^1^6〜2.0×10^1^7c
m^−^3とし、更にP型ベース領域とN型カソード領
域の幅を1〜5μmとすることを特徴とするショックレ
ーダイオード
(1) A P-type base region is provided on one main surface of an N-type substrate, and an N-type cathode region is further provided in the P-base region, and the N-type cathode region has a short hole that reaches the P-base region, and vice versa. In a Shockley diode with a P-type anode region, the surface has an N-type substrate concentration of 2×10^1^5~
1.5 x 10^1^6 cm^-^3, and the concentration of the P type base region is 3 x 10^1^6 to 2.0 x 10^1^7c
m^-^3, and further characterized in that the width of the P-type base region and the N-type cathode region is 1 to 5 μm.
(2)前記P型ベース領域はイオン注入法で形成されて
いることを特徴とする請求項1記載の ショックレーダイオード
(2) The Shockley diode according to claim 1, wherein the P-type base region is formed by ion implantation.
JP1979190A 1990-01-29 1990-01-29 Shockley diode Pending JPH03222479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979190A JPH03222479A (en) 1990-01-29 1990-01-29 Shockley diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979190A JPH03222479A (en) 1990-01-29 1990-01-29 Shockley diode

Publications (1)

Publication Number Publication Date
JPH03222479A true JPH03222479A (en) 1991-10-01

Family

ID=12009166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979190A Pending JPH03222479A (en) 1990-01-29 1990-01-29 Shockley diode

Country Status (1)

Country Link
JP (1) JPH03222479A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212579A (en) * 1975-07-21 1977-01-31 Hitachi Ltd Ion injection method and ion injector
JPS5619057B2 (en) * 1974-03-28 1981-05-02
JPH01218066A (en) * 1988-02-26 1989-08-31 Nec Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619057B2 (en) * 1974-03-28 1981-05-02
JPS5212579A (en) * 1975-07-21 1977-01-31 Hitachi Ltd Ion injection method and ion injector
JPH01218066A (en) * 1988-02-26 1989-08-31 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US4990975A (en) Insulated gate bipolar transistor and method of manufacturing the same
JPH0467343B2 (en)
US5091766A (en) Thyristor with first and second independent control electrodes
JPH01258476A (en) High breakdown voltage semiconductor device and manufacture thereof
JP3488772B2 (en) Semiconductor device
US6774407B2 (en) Semiconductor device with a suppressed increase in turned-on resistance and an improved turn-off response
US5838027A (en) Semiconductor device and a method for manufacturing the same
JP2005513783A (en) Semiconductor device having a locally reduced lifetime region and manufacture of the semiconductor device
JP4031209B2 (en) Semiconductor device
US5194394A (en) Thyristor and method of manufacturing the same
US20020158246A1 (en) Semiconductor device and manufacturing method for the same
JPH03222479A (en) Shockley diode
JPH10200132A (en) High speed diode
JPS61198781A (en) Conducting modulation type mosfet
JP2004088012A (en) Diode
US5086242A (en) Fast turn-off of thyristor structure
JPH06268226A (en) Insulated gate bipolar transistor
JP3910922B2 (en) Semiconductor device
JP2000332263A (en) Switching diode
JP2753331B2 (en) Semiconductor device
JPH10125692A (en) Bipolar power transistor
JPH0982955A (en) Manufacture of semiconductor device
KR100439849B1 (en) High output switching transistor with lifetime control region
JPS6258678A (en) Transistor
KR100242436B1 (en) Transistor with increased safe operating area and the manufacturing method thereof