JPH03218693A - Ceramic multilayer wiring board - Google Patents

Ceramic multilayer wiring board

Info

Publication number
JPH03218693A
JPH03218693A JP33179189A JP33179189A JPH03218693A JP H03218693 A JPH03218693 A JP H03218693A JP 33179189 A JP33179189 A JP 33179189A JP 33179189 A JP33179189 A JP 33179189A JP H03218693 A JPH03218693 A JP H03218693A
Authority
JP
Japan
Prior art keywords
layer
conductor layer
wiring board
multilayer wiring
ceramic multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33179189A
Other languages
Japanese (ja)
Other versions
JPH0693545B2 (en
Inventor
Kosei Okumura
奥村 孝正
Masaaki Kawaguchi
河口 公明
Masataka Aoki
昌隆 青木
Takashi Nagasaka
崇 長坂
Toru Nomura
徹 野村
Yoshiyuki Miyase
宮瀬 善行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Narumi China Corp
Denso Corp
Original Assignee
Narumi China Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Narumi China Corp, NipponDenso Co Ltd filed Critical Narumi China Corp
Priority to JP1331791A priority Critical patent/JPH0693545B2/en
Priority to US07/631,853 priority patent/US5156903A/en
Publication of JPH03218693A publication Critical patent/JPH03218693A/en
Publication of JPH0693545B2 publication Critical patent/JPH0693545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve a ceramic multilayer wiring board in productivity and electrical and mechanical properties by a method wherein specific metal-organic paste is applied onto a joint between a first and a second conductor layer and burned to form a metallized layer. CONSTITUTION:Specific metal-organic paste formed of one or more elements selected from Pt, Ni, Cu, Au, Rh, Ru, Re, Co, Pd, and Ir is applied onto a joint between a first conductor layer 2 and a second conductor layer 4 and burned to form a metallized layer 3. The metallized layer 3 conforms easily to the rugged face of the first conductor layer 2 and penetrates deeply even into recesses to constitute a solid solution layer 3 with the first conductor layer 2 through burning and a mechanical anchor effect. The metallized layer 3 has also a mechanical anchor effect on the second conductor layer 4, and thus a solid solution layer 7 is generated. By this setup, a ceramic multilayer wiring board high in productivity, excellent in mechanical and electrical properties, and high in reliability can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電子回路部品として使用されるセラミック
多層配線基板およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic multilayer wiring board used as an electronic circuit component and a method for manufacturing the same.

[従来の技術] 従来の混成集積回路などに使用されるセラミック多層配
線基板は、゛絶縁層となるセラミック生基板にW,Mo
等の高融点金属を主成分とする第1導体層と、該導体層
を一部露出させる開口部を備えた絶縁層と、該絶縁層か
ら前記開I1部分と連接する銅を主成分とする金属厚膜
からなる第2導体層からなる構成である。このような構
成においては接触抵抗が高く、接着強度も弱くなる欠点
があり、特に第1導体層表面が酸化している場合には顕
著である. このため、上記問題点を防ぐ工夫がなされている。その
例として、実開昭57−12775では第1導体層と第
2導体層との接続部に、電解メッキ、無電解メッキある
いは蒸着等の手段によるメタライズ層を介して第1導体
層と第2導体層とが接続される構成の提案がある。
[Prior Art] Ceramic multilayer wiring boards used in conventional hybrid integrated circuits, etc. are made by adding W and Mo to a raw ceramic substrate that serves as an insulating layer.
a first conductor layer mainly composed of a high melting point metal such as, an insulating layer having an opening that partially exposes the conductor layer, and a first conductor layer mainly composed of copper connected to the open I1 part from the insulating layer. This structure includes a second conductor layer made of a thick metal film. Such a structure has the drawbacks of high contact resistance and low adhesive strength, which is particularly noticeable when the surface of the first conductor layer is oxidized. For this reason, efforts have been made to prevent the above problems. As an example, in Utility Model Application Laid-open No. 57-12775, a metallized layer is formed between the first conductor layer and the second conductor layer by means of electrolytic plating, electroless plating, vapor deposition, etc. There is a proposal for a configuration in which a conductor layer is connected.

また別の例として、特公昭63−42879ではメタラ
イズ層の製造方法としてニッケル、コバルトあるいは銅
よりなる膜厚0.2〜5.0μIのメッキ層の形成方法
の提案がある。
As another example, Japanese Patent Publication No. 63-42879 proposes a method of forming a plating layer of nickel, cobalt, or copper with a thickness of 0.2 to 5.0 .mu.I as a method for manufacturing a metallized layer.

[発明が解決しようとする課題] 従来のセラミック多層配線基板のメタライズ層は、無電
解メッキ法では開口部分以外の周辺にブリードが発生す
るし、電解メッキ法ではメッキ引き回し線の設定による
基板寸法の制限あるいはメッキ引き回し線の配置によっ
て浮遊容量が増大する等機械的、電気的な品質上の課題
があった。
[Problems to be Solved by the Invention] In the metallized layer of conventional ceramic multilayer wiring boards, bleeding occurs around areas other than openings when using electroless plating, and when using electrolytic plating, it is difficult to control board dimensions due to the setting of plating routing lines. There were mechanical and electrical quality issues such as an increase in stray capacitance due to restrictions or the arrangement of plated routing lines.

また、金属粉末等からなる市販の厚膜ペーストによる厚
膜メタライズ法ではメタライズ層は緻密膜質でないため
、十分な接着特性が得られないという課題があった. また、メッキ法では、メッキ液は必ず使用されるが、メ
ッキ面である第1導体層の表面に第5図(断面図)に示
すような穴(8)がある場合、その穴(8)にメッキ液
が残存することがある。そのため、セラミック多層配線
基板の変色、導体層の酸化による劣化等の品質上の課題
があった。
In addition, in the thick film metallization method using a commercially available thick film paste made of metal powder, etc., the metallized layer is not dense, so there is a problem in that sufficient adhesion properties cannot be obtained. In the plating method, a plating solution is always used, but if there is a hole (8) as shown in Figure 5 (cross-sectional view) on the surface of the first conductor layer, which is the plating surface, the hole (8) Plating solution may remain. Therefore, there were quality problems such as discoloration of the ceramic multilayer wiring board and deterioration due to oxidation of the conductor layer.

本発明の目的は、上述の課題を解決するため、メタライ
ズ層を改良し、生産性が高く、電気的、機械的な品質に
優れ、信頼性の高いセラミック多層配線基板およびその
製造方法の提供である。
In order to solve the above-mentioned problems, an object of the present invention is to provide a ceramic multilayer wiring board with improved metallization layer, high productivity, excellent electrical and mechanical quality, and high reliability, and a method for manufacturing the same. be.

[課題を解決するた゛めの手段] 上記目的を達成するため、本発明の第1は、内層に高融
点金属を主成分とする第1導体層と、表面層に銅を主成
分とする第2導体層とを備えたセラミック多層配線基板
において、第1導体層と第2導体層との接続部にPt,
 Ni, Cu.Au, Rh.Ru、Re.Co, 
PdおよびIrのいずれか1種または2種以上の成分か
らなるメタロオーガニックスペーストを塗付、焼成した
メタライズ層を備えたことを特徴とするセラミック多層
配線基板である。
[Means for Solving the Problems] In order to achieve the above object, the first aspect of the present invention is to provide a first conductor layer whose inner layer is made of a high melting point metal, and a second conductor layer whose surface layer is made of copper as its main ingredient. In a ceramic multilayer wiring board having a conductor layer, Pt,
Ni, Cu. Au, Rh. Ru, Re. Co,
This is a ceramic multilayer wiring board characterized by comprising a metallized layer coated with a metallo-organic paste made of one or more of Pd and Ir and fired.

また、第2は、第1のセラミック多層配線基板の製造方
法であって、前記メタライズ層はPL、Ni、Cu. 
Au. Rh.Ru.Re.Co, PdおよびIrの
いずれか1種または2種の成分からなるメタロオーガニ
ックスペーストを塗付、焼成することを特徴とするセラ
ミック多層配線基板の製造方法である.[作用コ 本発明のメタロオーガニックスペースト(Metall
o Organics Pastes )は、錯体ペー
ストであって、ガラス質のフリット分や金属酸化物を含
まない. 本発明の作用を第1図および第2図を用いて説明する。
A second method is a method for manufacturing the first ceramic multilayer wiring board, in which the metallized layer is made of PL, Ni, Cu.
Au. Rh. Ru. Re. This is a method for manufacturing a ceramic multilayer wiring board, which comprises applying and firing a metallo-organic paste consisting of one or two of Co, Pd, and Ir. [Function] The metallo-organic paste of the present invention (Metall)
o Organics Pastes) is a complex paste that does not contain glassy frits or metal oxides. The operation of the present invention will be explained using FIGS. 1 and 2.

第1図は本発明の一実施例のセラミック多層配線基板の
断面図である。絶縁層(1)となるセラミック生基板に
W−Mo等の高融点金属を主成分とした市販のWペース
ト、Moペースト等で所定の配線を基板面およびスルー
ホール部に塗付する。さらに必要に応じてこれを複数枚
作成して積層することができる。次に、焼成して絶縁層
(1)と第1導体層(2)が一体化してコファイヤード
(Cof ired )多層基板(5)となる.次に、
この第1導体層による配線が露出する部分全体を覆うた
めにメタロオーガニックスペーストを塗付し、焼成して
メタライズ層(3)とする。次に、メタライズ層(3)
を介して、銅を主成分とする市販の銅ペーストにより所
定の配線を塗付し、焼成して第2導体層(4)を形成す
る。次に、図示しないが、必要に応じて、抵抗体層およ
びその抵抗体層を保護するガラス層、また、オーバーコ
ート樹脂層を設けることができる。
FIG. 1 is a sectional view of a ceramic multilayer wiring board according to an embodiment of the present invention. A predetermined wiring is applied to the substrate surface and through-hole portions of a ceramic green substrate that will become the insulating layer (1) using commercially available W paste, Mo paste, etc. whose main component is a high melting point metal such as W-Mo. Furthermore, if necessary, a plurality of sheets can be created and stacked. Next, by firing, the insulating layer (1) and the first conductor layer (2) are integrated to form a cofired multilayer substrate (5). next,
A metallo-organic paste is applied to cover the entire exposed portion of the first conductor layer wiring, and is fired to form a metallized layer (3). Next, metallized layer (3)
A predetermined wiring is coated with a commercially available copper paste containing copper as a main component through the wafer, and then baked to form a second conductor layer (4). Next, although not shown, a resistor layer, a glass layer for protecting the resistor layer, and an overcoat resin layer can be provided as necessary.

第2図は、第1図の○部の部分拡大図で、断面構造を詳
細に示した断面図である。図において、本発明のメタラ
イズ層(3)は、第1導体層(2)の凹凸面に容易に沿
い、凹部であっても深く入り込み、焼成によりメカニカ
ルアンカー効果と第1導体層(2)と固溶体層(6)を
生成している。
FIG. 2 is a partial enlarged view of the circle part in FIG. 1, and is a cross-sectional view showing the cross-sectional structure in detail. In the figure, the metallized layer (3) of the present invention easily follows the uneven surface of the first conductor layer (2), penetrates deeply even into recesses, and when fired, it creates a mechanical anchor effect and the first conductor layer (2). A solid solution layer (6) is generated.

また、このメタライズ層は、第2導体層(4)ともメカ
ニカルアンカー効果があり、固溶体層(7)を生成する
. そのため、本発明のメタロオーガニックスペーストによ
るメタライズ層は、次のような■および■の作用効果が
ある。■第1導体層および第2導体層との接着強度は強
固なものとなる.モデル的に上記構成による試験片で、
第2導体層の上に銅1を2X2mm口全面にハンダ付け
して引張強度を測定したところ7〜13Kg/2a+m
口であった。比較として、同様の試験片でメタライズ層
をメッキ法により形成した場合、引張強度は、5〜7k
g/2mm口であり、また、金属粉末等からなる厚膜ペ
ーストて形成した場合、緻密膜質とならず、引張強度は
2〜3 kg /2mm Tlと低かった。
Further, this metallized layer also has a mechanical anchor effect with the second conductor layer (4) and forms a solid solution layer (7). Therefore, the metallized layer made of the metallo-organic paste of the present invention has the following effects (1) and (2). ■The adhesive strength between the first conductor layer and the second conductor layer is strong. A test piece with the above configuration as a model,
Copper 1 was soldered to the entire surface of the 2x2mm opening on the second conductor layer, and the tensile strength was measured: 7-13Kg/2a+m
It was the mouth. For comparison, when a metallized layer was formed using a plating method on a similar test piece, the tensile strength was 5 to 7 k.
g/2 mm, and when it was formed from a thick film paste made of metal powder or the like, it did not have a dense film quality and the tensile strength was as low as 2 to 3 kg/2 mm Tl.

さらに、本発明の作用効果は、■導体成分とのメカニカ
ルアンカー効果および固溶体化(合金化)によりオーミ
ックコンタクトを形成することである。
Furthermore, the effect of the present invention is (1) to form an ohmic contact by the mechanical anchor effect and solid solution formation (alloying) with the conductor component.

メタロオーガニックスペーストの成分は、第1導体層あ
るいは第2導体層の成分によって、固溶体となる成分を
選ぶことが好ましい. 以下、実施例について図面を参照して説明する。
The components of the metallo-organic paste are preferably selected to form a solid solution depending on the components of the first conductor layer or the second conductor layer. Examples will be described below with reference to the drawings.

[実施例] [実施例1および比較例1コ 以下、実施例1について、比較例1と対比して説明する
[Example] [Example 1 and Comparative Example 1] Example 1 will be described below in comparison with Comparative Example 1.

実施例1は、アルミナを主成分として、これにシリカ、
カルシア等の焼結助材および有機バインダー等を加えて
混合して、ドクターブレード法等で成形した絶縁層(1
)となるセラミ・ソク生基板の複数枚の基板面およびス
ルーホールに、第1導体層(2)となるWを主成分とし
たWペーストをスクリーン印刷法等で必要な導体配線を
形成し、これらを複数枚積層゜した後、水素等の還元雰
囲気、1400゜C−1700℃で焼成して、絶縁層(
1)と第1導体層(2)と一体化してコファイヤード多
層基板(5)とする。
In Example 1, alumina is the main component, and silica and
An insulating layer (1
) Form the necessary conductor wiring on the multiple substrate surfaces and through-holes of the ceramic substrate to become the first conductor layer (2) using a W paste containing W as the main component by screen printing, etc. After laminating multiple layers of these, they are fired at 1400°C to 1700°C in a reducing atmosphere such as hydrogen to form an insulating layer (
1) and the first conductor layer (2) to form a cofired multilayer substrate (5).

次に、コファイヤード多層基板(5)の外表面に第1導
体層(2)が露出している部分(第1導体層のうち絶縁
層で覆われていない配線部分)にptメタロオーガニッ
クスペーストをスクリーン印刷等で塗布し、次に、これ
を酸化雰囲気で350℃〜450℃、10分間脱バイン
ダー処理をした後、窒素雰囲気または水素雰囲気で70
0℃〜1100℃、10分間熱処理してメタライズ層(
3)を形成する。
Next, on the outer surface of the cofired multilayer board (5), a PT metal organic space is formed on the exposed part of the first conductor layer (2) (the wiring part of the first conductor layer that is not covered with the insulating layer). This is applied by screen printing, etc., and then subjected to debinding treatment for 10 minutes at 350°C to 450°C in an oxidizing atmosphere, and then treated for 70 minutes in a nitrogen or hydrogen atmosphere.
The metallized layer (
3) Form.

このときのメタライズ層の厚みは、0.05〜5.0μ
mの範囲であればよいが、好ましくは約2μ讃である。
The thickness of the metallized layer at this time is 0.05 to 5.0μ
It may be within the range of m, but preferably about 2μ.

次に、銅を主成分とする厚膜ペースト(例えば、商品名
DUPONT #9922)を用いて、前記メタライズ
層(3)を介してスクリーン印刷等の方法で印刷後、窒
素雰囲気中において、900℃、10分焼成して第2導
体層(4)とし、セラミック多層配線基板とする。さら
に、図示しないが、必要に応じて、抵抗体層およびその
抵抗体層を保護するガラス層、また、オーバーコート樹
脂層を設ける。
Next, a thick film paste containing copper as a main component (for example, DUPONT #9922) is printed on the metallized layer (3) by a method such as screen printing, and then heated at 900° C. in a nitrogen atmosphere. , and baked for 10 minutes to form a second conductor layer (4), which is then used as a ceramic multilayer wiring board. Furthermore, although not shown, a resistor layer, a glass layer for protecting the resistor layer, and an overcoat resin layer are provided as necessary.

このptメタロオーガニックスペーストよりなるメタラ
イズ層は電気的、機械的に安定で、強固な接合層を形成
する。すなわち、第1導体層のWおよび第2導体層のC
uの双方と固溶性に優れていて、焼成により拡散して容
易に固溶体となり、また、メカニカルアンカー効果も有
している。
This metallized layer made of PT metal organic paste is electrically and mechanically stable and forms a strong bonding layer. That is, W in the first conductor layer and C in the second conductor layer.
It has excellent solid solubility with both u, easily diffuses into a solid solution upon firing, and also has a mechanical anchor effect.

この効果を第3図で説明する。同図は、実施例1および
比較例1の引張強度の初期値から−40℃〜150℃で
の冷熱サイクルを1000サイクルまで行ったときの変
化を図示する。この比較例1は第1導体と第2導体との
接続部にメタライズ層の介在のない場合であり、その他
の条件は実施例1と同じである。実施例1は、比較例1
に比べ初期値そのものが数倍高い約13.0kg/2m
m口であり、1000サイクル後で約10 .0kg 
/2w+m Oと十分高い値である.一方、比較例1は
初期値約3;0 }cg/2mm口と小さな値であり、
さらに、150サイクルで引張強度は50%程度低下し
、その後もさらに低下する.また、実施例1は、重要な
電気特性であるオーミックコンタクトにも優れている。
This effect will be explained with reference to FIG. This figure illustrates the change in tensile strength of Example 1 and Comparative Example 1 when the tensile strength was subjected to 1000 cycles of cooling and heating at -40°C to 150°C from the initial value. Comparative Example 1 is a case in which there is no intervening metallized layer at the connection between the first conductor and the second conductor, and other conditions are the same as in Example 1. Example 1 is Comparative Example 1
The initial value itself is several times higher than that of approximately 13.0 kg/2 m.
m mouth, and about 10.m after 1000 cycles. 0kg
/2w+mO, which is a sufficiently high value. On the other hand, Comparative Example 1 has a small initial value of approximately 3;0 }cg/2mm mouth,
Furthermore, the tensile strength decreases by about 50% after 150 cycles, and decreases further thereafter. Furthermore, Example 1 is excellent in ohmic contact, which is an important electrical property.

第4図は、実施例1のW − C u間の電圧一電流の
関係を示す特性図である。同図から、電圧と電流の関係
は直線の関係にあることがわかる。
FIG. 4 is a characteristic diagram showing the voltage-current relationship between W and Cu in Example 1. From the figure, it can be seen that the relationship between voltage and current is a linear relationship.

本発明は、上述の優れた効果に加えて、メタロオーガニ
ックスペーストの塗布時に、位置ずれ等のため、必要と
しない部分(絶縁層部分)にはみでた場合、焼成により
絶縁層部分には十分に接着する強度がなく、超音波洗浄
、ブラッシング等の手法により容易に除去できる.その
ため、不必要なメタライズ層部分が存在せず、その点で
も電気的、機械的な特性を損なうことがなく、品質的に
安定し、信頼性を増す。
In addition to the above-mentioned excellent effects, the present invention provides that when metallo-organic paste is applied to an unnecessary part (insulating layer part) due to positional shift, etc., the metallo-organic paste can be sufficiently applied to the insulating layer part by baking. It has no adhesive strength and can be easily removed by methods such as ultrasonic cleaning and brushing. Therefore, unnecessary metallized layer portions are not present, and electrical and mechanical properties are not impaired in this respect, resulting in stable quality and increased reliability.

さらに、本発明の品質、生産性の評価を行ったが、主な
品質不良の一つであるブリードによるショート不良は0
%であり、また表面絶縁抵抗による劣化不良はO%であ
る。しかし、従来法のメッキ法によるメタライズ層の場
合では、それぞれの不良率は15〜60%であり、本発
明が品質、生産性の点で極めて優れているといえる. [実施例2] 実施例1との相違点だけを述べると、Pdメタロオーガ
ニックスペーストをディスベンサで塗布し、次いで、こ
れを酸化雰囲気で350℃〜450℃、10分間脱バイ
ンダー処理をした後、窒素雰囲気または水素雰囲気で7
00℃〜1100℃、10分間熱処理した。このときの
メタライズ層の厚みは約2μ鍋である。
Furthermore, we evaluated the quality and productivity of the present invention, and found that there were no short-circuit defects due to bleeding, which is one of the main quality defects.
%, and deterioration defects due to surface insulation resistance are 0%. However, in the case of metallized layers formed by conventional plating methods, the defect rate for each layer is 15 to 60%, and it can be said that the present invention is extremely superior in terms of quality and productivity. [Example 2] To describe only the differences from Example 1, Pd metalloorganic paste was applied with a dispenser, and then the binder was removed in an oxidizing atmosphere at 350°C to 450°C for 10 minutes. 7 in nitrogen or hydrogen atmosphere
Heat treatment was performed at 00°C to 1100°C for 10 minutes. The thickness of the metallized layer at this time was approximately 2 μm.

ここで、Pdメタロオーガニックスペーストを選んだの
は第1導体のMoと第2導体のCuとの双方に固溶性に
優れ、拡散して固溶体を作り、またメカニカルアンカー
効果を有していて電気的、機械的に安定で、強固な接合
層が得られる。同時に、絶縁層には接着する強度がなく
、実施例1と同様に電気的、機械的な特性を損なうこと
がない。
Here, Pd metallo-organic paste was selected because it has excellent solid solubility in both Mo of the first conductor and Cu of the second conductor, diffuses to form a solid solution, and has a mechanical anchor effect, so it is electrically A bonding layer that is physically and mechanically stable and strong can be obtained. At the same time, the insulating layer does not have adhesive strength, and as in Example 1, the electrical and mechanical properties are not impaired.

こうして得た製品の品質は実施例1と同様優れたもので
ある。
The quality of the product thus obtained is as excellent as in Example 1.

[実施例3] 実施例1の方法で作製した絶縁層となるセラミック生基
板上に、第1導体層となるWまたはMoの高融点金属を
主成分としたメタライズペーストをスクリーン印刷法に
より配線を形成し、次にその上に絶縁層となるアルミナ
を主成分とするセラミック系絶縁ペーストによりスクリ
ーン印刷法により印刷層を重ね合わせて形成する。次に
、これを水素等の還元雰囲気、1400℃〜1700℃
で焼成して、高融点金属を主成分とする第1導体層と絶
縁層が一体化してコファイヤード多層基板とする。
[Example 3] On the ceramic green substrate which will become the insulating layer produced by the method of Example 1, a metallized paste mainly composed of a high melting point metal such as W or Mo, which will become the first conductor layer, is printed using a screen printing method. Then, a printed layer is formed thereon by screen printing using a ceramic insulating paste containing alumina as a main component to form an insulating layer. Next, this is heated in a reducing atmosphere such as hydrogen at 1400°C to 1700°C.
The first conductor layer containing a high melting point metal as a main component and the insulating layer are integrated to form a cofired multilayer substrate.

その他の条件は実施例1で述べた方法で行い、また、結
果も同様に優れたものである。
The other conditions were as described in Example 1, and the results were similarly excellent.

以上のように、本発明のメタライズ層は、メタロオーガ
ニックスペーストのスクリーン印刷法、ディスベンサー
等の常法で塗付し、焼成して形成できる。メッキ法のよ
うに温度、P}l等の条件を調整する必要もなく、また
メッキ液の管理は不要等の利点があり、その点でも生産
性は有利である。
As described above, the metallized layer of the present invention can be formed by applying a metallo-organic paste by a conventional method such as screen printing or using a dispenser, and then baking it. Unlike the plating method, there is no need to adjust conditions such as temperature and P}l, and there is no need to manage the plating solution, and productivity is advantageous in this respect as well.

なお、その他上記のptおよびPdを含めて、N+、C
u, Au, Rh.Ru.Re.CoおよびIrの1
種または2種以上の成分からなるメタロオーガニックス
ペーストによるメタライズ層においても上述したと同様
のよい結果を得た。
In addition, including the above pt and Pd, N+, C
u, Au, Rh. Ru. Re. 1 of Co and Ir
Good results similar to those described above were obtained in a metallized layer made of a metallo-organic paste consisting of seeds or two or more components.

[発明の効果] 以上の説明のように、本発明は生産性が高く、電気的、
機械的な品質に優れ、高信頼性のセラミック多層配線基
板およびその製造方法の提供という工業的に極めて優れ
た効果がある.
[Effects of the Invention] As explained above, the present invention has high productivity, electrical and
The present invention has an extremely excellent industrial effect of providing a ceramic multilayer wiring board with excellent mechanical quality and high reliability, and a method for manufacturing the same.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のセラミック多層配線基板の
断面図である. 第2図は本発明の第1図のO部分拡大図で、構造を詳細
に示した断面図である。 第3図は本発明の実施例1と比較例1の引張強度の初期
値と冷熱サイクル後の変化を示した説明図である。 第4図は本発明の実施例1のW − C u間の電圧一
電流の関係を示す特性図である. 第5図はメッキ法による従来例の課題を説明するための
第1導体層面の断面図である。 1・・・絶縁層、2・・・第1導体層、3・・・メタラ
イズ層、4・・・第2導体層、5・・・コファイヤード
多層基板、6・・・第1導体とメタライズとの固溶体層
、7・・・第2導体とメタライズとの固溶体層、8・・
・穴。
FIG. 1 is a sectional view of a ceramic multilayer wiring board according to an embodiment of the present invention. FIG. 2 is an enlarged view of part O in FIG. 1 of the present invention, and is a sectional view showing the structure in detail. FIG. 3 is an explanatory diagram showing initial values of tensile strength and changes after cooling/heating cycles in Example 1 of the present invention and Comparative Example 1. FIG. 4 is a characteristic diagram showing the voltage-current relationship between W and Cu in Example 1 of the present invention. FIG. 5 is a cross-sectional view of the first conductor layer for explaining the problems of the conventional plating method. DESCRIPTION OF SYMBOLS 1... Insulating layer, 2... First conductor layer, 3... Metallized layer, 4... Second conductor layer, 5... Cofired multilayer board, 6... First conductor. Solid solution layer with metallization, 7...Solid solution layer with second conductor and metallization, 8...
·hole.

Claims (2)

【特許請求の範囲】[Claims] (1)内層に高融点金属を主成分とする第1導体層と、
表面層に銅を主成分とする第2導体層とを備えたセラミ
ック多層配線基板において、第1導体層と第2導体層と
の接続部にPt、Ni、Cu、Au、Rh、Ru、Re
、Co、PdおよびIrのいずれか1種または2種以上
の成分からなるメタロオーガニックスペーストを塗布し
、焼成したメタライズ層を備えたことを特徴とするセラ
ミック多層配線基板。
(1) a first conductor layer whose main component is a high melting point metal as an inner layer;
In a ceramic multilayer wiring board having a second conductor layer mainly composed of copper as a surface layer, Pt, Ni, Cu, Au, Rh, Ru, Re is used at the connection portion between the first conductor layer and the second conductor layer.
1. A ceramic multilayer wiring board comprising a metallized layer coated with a metallo-organic paste made of one or more of Co, Pd, and Ir and fired.
(2)請求項1記載のセラミック多層配線基板の製造方
法であって、前記メタライズ層はPt、Ni、Cu、A
u、Rh、Ru、Re、Co、PdおよびIrのいずれ
か1種または2種以上の成分からなるメタロオーガニッ
クスペーストを塗布、焼成することを特徴とするセラミ
ック多層配線基板の製造方法。
(2) The method for manufacturing a ceramic multilayer wiring board according to claim 1, wherein the metallized layer is made of Pt, Ni, Cu, A
A method for manufacturing a ceramic multilayer wiring board, comprising applying and firing a metallo-organic paste consisting of one or more of u, Rh, Ru, Re, Co, Pd, and Ir.
JP1331791A 1988-12-23 1989-12-21 Ceramic multilayer wiring board and manufacturing method thereof Expired - Fee Related JPH0693545B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1331791A JPH0693545B2 (en) 1988-12-23 1989-12-21 Ceramic multilayer wiring board and manufacturing method thereof
US07/631,853 US5156903A (en) 1989-12-21 1990-12-21 Multilayer ceramic substrate and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32745888 1988-12-23
JP63-327458 1988-12-23
JP1331791A JPH0693545B2 (en) 1988-12-23 1989-12-21 Ceramic multilayer wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03218693A true JPH03218693A (en) 1991-09-26
JPH0693545B2 JPH0693545B2 (en) 1994-11-16

Family

ID=26572510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1331791A Expired - Fee Related JPH0693545B2 (en) 1988-12-23 1989-12-21 Ceramic multilayer wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0693545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660651A1 (en) * 1993-12-27 1995-06-28 Sumitomo Metal Ceramics Inc. Multilayer ceramic circuit substrate, process for producing the same, and electrically conductive material for use in multilayer ceramic circuit substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954859A (en) * 1972-09-27 1974-05-28
JPS5830194A (en) * 1981-08-14 1983-02-22 日本碍子株式会社 Ceramic multilayer circuit board and method of producing same
JPS59171195A (en) * 1983-03-18 1984-09-27 日本碍子株式会社 Method of producing ceramic multilayer circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954859A (en) * 1972-09-27 1974-05-28
JPS5830194A (en) * 1981-08-14 1983-02-22 日本碍子株式会社 Ceramic multilayer circuit board and method of producing same
JPS59171195A (en) * 1983-03-18 1984-09-27 日本碍子株式会社 Method of producing ceramic multilayer circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660651A1 (en) * 1993-12-27 1995-06-28 Sumitomo Metal Ceramics Inc. Multilayer ceramic circuit substrate, process for producing the same, and electrically conductive material for use in multilayer ceramic circuit substrate

Also Published As

Publication number Publication date
JPH0693545B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
JP3237258B2 (en) Ceramic multilayer wiring board
JPS5852900A (en) Method of producing ceramic multilayer circuit board
JPS6342879B2 (en)
JPH03218693A (en) Ceramic multilayer wiring board
US6471805B1 (en) Method of forming metal contact pads on a metal support substrate
JP2842711B2 (en) Circuit board
JPH08293654A (en) Formation of metal film on ceramic base material and metal-coated ceramic structure
JPH0432297A (en) Multilayer interconnection board and manufacture thereof
JP3170429B2 (en) Wiring board
JP2842707B2 (en) Circuit board
JPH088505A (en) Low temperature fired ceramic circuit board and manufacture thereof
JPH03280491A (en) Circuit board
JP2931910B2 (en) Circuit board
JP2842710B2 (en) Circuit board
JPH04307797A (en) Manufacture of multilayer ceramic circuit board
JPS60198761A (en) Soldering method
JPH1098244A (en) Thick-film circuit board and its manufacture
JP2546929B2 (en) Method for forming conductive layer stack
JPS63186492A (en) Manufacture of circuit board
JPH0348496A (en) Ceramic multilayer interconnection board and manufacture thereof
JPS6263488A (en) Manufacturing thick film substrate
JPH04349690A (en) Circuit board
JPS61101093A (en) Manufacture of thick film circuit board
JPH06120674A (en) Production of circuit board
JPH10190227A (en) Multilayer ceramic wiring board

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees