JPH03221125A - Exhaust gas cleaning apparatus for alcohol-fuelled automobile - Google Patents

Exhaust gas cleaning apparatus for alcohol-fuelled automobile

Info

Publication number
JPH03221125A
JPH03221125A JP2013893A JP1389390A JPH03221125A JP H03221125 A JPH03221125 A JP H03221125A JP 2013893 A JP2013893 A JP 2013893A JP 1389390 A JP1389390 A JP 1389390A JP H03221125 A JPH03221125 A JP H03221125A
Authority
JP
Japan
Prior art keywords
oxide
catalyst
exhaust gas
alcohol
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013893A
Other languages
Japanese (ja)
Inventor
Masataka Kawabata
昌隆 川端
Shinichi Matsumoto
伸一 松本
Koichi Yamashita
公一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013893A priority Critical patent/JPH03221125A/en
Publication of JPH03221125A publication Critical patent/JPH03221125A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To clean formaldehyde for a long duration by installing a noble metal- carrying catalyst in the upper stream side of an exhaust gas passing route, a base metal oxide-carrying catalyst in the lower side, and an air supplying apparatus to supply air to the catalyst in the lower side. CONSTITUTION:There are installed an upper side catalyst 2 carrying a noble metal in the upper stream side of an exhaust gas passing route, a lower side catalyst 3 in the lower stream side than the upper side catalyst 2, and an air supplying apparatus 4 which supplies air to the lower side catalyst 3. The lower side catalyst 3 is composed of a support substrate, a supporting layer formed on the support substrate, and oxides selected from vanadium oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, copper oxide, and zinc oxide which are supported on the supporting layer. As a result, formaldehyde in an exhaust gas from an alcohol-fuelled engine is surely removed for a long duration.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アルコールを燃料としたエンジンを搭載した
自動車から排出される排ガスを浄化するための装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for purifying exhaust gas emitted from a motor vehicle equipped with an engine using alcohol as fuel.

[従来の技術] 近年、石油資源の逼迫化、公害問題などから、自動車用
としてガソリンに代わる別のエネルギー源の研究が活発
に行なわれている。なかでもアルコールは安価に合成す
ることができ、次代のエネルギー源としての期待が大き
い。
[Prior Art] In recent years, due to the tightening of petroleum resources and pollution problems, research has been actively conducted on alternative energy sources to replace gasoline for automobiles. Among these, alcohol can be synthesized at low cost and has high expectations as a next-generation energy source.

しかしながらアルコールとはいっても、エンジンにおけ
る燃焼の結果種々の有害vIJ質か発生するため、排ガ
スを浄化する必要がある。
However, even though alcohol is used, various harmful substances are generated as a result of combustion in the engine, so it is necessary to purify the exhaust gas.

[発明か解決しようとする課題] 本発明者らは本発明に先立って、従来のカッリン燃料エ
ンジンの排気系に用いられている貴金属を担持した排ガ
ス浄化触媒(特開昭63−162043号参照)を用い
、アルコール燃料エンジンの排気系における浄化性能を
調査した。その結果排カス中に含まれる口C,COおよ
びNOXについては、カッリン燃料エンジンの場合と同
様に優れた浄化性能を示した。また未燃焼のアルコール
量も低減できることが認められた。しかしながらアルコ
ール燃料エンジンの排カスに特有の成分であるホルムア
ルデヒドについては、触媒による低減効果はほとんど認
められなかった。
[Problem to be solved by the invention] Prior to the present invention, the present inventors developed an exhaust gas purification catalyst supporting a noble metal, which is used in the exhaust system of a conventional Kallin fuel engine (see JP-A-63-162043). The purification performance of the exhaust system of an alcohol-fueled engine was investigated using this method. As a result, the engine exhibited excellent purification performance for C, CO, and NOX contained in the exhaust gas, similar to the case of the Kallin fuel engine. It was also confirmed that the amount of unburned alcohol could be reduced. However, with respect to formaldehyde, which is a component specific to the exhaust gas of alcohol-fueled engines, the catalyst had almost no effect in reducing it.

カッリン燃料エンジンの場合、理論空燃比〈A/「〉は
14.5〜14.6である。これに比べてアルコール燃
料エンジンでは、アルコール100%燃料の時にA/F
は約6.5、カッリン15%−アルコール85%燃料の
時にはA/Fは約7゜6である。したがってガソリン燃
料エンジンと同様の条件で運転した場合には燃料過剰状
態となり、未燃焼のメチルアルコールにより触媒上では
次式の脱水素反応が生じてホルムアルデヒドが生成する
In the case of a Kallin-fueled engine, the stoichiometric air-fuel ratio <A/'> is 14.5 to 14.6. In contrast, in an alcohol-fueled engine, A/F is
is about 6.5, and when the fuel is 15% Karin-85% alcohol, the A/F is about 7°6. Therefore, if the engine is operated under the same conditions as a gasoline fuel engine, there will be an excess of fuel, and unburned methyl alcohol will cause the following dehydrogenation reaction on the catalyst to produce formaldehyde.

Cロ30ロ→ロCHO十ロ2 一方、触媒の前方で空気を供給する構成とすると、エン
ジンから排出された未燃焼のメチルアルコールにより触
媒上で次式の酸化反応が生じてホルムアルデヒドが生成
する。また、空燃比を適切に調整したとしても、エンジ
ン内ではこの反応によりホルムアルデヒドが生成する。
On the other hand, if air is supplied in front of the catalyst, the following oxidation reaction occurs on the catalyst with unburned methyl alcohol discharged from the engine, producing formaldehyde. . Further, even if the air-fuel ratio is adjusted appropriately, formaldehyde is generated in the engine due to this reaction.

Cロ30ロ+1/202→目CHO+口20このように
アルコール燃料エンジンからのホルムアルデヒドの排出
は避けることが困難であり、排出されたホルムアルデヒ
ドを浄化できる触媒の出現が切望されている。本発明の
アルコール燃料自動重用排ガス浄化装置はこのような要
望に応えるものであり、ホルムアルデヒドを長期にわた
つて浄化することを目的とする。
C 30 RO + 1/202 → CHO + 口 20 As described above, it is difficult to avoid formaldehyde emissions from an alcohol fuel engine, and there is a strong desire for a catalyst that can purify the emitted formaldehyde. The alcohol fuel automatic heavy-duty exhaust gas purification device of the present invention meets these demands, and aims to purify formaldehyde over a long period of time.

[課題を解決するための手段」 本発明のアルコール燃料自動車用排ガス浄化装置は、排
ガス通路の上流側に設けられ貴金属を担持した上流側触
媒と、上流側触媒より下流側に設けられた下流側触媒と
、下流側触媒に空気を供給する空気供給装置と、よりな
り、アルコール燃料自動車から排出される排ガスを浄化
する装置であって、 下流側触媒は、担体基材と、担体基材の表面に被覆され
た担持層と、担持層に担持され酸化バナジウム、酸化ク
ロム、酸化マンガン、酸化鉄、酸化コバルト、酸化ニッ
ケル、酸化銅および酸化亜鉛の中から選ばれる酸化物と
、から構成されていることを特徴とする。
[Means for Solving the Problems] The exhaust gas purification device for alcohol-fueled automobiles of the present invention includes an upstream catalyst provided upstream of an exhaust gas passage and supporting a precious metal, and a downstream catalyst provided downstream of the upstream catalyst. A device for purifying exhaust gas emitted from an alcohol-fueled vehicle, consisting of a catalyst and an air supply device that supplies air to the downstream catalyst, the downstream catalyst comprising a carrier base material and a surface of the carrier base material. and an oxide selected from vanadium oxide, chromium oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, copper oxide, and zinc oxide supported on the support layer. It is characterized by

また第2の発明のアルコール燃料自動車用排ガス浄化装
置は、排ガス通路の上流側に設けられ貴金属を担持した
上流側触媒と、上流側触媒より下流側に設けられた下流
側触媒と、下流側触媒に空気を供給する空気供給装置と
、よりなり、アルコール燃料自動車から排出される排ガ
スを浄化する装置であって、 下流側触媒は、担体基材と、担体基材の表面に被Nされ
アルミナ、シリカ、チタニアおよびジルコニアの中から
選ばれる酸化物とペロブスカイト型複合酸化物とよりな
る混合]−ト層と、から構成されていることを特徴とす
る。
Further, the exhaust gas purification device for an alcohol-fueled vehicle according to the second invention includes: an upstream catalyst provided on the upstream side of the exhaust gas passage and supporting a precious metal; a downstream catalyst provided downstream of the upstream catalyst; A device for purifying exhaust gas emitted from an alcohol-fueled vehicle, comprising: an air supply device that supplies air to an alcohol-fueled vehicle; It is characterized by being comprised of a mixed layer consisting of an oxide selected from silica, titania and zirconia and a perovskite type composite oxide.

本発明のアルコール燃料自動車用排ガス浄化装置は、排
ガス通路の上流側に設けられ貴金属を担持した上流側触
媒と、上流側触媒より下流側に設けられた下流側触媒と
、上流側触媒と下流側触媒の間に設けられ下流側触媒に
空気を供給する空気供給装置と、より構成される。
The exhaust gas purification device for an alcohol-fueled vehicle of the present invention includes: an upstream catalyst provided on the upstream side of an exhaust gas passage and supporting a precious metal; a downstream catalyst provided downstream of the upstream catalyst; An air supply device is provided between the catalysts and supplies air to the downstream catalyst.

上流側触媒は、従来のガソリン燃料エンジンの排気系に
設けられるものと同様のものであり、Pt、Rh、Pd
なとの貴金属が担持されている。
The upstream catalyst is similar to that provided in the exhaust system of conventional gasoline fuel engines, and contains Pt, Rh, and Pd.
It is loaded with precious metals.

また、貴金属に加えてざらに、セリウム、ランタンなど
の希土類成分の酸化物が担持された触媒を用いることも
できる。この上流側触媒は、主として排ガス中のHC,
CoおよびNOXを浄化する。
Further, in addition to noble metals, a catalyst in which oxides of rare earth components such as cerium and lanthanum are supported can also be used. This upstream catalyst mainly handles HC in exhaust gas,
Purify Co and NOX.

本発明の最大の特徴は、下流側触媒の構成にある。この
下流側触媒の一つは、担体基材と、担持層と、酸化物と
から構成される。担体基材は従来のガソリン燃料エンジ
ンの排気系に用いられる触媒担体と同様のものであり、
ハニカム形状のモノリス担体、ペレット状の担体などが
利用される。
The most distinctive feature of the present invention lies in the configuration of the downstream catalyst. One of the downstream catalysts is composed of a carrier base material, a support layer, and an oxide. The carrier base material is similar to the catalyst carrier used in the exhaust system of conventional gasoline-fueled engines.
Honeycomb-shaped monolith carriers, pellet-shaped carriers, etc. are used.

その材質も特にtill限されず、コージェライト、ム
ライト、アルミナ、マグネシア、スピネルなどのセラミ
ックス、あるいはフェライト鋼などの耐熱性金属を利用
できる。
The material is not particularly limited, and ceramics such as cordierite, mullite, alumina, magnesia, and spinel, or heat-resistant metals such as ferritic steel can be used.

担体基材には担持層が被覆されている。この担持層は従
来の浄化触媒の触媒担持層と同様のものであり、比表面
積の大きなアルミナ、シリカ、チタニア、ジルコニアな
どから形成される。一般にはγ−アルミナ、θ−アルミ
ナなどが多く用いられる。担持層は担体基材表面にのみ
形成してもよいし、担体基材全体をこのような材質で形
成することもできる。
The carrier substrate is coated with a carrier layer. This support layer is similar to the catalyst support layer of conventional purification catalysts, and is formed of alumina, silica, titania, zirconia, etc., each having a large specific surface area. Generally, γ-alumina, θ-alumina, etc. are often used. The support layer may be formed only on the surface of the carrier base material, or the entire carrier base material may be formed of such a material.

担持層には酸化物が担持されている。この酸化物として
は、VO,VO2などで表わされる酸化バナジウム、C
r2O3などで表わされる酸化クロム、MnO,Mn2
O3、Mn3O4などで表ワさレル酸化マンカン、Fe
01Fe203、Fego+などで表わされる酸化鉄、
coo、c。
An oxide is supported on the support layer. Examples of this oxide include vanadium oxide represented by VO, VO2, etc.
Chromium oxide, MnO, Mn2 expressed as r2O3, etc.
O3, Mn3O4 etc. oxidized mankan, Fe
Iron oxide represented by 01Fe203, Fego+, etc.
coo, c.

304などで表わされる酸化コバルト、NiOなとで表
わされる酸化ニッケル、CuO,Cu2Oなどで表わさ
れる酸化銅、ZnOなとで表わされる酸化亜鉛から選ば
れる卑金属の酸化物を、単独で、あるいは複数種類組合
わせて用いることができる。
Cobalt oxide represented by 304 etc., nickel oxide represented by NiO etc., copper oxide represented by CuO, Cu2O etc., zinc oxide represented by ZnO etc., singly or in plural kinds. Can be used in combination.

下流側触媒の他の一つは、担体基材と、混合コート層と
より構成される。担体基材は前述の下流側触媒と同様の
材料から形成できる。
The other downstream catalyst is composed of a carrier base material and a mixed coat layer. The carrier substrate can be formed from the same materials as the downstream catalyst described above.

混合]−ト層はアルミナ、シリカ、チタニア、およびジ
ルコニアの中から選ばれる酸化物と、般式ABO3で表
わされるペロブスカイト型複合酸化物の混合物から構成
される。なおペロブスカイト型複合酸化物は、へ元素の
イオン半径・・・「a、B元素のイオン半径・・・rb
、酸素のイオン半径・・・「Oとした場合、ra>0.
09nmSrb>Q。
The mixed layer is composed of a mixture of an oxide selected from alumina, silica, titania, and zirconia and a perovskite-type composite oxide represented by the general formula ABO3. In addition, the perovskite-type composite oxide has an ionic radius of element B..."a, an ionic radius of element B...rb
, the ionic radius of oxygen..."If O, ra>0.
09nmSrb>Q.

051 nm、を−(ra+ro)/2 (rb+rO
)で表わされるtが0.75≦t≦1.0である必要が
あり、B元素が遷移金属元素のもの、ざらにはへ元素の
20%以下がストロンチウムで置換されたものが望まし
い。
051 nm, −(ra+ro)/2 (rb+rO
) must be 0.75≦t≦1.0, and it is preferable that element B is a transition metal element, and in general, 20% or less of the B element is substituted with strontium.

上記した卑金属の酸化物およびペロブスカイト型複合酸
化物は、担体基材IQに対して0.01〜1.0m01
の範囲で担持されていることが好ましい、Q、01mo
 lより少ないとホルムアルデヒドの浄化性能に劣り、
1.□mo+より多く担持しても効果が飽和する。0.
03〜0.6m○1の範囲が特に好ましい。
The base metal oxide and perovskite type composite oxide described above are 0.01 to 1.0 m01 to the carrier base material IQ.
Q, 01mo is preferably supported in the range of
If it is less than 1, the formaldehyde purification performance will be poor,
1. □The effect is saturated even if more than mo+ is supported. 0.
A range of 0.03 to 0.6 m○1 is particularly preferable.

なお、卑金属の酸化物を担持層に担持させるには、酸化
物を構成する金属の塩などの溶液を担持層に含浸させ、
次いで焼成することで酸化物とする方法を利用できる。
Note that in order to support the base metal oxide on the support layer, the support layer is impregnated with a solution such as a salt of the metal constituting the oxide.
A method can be used in which the material is then fired to form an oxide.

空気供給装置は、下流側触媒に空気を供給する。The air supply device supplies air to the downstream catalyst.

これにより下流側触媒の雰囲気は酸素が多い状態となり
、ホルムアルデヒドは効率良く酸化されて浄化される。
As a result, the atmosphere of the downstream catalyst becomes oxygen-rich, and formaldehyde is efficiently oxidized and purified.

[作用コ 本発明の排ガス浄化装置では、アルコール燃料エンジン
の排ガスはまず上流側触媒に入り、担持された貴金属の
触媒作用により含まれる目c、cO,NOxが浄化され
る。浄化された排カスは次いで下流側触媒にはいる。こ
こで下流側触媒には空気供給装置から空気が供給され、
高温かっり一ン雰囲気となっている。そして酸化物の存
在により、排ガスに含まれるホルムアルデヒドは強い酸
化作用を受け、水と二酸化炭素になって浄化される。
[Function] In the exhaust gas purification device of the present invention, the exhaust gas of an alcohol fuel engine first enters the upstream catalyst, and the contained CO, CO, and NOx are purified by the catalytic action of the supported noble metal. The purified exhaust gas then enters the downstream catalyst. Here, air is supplied to the downstream catalyst from an air supply device,
The atmosphere is hot and crisp. Due to the presence of oxides, the formaldehyde contained in the exhaust gas undergoes a strong oxidation effect and is purified into water and carbon dioxide.

なお、高温かっリーン雰囲気においては、ptなとはシ
ンタリングが促進されるため、従来の触媒では耐久性に
難点が生じる。しかし本発明の触[装置においては、酸
化物は高温や酸化性雰囲気に対して比較的安定であり、
雰囲気の影響を受けにくい。したがって長期間所定の性
能を維持することができる。
In addition, in a high-temperature, cool atmosphere, sintering of PT is promoted, so that conventional catalysts have problems in durability. However, in the catalytic device of the present invention, oxides are relatively stable against high temperatures and oxidizing atmospheres;
Not easily affected by atmosphere. Therefore, predetermined performance can be maintained for a long period of time.

[発明の効果] したがって本発明の排カス浄化装置によれば、アルコー
ル燃料エンジンの排ガス中のホルムアルデヒドを確実に
浄化することができ、極めて実用性が高い。また耐久性
に優れるため、長期間安定してホルムアルデヒドを浄化
することができる。
[Effects of the Invention] Therefore, the exhaust gas purification device of the present invention can reliably purify formaldehyde in the exhaust gas of an alcohol fuel engine, and is extremely practical. In addition, because of its excellent durability, formaldehyde can be purified stably for a long period of time.

また、卑金属酸化物およびペロブスカイト型複合酸化物
は貴金属に比べて安価であり、本発明の触媒装置はコス
ト面で有利である。
Furthermore, base metal oxides and perovskite-type composite oxides are cheaper than noble metals, and the catalyst device of the present invention is advantageous in terms of cost.

[実施例] 以下、実施例により具体的に説明する。[Example] Hereinafter, this will be explained in detail using examples.

第1図にこの実施例の排ガス浄化装置の構成を示す。こ
の排ガス浄化装置は、電子燃料制御装置10をもつアル
コール燃料エンジン1の排気系の上流側に設けられた上
流側触11に2と、下流側に設けられた下流側触媒3と
、下流側触媒3に空気を供給する空気供給装置4とから
構成されている。
FIG. 1 shows the configuration of the exhaust gas purification device of this embodiment. This exhaust gas purification device includes an upstream contact 11 provided on the upstream side of an exhaust system of an alcohol fuel engine 1 having an electronic fuel control device 10, a downstream catalyst 3 provided on the downstream side, and a downstream catalyst 2. and an air supply device 4 for supplying air to the air conditioner 3.

上流側触媒2および下流側触媒3は、それぞれ触媒]ン
バータ5内に保持されている。
The upstream catalyst 2 and the downstream catalyst 3 are each held within a catalyst inverter 5.

上流側触媒2は、コージェライト質のハニカム状のモノ
リス担体基材に活性アルミナからなる触媒担持層が被覆
され、触媒担持層にはptおよびRhがそれぞれ金属換
算で1.5Q/RおよびC9:ll/Q担持され、酸化
セリウムおよび酸化ランタンがそれぞれ金属換算で0.
3mo l/Qおよび0.03mo l/Q担持されて
いる。
In the upstream catalyst 2, a cordierite honeycomb-shaped monolith carrier base material is coated with a catalyst support layer made of activated alumina, and the catalyst support layer has PT and Rh of 1.5Q/R and C9: ll/Q supported, and cerium oxide and lanthanum oxide each have a metal equivalent of 0.
3 mol/Q and 0.03 mol/Q were supported.

このように構成された排ガス浄化装置において、下流側
触媒3の酸化物の構成を種々変化させて実施例とした。
In the exhaust gas purification device configured as described above, the configuration of the oxide of the downstream catalyst 3 was variously changed to create examples.

(実施例1〉 活性アルミナ粉末100重量部と、アルミナ含有率10
重量%のアルミナシルア0重量部と、水50重量部を混
合攪拌してアルミナスラリーを調製する。そして多数の
ハニカムセルを有する市販のコージェライト質モノリス
担体基材をこのスラリー中に浸漬し、引上げて余分のス
ラリーを吹き飛ばした後、200℃で1時間乾燥し、7
00℃で1時間焼成する。これを数回繰返し、担体基材
1Qあたり100Qの担持層を形成する。
(Example 1) 100 parts by weight of activated alumina powder and alumina content of 10
An alumina slurry is prepared by mixing and stirring 0 parts by weight of alumina silua and 50 parts by weight of water. A commercially available cordierite monolith carrier base material having a large number of honeycomb cells was immersed in this slurry, pulled up and the excess slurry was blown off, and then dried at 200°C for 1 hour.
Bake at 00°C for 1 hour. This is repeated several times to form a support layer of 100Q per 1Q of carrier base material.

次に、塩化バナジウム(VCQ2 ) 、塩化クロム(
CrCR2) 、塩化マンガン(MnCQ2 )、塩化
鉄(FeCQ2 ) 、塩化コバルト(Co(J2〉、
塩化ニッケル(NiCQ2)、塩化銅〈CuCQ2〉、
塩化亜鉛(ZrlC522>の水溶液をそれぞれ用意し
、上記担持層をもつ担体基材をそれぞれの水溶液に浸漬
した後、引上げて余分な水分を吹き飛ばし、100℃で
1時間乾燥後、650℃で1時間焼成してそれぞれの卑
金属酸化物を担持させて、No、1〜No、8の8種類
の触媒を調製した。それぞれの卑金属酸化物の担持量は
、担体基材1Qに対してそれぞれ金属換算で0.3mO
である。
Next, vanadium chloride (VCQ2), chromium chloride (
CrCR2), manganese chloride (MnCQ2), iron chloride (FeCQ2), cobalt chloride (Co(J2),
Nickel chloride (NiCQ2), copper chloride (CuCQ2),
Each aqueous solution of zinc chloride (ZrlC522> was prepared, and the carrier base material with the above-mentioned support layer was immersed in each aqueous solution, then pulled up to blow off excess water, dried at 100°C for 1 hour, and then dried at 650°C for 1 hour. Eight types of catalysts No. 1 to No. 8 were prepared by baking and supporting each base metal oxide.The supported amount of each base metal oxide was calculated in terms of metal per 1Q of carrier base material. 0.3mO
It is.

(実施例2) 酢酸ランタン、酢酸ストロンチウムおよび酢酸コバルト
を化学量論比に秤量し、混合水溶液とする。この水溶液
を乾燥し、150〜300℃で分解した後850℃で5
時間焼成し粉砕してベロアスカイト型複合酸化物粉末を
調製する。
(Example 2) Lanthanum acetate, strontium acetate, and cobalt acetate are weighed in a stoichiometric ratio to form a mixed aqueous solution. This aqueous solution was dried, decomposed at 150 to 300°C, and then heated to 850°C for 50 minutes.
A velorskite-type composite oxide powder is prepared by firing for a time and pulverizing.

次にジルコニア含有率20重置%のジルコニアゾル10
0重量部と、水50重量部および上記ペロブスカイト型
複合酸化物5重量部を混合攪拌してスラリーを調製する
。そして実施例1と同様の担体基材をこのスラリーに浸
漬し、引上げて余分なスラリーを吹き飛ばし、−昼夜I
2燥後300℃で1時間焼成した。これを数回繰返し、
担体基材IQあたり100gの混合コート層を形成した
Next, zirconia sol 10 with a zirconia content of 20%
0 parts by weight, 50 parts by weight of water, and 5 parts by weight of the perovskite type composite oxide are mixed and stirred to prepare a slurry. Then, the same carrier base material as in Example 1 was immersed in this slurry, pulled up, and the excess slurry was blown off.
2 After drying, it was fired at 300°C for 1 hour. Repeat this several times,
A mixed coating layer of 100 g was formed per carrier substrate IQ.

その後700℃で3時間焼成してNo、9の触媒を調製
した。この触媒には、混合コート層中に金属換算で0.
31mo l/Qの(Lao、+Sro。
Thereafter, it was calcined at 700° C. for 3 hours to prepare catalyst No. 9. This catalyst has 0.0% metal equivalent in the mixed coat layer.
31 mol/Q of (Lao, +Sro.

b )COO3がベロアスカイト型複合酸化物として含
有されている。
b) COO3 is contained as a velorskite type composite oxide.

また、硝酸ランタン、硝酸ストロンチウムおよび硝酸マ
ンガンの混合水溶液にアンモニア水を加え、共沈水酸化
物を形成する。これを濾過水洗後、乾燥、焼成および粉
砕してペロブスカイト型複合酸化物を調製し、上記と同
様にしてNo、10の触媒を調製した。この触媒には、
混合コート層中に金属換算で0.42mol/Qの(L
ao、5Sro、s )MnOaがペロブスカイト型複
合酸化物として担持されている。
Further, aqueous ammonia is added to a mixed aqueous solution of lanthanum nitrate, strontium nitrate, and manganese nitrate to form a coprecipitated hydroxide. This was filtered, washed with water, dried, calcined and pulverized to prepare a perovskite type composite oxide, and catalyst No. 10 was prepared in the same manner as above. This catalyst has
In the mixed coat layer, 0.42 mol/Q (L
ao, 5Sro, s) MnOa is supported as a perovskite type composite oxide.

(比較例) 実施例1と同様の活性アルミナよりなる担持層をもつモ
ノリス担体基材を用意し、硝酸セリウムとfII!Ii
!!ランタンの混合水溶液に浸漬して、担体基材19あ
たりそれぞれ金属換算で0.3m0O,03m○1のセ
リウムとランタンを担持させた。そして100℃で乾燥
後、700℃で1時間焼成した。その後、ジニトロジア
ンミン白金溶液と塩化ロジウム溶液に順次浸漬し、担体
基材1Qあたり金属換算で1.5CI、0.3QのPt
およびRhをそれぞれ担持して比較例の触媒を調製した
(Comparative Example) A monolith carrier base material having a support layer made of activated alumina similar to that in Example 1 was prepared, and cerium nitrate and fII! Ii
! ! It was immersed in a mixed aqueous solution of lanthanum to support cerium and lanthanum in amounts of 0.3 mO and 0.3 mO, respectively in terms of metal, per carrier base material 19. After drying at 100°C, it was fired at 700°C for 1 hour. After that, it was immersed in a dinitrodiammine platinum solution and a rhodium chloride solution sequentially, and 1.5 CI and 0.3Q of Pt in terms of metal per 1Q of the carrier base material were immersed.
and Rh were supported to prepare catalysts of comparative examples.

(評価) 上記した各実施例および比較例の触媒を第1図の下流側
触媒3の位置に配置し、それぞれ以下の条件で初期のホ
ルムアルデヒドの浄化性能を測定した。
(Evaluation) The catalysts of each of the Examples and Comparative Examples described above were placed at the position of the downstream catalyst 3 in FIG. 1, and their initial formaldehyde purification performance was measured under the following conditions.

使用燃料・・・ガソリン15%:アルコール85%空燃
比(A/F)・・・7.6(ストイキ〉空間速度(SV
)−50000h−1(常!>入りカス温度・・・40
0℃(上流側触媒で〉空気供給装置からの空気供給量・
・・10052/分またそれぞれの触媒について以下の
条件で耐久試験を行ない、その後上記の条件で耐久後の
ホルムアルデヒドの浄化性能を測定した。それぞれの結
果を第1表に示す。
Fuel used: 15% gasoline: 85% alcohol Air-fuel ratio (A/F): 7.6 (stoichiometric) Space velocity (SV)
)-50000h-1 (always!> Temperature of entering waste...40
0℃ (at upstream catalyst) Air supply amount from air supply device
...10052/min Each catalyst was also subjected to an endurance test under the following conditions, and then the formaldehyde purification performance after the endurance test was measured under the above conditions. The results are shown in Table 1.

使用燃料・・・ガソリン15%:アルコール85%空燃
比(A/F)・・・7.6(ストイキ)空間速度(SV
)・・・90000h−1(常温)触媒床温・・・90
0℃(上流側触媒で)耐久時間・・・50h 第1表より、各実施例の触媒の初期のホルムアルデヒド
浄化率は比較例と同等であるが、比較例の触媒は耐久後
の浄化率が著しく低下しているのに対し、各実施例の触
媒は耐久後も良好な浄化性能を示していることが明らか
である。なお、口C1C0およびNOXの浄化率につい
ては、各触媒とも従来と同様に優れたレベルにあったこ
とを付記しておく。
Fuel used: 15% gasoline: 85% alcohol Air-fuel ratio (A/F): 7.6 (stoichiometric) Space velocity (SV)
)...90000h-1 (room temperature) Catalyst bed temperature...90
Durability time at 0°C (upstream catalyst): 50 hours From Table 1, the initial formaldehyde purification rate of the catalysts of each example is the same as that of the comparative example, but the catalyst of the comparative example has a lower purification rate after durability. However, it is clear that the catalysts of each example exhibited good purification performance even after the durability test. It should be noted that the purification rates of C1C0 and NOX were at the same excellent level as the conventional catalysts for each catalyst.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のアルコール燃料自動車用排
ガス浄化装置の概略構成を示す説明図である。 ゴ・・・アルコール燃料エンジン
FIG. 1 is an explanatory diagram showing a schematic configuration of an exhaust gas purification device for an alcohol-fueled vehicle according to an embodiment of the present invention. Go...alcohol fuel engine

Claims (2)

【特許請求の範囲】[Claims] (1)排ガス通路の上流側に設けられ貴金属を担持した
上流側触媒と、該上流側触媒より下流側に設けられた下
流側触媒と、該下流側触媒に空気を供給する空気供給装
置と、よりなり、アルコール燃料自動車から排出される
排ガスを浄化する装置であつて、 前記下流側触媒は、担体基材と、該担体基材の表面に被
覆された担持層と、該担持層に担持され酸化バナジウム
、酸化クロム、酸化マンガン、酸化鉄、酸化コバルト、
酸化ニッケル、酸化銅および酸化亜鉛の中から選ばれる
酸化物と、から構成されていることを特徴とするアルコ
ール燃料自動車用排ガス浄化装置。
(1) an upstream catalyst provided on the upstream side of an exhaust gas passage and supporting a precious metal; a downstream catalyst provided downstream of the upstream catalyst; and an air supply device that supplies air to the downstream catalyst; A device for purifying exhaust gas emitted from an alcohol-fueled vehicle, wherein the downstream catalyst comprises a carrier base material, a support layer coated on the surface of the carrier base material, and a support layer supported on the support layer. Vanadium oxide, chromium oxide, manganese oxide, iron oxide, cobalt oxide,
An exhaust gas purification device for an alcohol-fueled vehicle, characterized in that it is comprised of an oxide selected from nickel oxide, copper oxide, and zinc oxide.
(2)排ガス通路の上流側に設けられ貴金属を担持した
上流側触媒と、該上流側触媒より下流側に設けられた下
流側触媒と、該下流側触媒に空気を供給する空気供給装
置と、よりなり、アルコール燃料自動車から排出される
排ガスを浄化する装置であって、 前記下流側触媒は、担体基材と、該担体基材の表面に被
覆されアルミナ、シリカ、チタニアおよびジルコニアの
中から選ばれる酸化物とペロブスカイト型複合酸化物と
よりなる混合コート層と、から構成されていることを特
徴とするアルコール燃料自動車用排ガス浄化装置。
(2) an upstream catalyst provided on the upstream side of the exhaust gas passage and supporting a precious metal; a downstream catalyst provided downstream of the upstream catalyst; and an air supply device that supplies air to the downstream catalyst; An apparatus for purifying exhaust gas emitted from alcohol fueled vehicles, the downstream catalyst comprising a carrier base material and a catalyst selected from alumina, silica, titania and zirconia coated on the surface of the carrier base material. 1. An exhaust gas purification device for an alcohol-fueled vehicle, comprising: a mixed coating layer comprising a perovskite-type composite oxide and a perovskite-type composite oxide.
JP2013893A 1990-01-24 1990-01-24 Exhaust gas cleaning apparatus for alcohol-fuelled automobile Pending JPH03221125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013893A JPH03221125A (en) 1990-01-24 1990-01-24 Exhaust gas cleaning apparatus for alcohol-fuelled automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013893A JPH03221125A (en) 1990-01-24 1990-01-24 Exhaust gas cleaning apparatus for alcohol-fuelled automobile

Publications (1)

Publication Number Publication Date
JPH03221125A true JPH03221125A (en) 1991-09-30

Family

ID=11845862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013893A Pending JPH03221125A (en) 1990-01-24 1990-01-24 Exhaust gas cleaning apparatus for alcohol-fuelled automobile

Country Status (1)

Country Link
JP (1) JPH03221125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0763380A1 (en) * 1995-09-18 1997-03-19 Basf Aktiengesellschaft Layered catalysts
EP1547972A2 (en) * 2003-12-22 2005-06-29 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0763380A1 (en) * 1995-09-18 1997-03-19 Basf Aktiengesellschaft Layered catalysts
EP1547972A2 (en) * 2003-12-22 2005-06-29 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same

Similar Documents

Publication Publication Date Title
JPH0644999B2 (en) Exhaust gas purification catalyst
JPH09500570A (en) Layered catalyst composite
KR20020046959A (en) Exhaust gas purifying catalyst
JPH0788371A (en) Catalyst for purifying exhaust gas and method therefor
JP3817443B2 (en) Exhaust gas purification catalyst
JP2001123827A (en) Exhaust gas control system
JPH08131830A (en) Catalyst for purification of exhaust gas
JPH05285387A (en) Catalyst for purification of exhaust gas and purification method
JPH05220395A (en) Production of ternary catalyst excellent in low-temperature activity
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH10192713A (en) Exhaust gas purifying catalyst and its use
JPH08281110A (en) Catalyst for purifying exhaust gas and its production
JP2011104485A (en) Catalyst for purifying exhaust gas
JPH04122447A (en) Catalyst for cleaning exhaust gas
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JPH03221125A (en) Exhaust gas cleaning apparatus for alcohol-fuelled automobile
JPH11123331A (en) Catalyst for cleaning exhaust gas
JPH03293020A (en) Device for purifying exhaust gas from alcohol-powered automobile
JP4106762B2 (en) Exhaust gas purification catalyst device and purification method
JPH04180835A (en) Production of catalyst for purifying exhaust gas
JP3219447B2 (en) Oxidation catalyst
JP3477982B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3477974B2 (en) Exhaust gas purification catalyst
JPH02191548A (en) Catalyst for purification of exhaust gas
JPH06304476A (en) Oxidation catalyst