JPH03215517A - Epoxy resin molding material for sealing electronic part - Google Patents

Epoxy resin molding material for sealing electronic part

Info

Publication number
JPH03215517A
JPH03215517A JP1163690A JP1163690A JPH03215517A JP H03215517 A JPH03215517 A JP H03215517A JP 1163690 A JP1163690 A JP 1163690A JP 1163690 A JP1163690 A JP 1163690A JP H03215517 A JPH03215517 A JP H03215517A
Authority
JP
Japan
Prior art keywords
epoxy resin
organopolysiloxane
molding material
component
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1163690A
Other languages
Japanese (ja)
Other versions
JP2890591B2 (en
Inventor
Hiroyuki Kuritani
弘之 栗谷
Shinsuke Hagiwara
伸介 萩原
Shigeki Ichimura
茂樹 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1163690A priority Critical patent/JP2890591B2/en
Publication of JPH03215517A publication Critical patent/JPH03215517A/en
Application granted granted Critical
Publication of JP2890591B2 publication Critical patent/JP2890591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To prepare the title material excellent in the resistance to heat and thermal shock as well as in the moldability by compounding an epoxy resin with a specific solid particulate silicone polymer. CONSTITUTION:The title material is prepd. by compounding an epoxy resin having at least two phenolic hydroxyl groups in the molecule (A); a compd. having at least two phenolic hydroxyl groups in the molecule (B); a reaction product of compd. B with a siloxane compd. having a group reactive with compd. B (C); and a resin mixture obtd. by dispersing a mixture of an epoxidized organopolysiloxane with an aminated organopolysiloxane as fine particles in a dispersion comprising a part or the whole of compd. B and component C dispersed therein and then reacting the two organopolysiloxanes to harden (D). The obtd. material, when used in sealing an electronic part such as an IC or LSI, gives a molded product which is free from the degradation in appearance and excellent in the resistance to heat and thermal shock.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱衝撃性、耐熱性、成形性に優れた電子部品
封止用エポキシ樹脂成形材料に関するものである. (従来の技術) 従来、コイル、コンデンサ、トランジスタ、ICなどの
電子部品封止用としては、エポキシ樹脂成形材料が広く
多環に用いられている.この理由としては、エポキシ樹
脂が電気特性、耐熱性、機械強度、インサートとの接着
性などの緒特性にバランスが取れているためである, しかし,電子部品のパッケージは.ICに代表されるよ
うに、小形、薄形化の傾向にあり、冷熱ザイクル時にパ
ッケージがクラックするという問題が生じる. エポキシ樹脂成形材料の耐熱衝撃性を改善するものとし
て、エポキシ樹脂系をシリコーン重合体で改質する方法
がある.一般にシリコーン重合体はエポキシ樹脂系に非
相溶であり、エポキシ樹脂中に微粒子で分敗する構造を
形成し、耐熱衝撃性を向上する効果がある.しかし、液
状のシリコーン重合体は非相溶であるために、成形材料
の耐熱衝撃性は向上するものの、成形時にしみ出し、バ
ノ(金型クリアランスからのしみ出し)や成形品外観の
悪化を引きおこすという欠点を有する.また成形時のし
み出しを防止するために、シロキサン化合物をエポキシ
樹脂または硬化剤で予め変成して成形材料番こ使用した
場合、一般にガラス転移温度の低下を生じるといった問
題がある.(発明が解決しようとする課題) 本発明はかかる欠点を解決するために為されたものであ
り、耐熱衝撃性、耐熱性が良好で、かつ成形性にも1優
れた電子部品封止用エポキシ樹脂成形材料を提供しよう
とするものである.(課題を解決するための手段) 本発明者らは上記の問題点を解決するため鋭意検討を重
ねた結果、エポキシ樹脂系に特定の固形微粒子状のシリ
コーン重合体を配合することにより上記の目的を達成し
うろことを見い出し、本発明を完成するに至った. すなわち、本発明の電子部品封止用エポキシ樹脂成形材
料は (Al 1分子中に2個以−1二のエポキシ基を有する
エポキシ樹脂と (I31 1分子中に2個以上のフェノール性水酸基を
有する化合物 とを主な樹脂成分とする電子部品封止用成形材料におい
て、(Blの一部または全部を分散媒とし、これに(B
)と、+131と反応する反応基を持つシロキサン化合
物との反応物(C)を分敗剤として添加した中に、エポ
キシ基含有オルガノポリシロキサンとアミノ基含有オル
ガノポリシロキサンの混合物を微粒子分散させるととも
にオルガノポリシロキサン同士の反応により分散粒子を
固形化したものを、分散媒および分散剤も含め(DJ成
分として配合したことを特徴とする. 本発明において用いられる(Al成分の1分子中に2個
以上のエポキシ基を有するエポキシ樹脂としては、電子
部品封止用エポキシ樹脂成形材料で一般に使用されてい
るものであれば制限はなく、フェノールノボラック型エ
ポキシ樹脂、オルソクレゾールノボラック型エポキシ樹
脂をはじめとするフェノール類とアルデヒド類のノボラ
ツク樹脂をエポキシ化したもの、ビスフェノールA、ビ
スフェノールB、ビスフェノールF、ビスフェノールS
などのジグリシジルエーテル、フタル酸ダイマー酸など
の多塩基酸とエビクロルヒドリンの反応により得られる
グリシジルエステル型エポキシ樹脂、ジアミノジフェニ
ルメタン、イソシアヌル酸などのポリアミンとエビクロ
ルヒドリンの反応により得られるグリシジルアミン型エ
ポキシ樹脂、オレフィン結合を過酢酸などの過酸で酸化
して得らhる線状脂肪族エポキシ樹脂、および脂理族エ
ポキシ樹脂などがあり、これらを適宜何種類でも併用す
ることができる. 本発明番こおいて用いられる(旧成分の1分子中に2個
以上のフェノール性水酸基を有する化合物としては、フ
ェノール、クレゾール,キシレノール、レゾルシン、カ
テコール、ビスフェノールA、ビスフェノールFなどの
フェノール類とホルムアルデヒドとを酸性触媒下で縮合
反応させて得られるノボラック型フェノール樹脂、ビス
フェノールA、ビスフェノールF、ボリバラビニルフェ
ノール樹脂、レゾルシン、カテコール、ハイドロキノン
などの多価フェノールなどがあり、単独または2種類以
上併用してもよい.また、+A+のエポキシ樹脂との当
量比((B)の水酸基数/(A)のエポキシ基数)は、
特に限定はされないが、0.7〜1.3が好ましい. 次に本発明において用いられる(C)成分は、(Blの
フェノール化合物と、(1月と反応する反応基を有する
シロキサン化合物との反応物である.このシロキサン化
合物の反応基としてはフェノール化合物と反応するもの
であればよく、例えばエポキシ基、イソシアネート基、
ビニル基、アルコキシ基、シラノール基などがあり、単
独あるいは2lI類以上あってもよく、その量はシロキ
サン化合物の分子中に1個以上あればよい.また、シロ
キサン化合物の骨格については特に限定するものではな
く、ポリジメヂルシロキサン、ポリメチルフェニルシロ
キサン、ポリジフェニルシロキづンあるいはα−メチル
スチレン、ポリエーテルなどの改質基で変成したオルガ
ノポリシロキサンなどを単独あるいは2種類以上併用し
てもよい.ここで、(C)成分中のシロキサン化合物の
配合比は特に限定するものではなく、TC)成分の製造
中にゲル化したり分離しない範囲であればよい.また、
(Cl成分の製造には反応を促進する触媒等を用いるこ
とができる. 本発明において用いられる(Dl成分中のエポキシ基含
有オルガノポリシロキサンおよびアミノ基含有オルガノ
ポリシロキサンは特に限定するものではないが、使用す
るフェノール化合物に対し目視的に相滴しないことが好
ましく、ジメチルシロキサン、メチルフエニルシロキサ
ン、ジフエニルシロキサンなどのホモボリマおよびコボ
リマの分子末端や分子内にエポキシ基またはアミノ基を
導入した反応性の液状オルガノポリシロキサンであって
、これらは一般に市販されているものが使用できる. ここでエポキシ基含有オルガノポリシロキサンとアミノ
基含有オルガノポリシロキサンの使用比率は特に限定す
るものではないが、エポキシ基とアミノ基の活性水素の
モル比が2:l〜l:3の範囲が好ましい.この理由と
しては、エポキシ基の比率が高くなると成形品外観を悪
くし、所期の目的を達成できないことがあり、アミノ基
の比率が高くなると一級または二級のアミノ基が成形材
料中に残(YL,、保存安定性を悪くする可能性がある
.また、エポキシ基およびアミノ基を含有するオルガノ
ポリシロキサンの分子量は特に限定するものではないが
、少なくともどちらか一方の重量平均分子量は1000
以上であることが5耐熱衝撃性の観点から好ましい. か)るオルガノポリシロキサンの混合物は上記のフェノ
ール化合物を分散媒とし(Cl成分を分散剤として微粒
子分散させた後、必要に応じて加熱することによりオル
ガノポリシロキサン同士が反応し微粒子の状態で固化し
た樹脂混合物を得る.オルガノポリシロキサン混合物を
分散させるための樹脂系分散媒としては、フェノール化
合物が適当である.この理由としては、オルガノポリシ
ロキサンのエポキシ基とアミノ基の反応をフェノール化
合物が促進する作用があるため、分散したオルガノポリ
シロキサン混合物を容易に固形化することができる. ここでオルガノポリシロキサン混合物のフエノ−ル化合
物に対する量比はl:2〜1:fO(体m)の範囲であ
る.この理由はl:2以上ではオルガノポリシロキサン
を微粒子分散するのが困難になり、1:10以下では使
用するベース樹脂量が多くなるため製造コスト的に不利
である.また(Cl成分の添加量はIDI成分中のオル
ガノポリシロキサン混合物量に対し0.001 : 1
〜1 : 1(体vi)の範囲である.この理由は0.
001:l以下では(Cl成分の分散安定性の効果が小
さく微粒子化しなかったり粒子同士の凝集を生じて均一
に分散せず、l:1以上では(Cl成分による成形品表
面のしみ出しやマーキング性の低下、あるいは耐熱性を
代表するTgの低下を生じるためである. オルガノポリシロキサン混合物を分散させる方法として
は特に制限はなく、撹拌装置の付いた反応釜、加熱でき
る二−ダ、スタティックミキサ、ホモジナイザなど分散
操作を十分行える装置が用いられる.使用するフェノー
ル化合物が常温で固形の場合は加温して溶融状態で行な
う必要があるが、液状の場合は常温で行なってもよい.
このようにしてフェノール化合物中にオルガノポリシロ
キサン混合物を微粒子分散したあと、常温〜150℃で
30分から10時間反応することによりオルガノポリシ
ロキサン混合物は微粒子状に分散したまま固化する。こ
の反応工程はオルガノポリシロキサン混合物を分散させ
る装置内で行うこともできるが、分散後(D)成分を取
り出して恒温槽などを用いて別途行ってもよい.本発明
において用いられる(Dl成分、すなわちフェノール化
合物(Blの一部または全部に特定の分散剤(C)を添
加した中にオルガノポリシロキサン混合物を微粒子分散
し、その後オルガノポリシロキサン同士の反応により分
散粒子を固形化して得られる樹脂混合物において、オル
ガノポリシロキサン反応物の分散粒子径は100μm以
下が90重量%以−[一であることが必要である。また
その甲均粒径は5 0 lLm以下であることがIIT
ましい.この粒径の制限は、目的とする電子部品を成形
する際の成形性に関係するものである.−・般にIC、
トランジスタなどの電子部品を成形する金型のゲートサ
イズは、狭い部分が0.5+in+前後であり、成形中
にゲートづまりを発生しないためには100μm以下が
90ffi量%以上の粒度分布が必要となる.また、素
子とリードを結ぶ金線が成形時に変形する現象1対して
も、分散成分の粒子径はl0 0 tt m以下が好ま
しい,また、耐熱衝撃性について特に効果を発揮するた
めには平均粒径5 0 gm以下が好ましい. オルガノポリシロキサン反応物の微粒子の硬さは、使用
する二種類のオルガノポリシロキサンの官能基当量およ
びエポキシ基とアミノ基の当量比で任意に設定できるが
、軟かいばと耐パッケージクラック性を向上ずる効果が
ある. この様な軟かい固形微粒子を成形材ネ4中に均一に分散
することで、耐パッケージクラック性に代表される耐熱
衝撃性が格段に向−トし、ガラス転移温度(Tg)の低
下もない優れた特性が得られる。また、オルガノポリシ
ロキサンが固形微粒子で添加されるため、シロキサン化
合物で変成したエポキシ成形材料で問題となりやすい、
成形時のシロキサン化合物のしみ出しによる成形品、金
型の汚れが発生しない特長がある.成形品にしみ出しが
生じると外観が悪くなり、マーキング性も低下する等の
問題となり、金型が汚れる場合は金型のクリニング頻度
も多くしなければならない.特に金型のクリーニングは
多大な労力と時間を要するため、汚れを発生しない成形
材料の使用は生産性の点から大きな利点となる. また,本発明の電子部品封止用エポキシ樹脂成形材料に
は、エポキシflN脂とフェノール性水酸基を有する化
合物の硬化反応を促進する硬化促進剤を配合することが
できる.この硬化促進剤としては,例えば、■、8−ジ
アザービシク口(5,4.0)ウンデセン−7、トリエ
ヂレンジアミン、ベンジルジメチルアミン、t・リエタ
ノールアミン、ジメチルアミノエタノール、トリス(ジ
メチルアミノメチル)フェノールなどの三級アミン類、
2−メチルイミダゾール、2−フエニルイミダゾール、
2−フェニル−4−メチルイミダゾール、2ーヘプタデ
シルイミダゾールなどのイミダゾール類,トリブヂルホ
スフィン、メヂルジフェニルホスフィン、トリフェニル
ホスフィン、ジフェニルホスフィン、フェニルホスフィ
ンなどの有機ボスフィン類、テトラフェニルホスポニウ
ムテトラフェニルボレート、トリフェニルホスフィンテ
トラフェニルボレート、2−エチル−4−メチルイミダ
ゾールテトラフエニルボレ−}・、N−メチルモルホリ
ンテトラフエニルボレートなどのテトラフェニルボロン
塩などがある. また、本発明の電子部品封止用エポキシ樹脂成形材料に
は、無機質充填剤として、溶融シリカ、結晶シリカ,ア
ルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、
炭化珪素、窒化ホウ素、ベリリア、マグネシア、ジノレ
コニア、フ才ノレステライド、ステアタイト、スビネル
、ムライト、チタニアなどの粉体、チタン酸カリウム、
炭化珪素、窒化珪素、アルミナなどの単結晶繊維、ガラ
ス繊維などをIIIE以上配合することができる.無機
質充填剤の配合量としては、特に限定するものではない
が、40〜80容量%が好ましい.また、本発明の電子
部品封止用エポキシ樹脂成形材料には,高級脂肪酸、高
級脂肪酸金属塩、エステル系ワックスなどの離型剤、カ
ーボンブラックなどの着色剤、エポキシシラン、アミノ
シラン,アルキルシラン、ビニルシラン、有機チタネー
ト、アルミニウムアルコレートなどのカップリング剤を
使用することができる。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an epoxy resin molding material for encapsulating electronic components that has excellent thermal shock resistance, heat resistance, and moldability. (Prior Art) Conventionally, polycyclic epoxy resin molding materials have been widely used for encapsulating electronic components such as coils, capacitors, transistors, and ICs. The reason for this is that epoxy resin has well-balanced properties such as electrical properties, heat resistance, mechanical strength, and adhesion to inserts. As typified by ICs, there is a trend toward smaller and thinner packages, which causes the problem of packages cracking during thermal cycles. One way to improve the thermal shock resistance of epoxy resin molding materials is to modify the epoxy resin system with silicone polymers. Generally, silicone polymers are incompatible with epoxy resin systems, forming a structure in which fine particles break down in the epoxy resin, which has the effect of improving thermal shock resistance. However, since liquid silicone polymers are incompatible, although they improve the thermal shock resistance of the molding material, they ooze out during molding, causing problems such as leakage from mold clearances and deterioration of the appearance of molded products. It has the disadvantage of causing Furthermore, when a siloxane compound is modified with an epoxy resin or a curing agent in advance and used as a molding material in order to prevent seepage during molding, there is a problem in that the glass transition temperature generally decreases. (Problems to be Solved by the Invention) The present invention has been made to solve these drawbacks, and is an epoxy resin for encapsulating electronic components that has good thermal shock resistance, heat resistance, and excellent moldability. The aim is to provide resin molding materials. (Means for Solving the Problems) The present inventors have made extensive studies to solve the above problems, and have found that the above objectives can be achieved by blending a specific solid fine particle silicone polymer into an epoxy resin system. We have found the key to achieving this, and have completed the present invention. That is, the epoxy resin molding material for encapsulating electronic components of the present invention contains (Al) an epoxy resin having 2 to 12 epoxy groups in one molecule and (I31) having two or more phenolic hydroxyl groups in one molecule. In a molding material for encapsulating electronic components whose main resin component is (Bl), a part or all of (Bl) is used as a dispersion medium, and (Bl) is used as a dispersion medium,
) and a reaction product (C) with a siloxane compound having a reactive group that reacts with +131 is added as a disintegrating agent, and a mixture of an epoxy group-containing organopolysiloxane and an amino group-containing organopolysiloxane is dispersed in fine particles. Dispersed particles solidified by the reaction between organopolysiloxanes, including a dispersion medium and a dispersant, are blended as a DJ component. The epoxy resins having the above epoxy groups are not limited as long as they are commonly used in epoxy resin molding materials for encapsulating electronic parts, and include phenol novolac type epoxy resins and orthocresol novolac type epoxy resins. Epoxidized novolac resins of phenols and aldehydes, bisphenol A, bisphenol B, bisphenol F, bisphenol S
diglycidyl ethers such as, glycidyl ester type epoxy resins obtained by the reaction of polybasic acids such as phthalic acid dimer acid and shrimp chlorohydrin, glycidyl obtained by the reaction of polyamines such as diaminodiphenylmethane and isocyanuric acid and shrimp chlorohydrin. There are amine type epoxy resins, linear aliphatic epoxy resins obtained by oxidizing olefin bonds with peracids such as peracetic acid, and aliphatic epoxy resins, and any number of these can be used in combination as appropriate. .. The compounds used in the present invention (old components having two or more phenolic hydroxyl groups in one molecule include phenols such as phenol, cresol, xylenol, resorcinol, catechol, bisphenol A, and bisphenol F) and formaldehyde. and polyhydric phenols such as novolac type phenol resins obtained by condensation reaction with and under acidic catalysts, bisphenol A, bisphenol F, borival vinyl phenol resins, resorcinol, catechol, and hydroquinone, which can be used alone or in combination of two or more. In addition, the equivalent ratio of +A+ to the epoxy resin (number of hydroxyl groups in (B)/number of epoxy groups in (A)) is:
Although not particularly limited, 0.7 to 1.3 is preferable. Next, the component (C) used in the present invention is a reaction product of the phenol compound of (Bl) and a siloxane compound having a reactive group that reacts with (1).The reactive group of this siloxane compound is a phenol compound and Anything that reacts may be used, such as epoxy groups, isocyanate groups,
There are vinyl groups, alkoxy groups, silanol groups, etc., and they may be present alone or in groups of 2lI or more, and the amount thereof may be one or more in the molecule of the siloxane compound. Furthermore, the skeleton of the siloxane compound is not particularly limited, and may include polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, or organopolysiloxane modified with a modifying group such as α-methylstyrene or polyether. may be used alone or in combination of two or more. Here, the blending ratio of the siloxane compound in component (C) is not particularly limited, and may be within a range that does not gel or separate during the production of component (TC). Also,
(A catalyst that promotes the reaction can be used in the production of the Cl component. The epoxy group-containing organopolysiloxane and amino group-containing organopolysiloxane used in the present invention are not particularly limited, but It is preferable that no phase droplets are observed visually with respect to the phenol compound used, and the reactivity is such that epoxy groups or amino groups are introduced into the molecular ends or within the molecules of homobolima and cobolima such as dimethylsiloxane, methylphenylsiloxane, and diphenylsiloxane. Generally commercially available liquid organopolysiloxanes can be used.The ratio of the epoxy group-containing organopolysiloxane to the amino group-containing organopolysiloxane is not particularly limited; The molar ratio of active hydrogen to amino groups is preferably in the range of 2:1 to 1:3.The reason for this is that when the ratio of epoxy groups becomes high, the appearance of the molded product deteriorates and the intended purpose cannot be achieved. However, if the ratio of amino groups increases, primary or secondary amino groups may remain in the molding material (YL), which may impair storage stability. The molecular weight of at least one of them is not particularly limited, but the weight average molecular weight of at least one of them is 1000.
It is preferable that the above is 5 from the viewpoint of thermal shock resistance. The mixture of organopolysiloxanes is prepared by using the above phenol compound as a dispersion medium (Cl component as a dispersing agent and dispersing the organopolysiloxanes into fine particles, and then heating as necessary to cause the organopolysiloxanes to react with each other and solidify in the form of fine particles. A phenol compound is suitable as a resin dispersion medium for dispersing the organopolysiloxane mixture.The reason for this is that the phenol compound promotes the reaction between the epoxy groups and amino groups of the organopolysiloxane. Therefore, the dispersed organopolysiloxane mixture can be easily solidified.Here, the ratio of the organopolysiloxane mixture to the phenol compound is in the range of 1:2 to 1:fO (body m). The reason for this is that when l:2 or more, it becomes difficult to disperse the organopolysiloxane into fine particles, and when l:10 or less, the amount of base resin used increases, which is disadvantageous in terms of production cost. The amount added is 0.001:1 based on the amount of organopolysiloxane mixture in the IDI component.
~1:1 (body vi). The reason for this is 0.
If it is less than 001:l (the dispersion stability effect of the Cl component is small and the particles will not form fine particles or the particles will agglomerate and will not be dispersed uniformly), if it is more than l:1 (the Cl component will cause oozing or marking on the surface of the molded product). There is no particular restriction on the method for dispersing the organopolysiloxane mixture, and methods such as a reaction pot equipped with a stirring device, a heating secondary, or a static mixer may be used. , a homogenizer, or other equipment that can perform sufficient dispersion operations is used.If the phenol compound to be used is solid at room temperature, it is necessary to heat it to melt it, but if it is liquid, it may be carried out at room temperature.
After the organopolysiloxane mixture is dispersed in fine particles in the phenol compound in this manner, the mixture is reacted at room temperature to 150° C. for 30 minutes to 10 hours, thereby solidifying the organopolysiloxane mixture while remaining dispersed in the fine particles. This reaction step can be carried out in an apparatus for dispersing the organopolysiloxane mixture, but it may also be carried out separately by taking out component (D) after dispersion and using a constant temperature bath or the like. The organopolysiloxane mixture is dispersed in fine particles in a part or all of the Dl component used in the present invention, i.e., a phenol compound (Bl) with a specific dispersant (C) added, and then dispersed by reaction between the organopolysiloxanes. In the resin mixture obtained by solidifying the particles, it is necessary that the dispersed particle size of the organopolysiloxane reactant is 100 μm or less for 90% by weight or more, and the average particle size is 50 lLm or less. Being an IIT
Delicious. This restriction on particle size is related to moldability when molding the intended electronic component. -・Generally IC,
The gate size of the mold for molding electronic components such as transistors is around 0.5+in+ at the narrow part, and in order to prevent gate clogging during molding, a particle size distribution of 100 μm or less is required to be 90ffi% or more. In addition, to counter the phenomenon that the gold wire connecting the element and the lead is deformed during molding, it is preferable that the particle size of the dispersed component is 10 0 tt m or less. The diameter is preferably 50 gm or less. The hardness of the fine particles of the organopolysiloxane reactant can be set arbitrarily by the functional group equivalents of the two types of organopolysiloxanes used and the equivalent ratio of epoxy groups to amino groups, but it is possible to set the hardness of the fine particles of the organopolysiloxane reactant to improve the softness and package crack resistance. It has a cheating effect. By uniformly dispersing such soft solid particles in the molding material 4, thermal shock resistance, typified by package crack resistance, is significantly improved, and there is no drop in glass transition temperature (Tg). Excellent properties can be obtained. In addition, since organopolysiloxane is added in the form of solid fine particles, it is likely to cause problems with epoxy molding materials modified with siloxane compounds.
It has the advantage of not staining molded products or molds due to siloxane compounds exuding during molding. If seepage occurs in the molded product, it will cause problems such as poor appearance and poor marking performance, and if the mold becomes dirty, the mold must be cleaned more frequently. In particular, cleaning molds requires a great deal of effort and time, so using molding materials that do not generate dirt is a major advantage in terms of productivity. Furthermore, the epoxy resin molding material for encapsulating electronic components of the present invention may contain a curing accelerator that accelerates the curing reaction between the epoxy flN resin and the compound having a phenolic hydroxyl group. Examples of the curing accelerator include ■,8-diazabisic(5,4.0)undecene-7, triethylenediamine, benzyldimethylamine, t-liethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl ) Tertiary amines such as phenol,
2-methylimidazole, 2-phenylimidazole,
Imidazoles such as 2-phenyl-4-methylimidazole and 2-heptadecyl imidazole, organic bosphines such as tribudylphosphine, medyldiphenylphosphine, triphenylphosphine, diphenylphosphine, and phenylphosphine, tetraphenylphosponium tetraphenyl Examples include tetraphenylboron salts such as borate, triphenylphosphine tetraphenylborate, 2-ethyl-4-methylimidazoletetraphenylborate, and N-methylmorpholinetetraphenylborate. The epoxy resin molding material for encapsulating electronic components of the present invention also includes fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate,
Powders of silicon carbide, boron nitride, beryllia, magnesia, dinoreconia, phenolesteride, steatite, subinel, mullite, titania, potassium titanate,
Silicon carbide, silicon nitride, single crystal fibers such as alumina, glass fibers, etc. can be blended in IIIE or higher. The amount of the inorganic filler blended is not particularly limited, but is preferably 40 to 80% by volume. In addition, the epoxy resin molding material for encapsulating electronic components of the present invention includes higher fatty acids, higher fatty acid metal salts, mold release agents such as ester waxes, colorants such as carbon black, epoxy silanes, aminosilanes, alkylsilanes, and vinylsilanes. , organic titanates, aluminum alcoholates, and the like can be used.

以−Lのような原材料を用いて成形材料を作製する一般
的な方法とし,では、所定の配合量の原材料混合物をミ
キサー等によって充分混合した後、熱ロール,押出機等
によって混練し、冷却,粉砕することによって、成形材
料を{1ることができる.本発明で得られる成形材料を
用いて電子部品を封止する方法としては、低圧トランス
ファ成形法が最も一般的であるが、インジェクション成
形、圧縮成形、注型などの方法によっても可能である.
本発明に係る成形材料は成形性にすぐれており、また高
い゛rgを維持しながら、がっ可撓竹にずぐれるととも
に成形材料の胃造上の利点も大きい.すなわち、IOO
gm以下の軟かいゴム状の固形微粒子を安価に成形材料
中に添加できることが特長である.一般に100Izm
以下のゴム状物質はバルクを粉砕して製造することは困
難であり,コストも高くなる.また、乳化重合、懸濁重
合などでオルガノポリシロキサン微粒子を得る方法もあ
るが、分散媒の除去と同時に界面活性剤の除去も必要に
なる.後者の方法と比較した場合、本発明の製造法では
分散媒および分散剤として成形材料に使用するベース樹
脂を使用するため、オルガノポリシロキ→J゛ンを分散
、硬化後に分散媒および分散剤と共に配合することが可
能であり、コストの点からは非常に有利になる.さらに
,オルガノポリシロキサン微粒子を単独で補集せずに分
散媒中に分散させた状態で扱えるために、軟かい微粒子
同士が凝集する心配もない. 以上の点から、本発明は製造上の観点からも優れた特長
を示す. (作用) 本発明により耐熱衝撃性、成形性に優れたエポキシ樹脂
成形材料が得られる理由は、(Alのエポキシ樹脂およ
び(Illのフェノール化合物を主とした樹脂系に、(
Illの一部または全部を分散媒とし(f3)とシロキ
サン化合物との反応物TC)を分散剤として、分散媒に
相溶しないオルガノポリシロキザン混合物を微粒子分散
し、その後オルガノポリシロキザンを自硬化して得らハ
る分敗媒および分散剤を含めた樹脂成分(DJを可撓剤
として使用したことによる.すなわち、(Dl成分中の
オルガノポリシロキザン反応物は粒径l00μm以下の
固形ゴム状物質であり、(Cl成分の分散安定効果によ
りその粒子径が非常に小さくかつ均一になり、これを成
形材料中に均一分散するので優れた耐熱衝撃性が得られ
る.また、ベース樹脂とオルガノポリシロキサンが相溶
せず、相分離構造を形成するため、ベース樹脂本来のガ
ラス転移温度を低下せず、したがって耐熱性も良好であ
る.さらに、(Dl成分中のオルガノポリシロキサン反
応物は成形材料中に固形で分敗するため、成形時にしみ
出す心配もなく、成形品及び金型を汚損することもない
. 以上の作用により耐熱衝撃性、耐熱性、成形性に優れた
組成が得られると推察される.(実施例) 以下実施例により本発明を説明するが、本発明の範囲は
これらの実施例に限定されるものではない. (C)成分の製造 軟化点83℃のフェノールノボラック樹脂120gを溶
融させた中に、エポキシ当量9.0 0 0のエポキシ
ボリエーテル変成シリコーンオイルSF8421(トー
レ・シリコーン株式会社製商品名)40gを300ml
フラスコ中で撹拌しながら添加しトリフェニルホスフィ
ン2gを触媒として加え、150℃で3時間反応させ得
られたものを分散剤[1]とした.分散剤[I)は透明
淡黄色の固形樹脂であった. また、軟化点83℃のフェノールノボラック樹脂1 2
0gを溶融させた中に、メトキシ当量l57のメトキシ
基含有シリコーンオイルKR2 1 3(信越化学工業
株式会社製商品名)40gを30Owlフラスコ中で撹
拌しながら添加しp−}ルエンスルホン酸0.3gを触
媒として加え、150℃で3時間反応させ得られたもの
を分散剤[11)とした.分散′剤[11]は透明淡黄
色の固形樹脂であった. (DJ成分の製造 構造式 で示される粘度60cs (25℃)、エポキシ当p 
1.8 0 017)シ’) :I−ンオイルX−22
−163B(同上)45gと構造式 で示される粘度3.500cs(25℃).アミン当量
2.0 0 0のシリコーンオイルKF861 (同上
)25gを混合し、温度150℃で溶融している水酸基
当@ 1 0 6、軟化点83℃のフェノールノボラッ
ク樹脂210gと分散剤[IJ21gの混合物中に撹拌
しながら添加し,1時間反応させて得られたものを可撓
剤[I)とした.可撓剤[11をアセトンに溶解しフェ
ノール樹脂を除去することによって得られたオルガノポ
リシロキサン反応物はほぼ球形の固形粉末として得られ
、平均粒径は約lOμmであり100szm以上の粒子
は存在しなかった. また構造式 で示される粘度2.000cs (150℃)、エポキ
シ当量350のシリコーンオイルKFIOI(同上)1
2gと構造式 で示される粘度3.5 0 0 c’s(25℃) アミン 当13.800(7)シI7=1−ンオイ/l,X−2
2−3801C(同」二》58gを混合し、・分散剤【
I11を使用し、同様な方法で合成したものを可撓剤[
11]とした.可撓剤[II] も可撓剤[I] と同
様にシJコーン微粒子を抽出したところ、ほぼ球形の固
形微粒子が{lられ、平均粒径は15μmで100I▲
m以上の粒子は存在しなかった. エポキシ樹脂成形材料の製造 エポキシ当量220、軟化点78℃のクレゾールノボラ
ック型エポキシ樹脂、エポキシ当量375,軟化点80
℃、臭素含量48重量%の臭素化ビスフェノールA型エ
ポキシ樹脂、水酸基当1106,軟化点83℃のフェノ
ールノボラック樹脂,1.8−ジアザービシク口(5.
4.0)ウンデセン−7,カルナバワックス,三酸化ア
ンヂモン、カーボンブラック,カップリング剤としてγ
−グリシドキシブ口ビルトリメトキシシラン,石英ガラ
ス粉右よび可撓剤[I]〜[111を表1に示す重量比
で配合し、混線温度80〜90℃,混線時[110分の
条件でロール?Ii線を行い,実施例1,2および比較
例1〜3の成形材料を作製した.表2に実施例および比
較例で得られた成形材料の特性を、表3に特性評価法の
詳細を示す.この結果、実施例l、2で得られた成形材
料は比較例2で得られた可撓剤無添加の成形材料と比べ
、耐熱衝撃性が格段に向上し、成形品外観も良好であり
、耐熱性の指標であるガラス転移淵度の低下もなく良好
であった.特に実施例lは、可撓剤[11を製造する際
に分散剤を添加しなかった比較例3で得られた成形材料
に比べ耐熱衝撃性の点で優れており、分散剤を添加した
効果があった.また比較例lのシリコーンオイルを可撓
剤に用いた成形材料は、耐熱衝撃性は良好であるが,成
形品外観に曇りが生じ実用上問題がある.以下余白 表 ■ 本本 1.8−ジアザービシク口(5,4.01ウンデセン−
7表 2 (本発明の効果) 本発明によって得られる電子部品封止用エポキシ樹脂成
形材料を用いてIC.LSIなどの電子部品を封止すれ
ば、実施例で示したように、非相溶性の可撓剤を使用し
た際に発生しゃすい成形品外観の劣化など成形性の問題
点もなく、耐熱性、耐熱衝撃性の優れた製品を得ること
ができ、その工業的価値は大である.
This is a general method for producing molding materials using raw materials such as those shown in L. After thoroughly mixing a raw material mixture with a predetermined amount using a mixer, etc., kneading with a hot roll, extruder, etc., and cooling. , By crushing, the molding material can be made into {1. The most common method for sealing electronic components using the molding material obtained in the present invention is low-pressure transfer molding, but methods such as injection molding, compression molding, and casting are also possible.
The molding material according to the present invention has excellent moldability, and while maintaining a high rg, it is superior to flexible bamboo, and the molding material has great advantages in terms of gastric construction. That is, IOO
A feature of this method is that soft, rubber-like solid particles of less than gm can be added to molding materials at low cost. Generally 100Izm
It is difficult to produce the following rubbery substances by crushing bulk materials, and the cost is also high. There are also methods to obtain organopolysiloxane particles by emulsion polymerization, suspension polymerization, etc., but this requires the removal of the surfactant at the same time as the dispersion medium. Compared to the latter method, the production method of the present invention uses the base resin used in the molding material as the dispersion medium and dispersant, so the organopolysiloxane is dispersed and cured together with the dispersion medium and dispersant. It is possible to mix them together, which is very advantageous from a cost standpoint. Furthermore, since the organopolysiloxane particles can be handled as dispersed in a dispersion medium rather than being collected individually, there is no need to worry about soft particles agglomerating together. From the above points, the present invention exhibits excellent features from a manufacturing standpoint as well. (Function) The reason why an epoxy resin molding material with excellent thermal shock resistance and moldability can be obtained by the present invention is that (
Using part or all of Ill as a dispersion medium and a reaction product (TC) of (f3) and a siloxane compound as a dispersant, an organopolysiloxane mixture that is incompatible with the dispersion medium is dispersed into fine particles, and then the organopolysiloxane is self-dispersed. This is due to the use of DJ as a flexibilizer.In other words, the organopolysiloxane reactant in the Dl component contains solid particles with a particle size of 100 μm or less. It is a rubber-like substance (due to the dispersion stabilizing effect of the Cl component, its particle size becomes extremely small and uniform, and as it is uniformly dispersed in the molding material, excellent thermal shock resistance is obtained. Since the organopolysiloxanes are not compatible and form a phase-separated structure, the original glass transition temperature of the base resin is not lowered, and therefore the heat resistance is also good. Because it separates into the molding material as a solid, there is no need to worry about it seeping out during molding, and it will not stain the molded product or mold.The above effects provide a composition with excellent thermal shock resistance, heat resistance, and moldability. (Example) The present invention will be explained below with reference to Examples, but the scope of the present invention is not limited to these Examples.Production of component (C) Phenol with a softening point of 83°C 300 ml of 40 g of epoxy polyether modified silicone oil SF8421 (trade name manufactured by Torre Silicone Co., Ltd.) with an epoxy equivalent of 9.000 was melted into 120 g of novolak resin.
The mixture was added while stirring in a flask, 2 g of triphenylphosphine was added as a catalyst, and the resultant mixture was reacted at 150°C for 3 hours, which was used as a dispersant [1]. Dispersant [I] was a transparent pale yellow solid resin. In addition, phenol novolac resin 1 2 with a softening point of 83°C
40 g of methoxy group-containing silicone oil KR2 1 3 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) with a methoxy equivalent of 157 was added to the melted 0.0 g of p-}luenesulfonic acid while stirring in a 30 Owl flask. was added as a catalyst and reacted at 150°C for 3 hours, and the resulting product was used as a dispersant [11]. The dispersing agent [11] was a transparent pale yellow solid resin. (Viscosity 60cs (25℃) shown in the manufacturing structural formula of DJ component, epoxy p
1.8 0 017) Shin'): I-shin oil X-22
-163B (same as above) 45g and viscosity 3.500cs (25°C) shown by the structural formula. A mixture of 25 g of silicone oil KF861 (same as above) with an amine equivalent of 2.0 0 0 and 210 g of a phenol novolak resin with a hydroxyl group of 1 0 6 and a softening point of 83° C. and a dispersant [IJ 21 g] melted at a temperature of 150°C. was added to the solution while stirring and allowed to react for 1 hour, and the resulting material was used as the flexibilizer [I]. The organopolysiloxane reaction product obtained by dissolving the flexibilizer [11] in acetone and removing the phenolic resin was obtained as a nearly spherical solid powder, with an average particle size of about 10 μm and no particles larger than 100 szm. There wasn't. Also, silicone oil KFIOI (same as above) with a viscosity of 2.000 cs (150°C) and an epoxy equivalent of 350 as shown by the structural formula
2 g and the viscosity shown by the structural formula: 3.5 0 0 c's (25°C) 13.800 (7) amine/I7 = 1-N/l, X-2
2-3801C (same) 2》58g was mixed, ・Dispersant [
A flexible agent [
11]. Flexible agent [II] When silicone fine particles were extracted in the same manner as flexible agent [I], almost spherical solid fine particles were obtained, and the average particle size was 15 μm and 100 μm.
There were no particles larger than m. Production of epoxy resin molding material Cresol novolak type epoxy resin with epoxy equivalent of 220 and softening point of 78°C, epoxy equivalent of 375 and softening point of 80
℃, brominated bisphenol A type epoxy resin with bromine content of 48% by weight, phenol novolac resin with hydroxyl group of 1106, softening point of 83℃, 1.8-diazabisic acid (5.
4.0) Undecene-7, carnauba wax, andimony trioxide, carbon black, γ as a coupling agent
- Glycidoxib-trimethoxysilane, quartz glass powder, and flexibilizers [I] to [111] were blended in the weight ratio shown in Table 1, and the cross-wire temperature was 80 to 90°C, and the cross-wire was rolled under the conditions of 110 minutes. Molding materials of Examples 1 and 2 and Comparative Examples 1 to 3 were prepared by Ii ray. Table 2 shows the properties of the molding materials obtained in the Examples and Comparative Examples, and Table 3 shows the details of the property evaluation method. As a result, the thermal shock resistance of the molding materials obtained in Examples 1 and 2 was significantly improved compared to the molding material without the addition of a flexibilizer obtained in Comparative Example 2, and the appearance of the molded products was also good. The glass transition depth, which is an index of heat resistance, did not decrease and was good. In particular, Example 1 was superior in thermal shock resistance to the molding material obtained in Comparative Example 3, in which no dispersant was added when producing the flexible agent [11], and the effect of adding a dispersant was was there. The molding material of Comparative Example 1 using silicone oil as a flexibilizer has good thermal shock resistance, but the appearance of the molded product becomes cloudy, which poses a practical problem. The following margin table
7 Table 2 (Effects of the present invention) IC. If electronic components such as LSIs are sealed, as shown in the examples, there will be no moldability problems such as deterioration in the appearance of the molded product that can occur when incompatible flexibilizers are used, and the heat resistance will be improved. , it is possible to obtain a product with excellent thermal shock resistance, and its industrial value is great.

Claims (1)

【特許請求の範囲】 1、(A)1分子中に2個以上のエポキシ基を有するエ
ポキシ樹脂と (B)l分子中に2個以上のフェノール性水酸基を有す
る化合物と (C)上記(B)と、(B)と反応する反応基を持つシ
ロキサン化合物との反応物と (D)上記(B)の一部または全部を分散媒とし上記(
C)成分を分散剤として添加したものの中に、エポキシ
基含有オルガノポリシロ キサンとアミノ基含有オルガノポリシロキ サンの混合物を微粒子分散させるとともに オルガノポリシロキサン同士を反応硬化さ せて得られる樹脂混合物 を必須成分としてなることを特徴とする電子部品封止用
エポキシ樹脂成形材料。 2、(D)成分中のオルガノポリシロキサン反応物にお
いて粒子径100μm以下が90%以上である請求項1
に記載の電子部品封止用エポキシ樹脂成形材料。 3、(C)成分中のシロキサン化合物と(D)成分中の
オルガノポリシロキサン混合物の量比が 0.001:1〜1:1(体積)であり、かつ(D)成
分中のフェノール化合物とオルガノポリシロキサン混合
物の量比が2:1〜10:1(体積)である請求項1に
記載の電子部品封止用エポキシ樹脂成形材料。
[Claims] 1. (A) an epoxy resin having two or more epoxy groups in one molecule, (B) a compound having two or more phenolic hydroxyl groups in one molecule, and (C) the above (B) ), a reaction product with a siloxane compound having a reactive group that reacts with (B), and (D) a part or all of the above (B) as a dispersion medium, and the above (
A resin mixture obtained by dispersing fine particles of a mixture of an epoxy group-containing organopolysiloxane and an amino group-containing organopolysiloxane and curing the organopolysiloxanes by reaction with each other is used as an essential component. An epoxy resin molding material for encapsulating electronic components. 2. Claim 1, wherein 90% or more of the organopolysiloxane reactant in component (D) has a particle diameter of 100 μm or less.
An epoxy resin molding material for encapsulating electronic components as described in . 3. The quantitative ratio of the siloxane compound in component (C) to the organopolysiloxane mixture in component (D) is 0.001:1 to 1:1 (by volume), and the phenol compound in component (D) The epoxy resin molding material for encapsulating electronic components according to claim 1, wherein the organopolysiloxane mixture has a quantitative ratio of 2:1 to 10:1 (by volume).
JP1163690A 1990-01-19 1990-01-19 Epoxy resin molding compound for electronic parts encapsulation Expired - Lifetime JP2890591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1163690A JP2890591B2 (en) 1990-01-19 1990-01-19 Epoxy resin molding compound for electronic parts encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1163690A JP2890591B2 (en) 1990-01-19 1990-01-19 Epoxy resin molding compound for electronic parts encapsulation

Publications (2)

Publication Number Publication Date
JPH03215517A true JPH03215517A (en) 1991-09-20
JP2890591B2 JP2890591B2 (en) 1999-05-17

Family

ID=11783434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163690A Expired - Lifetime JP2890591B2 (en) 1990-01-19 1990-01-19 Epoxy resin molding compound for electronic parts encapsulation

Country Status (1)

Country Link
JP (1) JP2890591B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319005A (en) * 1992-01-27 1994-06-07 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing of electronic component
JPH11100487A (en) * 1997-09-25 1999-04-13 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319005A (en) * 1992-01-27 1994-06-07 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing of electronic component
JPH11100487A (en) * 1997-09-25 1999-04-13 Matsushita Electric Works Ltd Epoxy resin composition and semiconductor device

Also Published As

Publication number Publication date
JP2890591B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
EP0707042B1 (en) Epoxy resin molding material for sealing electronic parts and sealed semiconductor device using the same
EP0553371B1 (en) Epoxy resin molding material for sealing of electronic component
JP2001234032A (en) Epoxy resin composition for optical semiconductor sealing use
JP3509236B2 (en) Epoxy resin composition and semiconductor encapsulating material
JPH03215517A (en) Epoxy resin molding material for sealing electronic part
JPS62290720A (en) Epoxy resin molding material for sealing electronic component
JPH0315655B2 (en)
JPS63241021A (en) Epoxy resin molding material for sealing electronic component
JPH03197528A (en) Epoxy resin molding material for sealing electronic component
JPS63241020A (en) Epoxy resin molding material for sealing electronic component
JPS62174222A (en) Epoxy resin molding material for sealing electronic component
JPH05175369A (en) Epoxy resin molding material for sealing electronic component
JP2710921B2 (en) Semiconductor device
JP2836274B2 (en) Epoxy resin composition
JPH02166116A (en) Epoxy resin molding material for sealing electronic component
JPS6345843A (en) Semiconductor device
JPH08176269A (en) Epoxy resin composition for sealing
JPH03210325A (en) Semiconductor sealing epoxy resin molding material
JP2680351B2 (en) Resin composition for sealing
JPS62128162A (en) Semiconductor device
JPS63178126A (en) Epoxy resin molding material for sealing electronic component
JPS6126654A (en) Sealing epoxy resin molding material
JPS62210654A (en) Semiconductor device
JP2872701B2 (en) Method for producing resin for semiconductor encapsulation
JPH0768328B2 (en) Curable epoxy resin composition and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

EXPY Cancellation because of completion of term