JPH03210325A - Semiconductor sealing epoxy resin molding material - Google Patents

Semiconductor sealing epoxy resin molding material

Info

Publication number
JPH03210325A
JPH03210325A JP554990A JP554990A JPH03210325A JP H03210325 A JPH03210325 A JP H03210325A JP 554990 A JP554990 A JP 554990A JP 554990 A JP554990 A JP 554990A JP H03210325 A JPH03210325 A JP H03210325A
Authority
JP
Japan
Prior art keywords
component
epoxy resin
molding material
groups
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP554990A
Other languages
Japanese (ja)
Inventor
Fumio Furusawa
文夫 古沢
Shinsuke Hagiwara
伸介 萩原
Shigeki Ichimura
茂樹 市村
Keiichi Kinashi
木梨 恵市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP554990A priority Critical patent/JPH03210325A/en
Publication of JPH03210325A publication Critical patent/JPH03210325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain the title material excellent in moldability and humidity resistance by mixing an epoxy resin with a phenolic compound, a reaction product of one of the above components with a reactive silicone oil, a solid silicone polymer, a specified silane coupling agent and an inorganic filler. CONSTITUTION:The title material is obtained by mixing an epoxy resin (A) having at least two epoxy groups in the molecule with a compound (B) having at least two phenolic hydroxyl groups in the molecule, a reaction product (C) of component A or component B with a reactive silicone oil, a solid silicone polymer (D) of a max. particle diameter of 150mum or below and a hardness of 80 or below, a ureido-containing silane coupling agent (E) and an inorganic filler (F) as essential components. When a semiconductor component is sealed with this molding material, a product of improved humidity resistance and high reliability can be obtained in good moldability without staining the mold.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、成形性及び耐湿性に優れた半導体封止用エポ
キシ樹脂成形材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an epoxy resin molding material for semiconductor encapsulation that has excellent moldability and moisture resistance.

〔従来技術〕[Prior art]

エポキシ樹脂は、他の熱硬化性樹脂に比べて、電気特性
、機械特性、耐熱性、接着性、耐水性等に優れているた
め各種成形材料として広く利用されている。特に最近に
おいては半導体封止用の成形材料として注目されている
Epoxy resins are widely used as various molding materials because they have superior electrical properties, mechanical properties, heat resistance, adhesive properties, water resistance, etc. compared to other thermosetting resins. Particularly recently, it has attracted attention as a molding material for semiconductor encapsulation.

近年、半導体分野においては、半導体素子の高集積化が
年々進んでおり、それに伴い配線の微細化及び素子サイ
ズの大形化の傾向が顕著となっている。一方、半導体素
子を外部環境から保護するパッケージは、プリント基板
への高密度実装の観点から小形凄形化の傾向を強めてい
る。このような大型素子を小形薄形パッケージに封入し
た樹脂封止型半導体装置では、アルミ配線変形、パッシ
ベーションクラック、パッケージクラックなどの故障が
生じやすい、この解決策として封止用成形材料の低応力
化が強く求められてきた。
In recent years, in the semiconductor field, the integration of semiconductor elements has been increasing year by year, and with this, there has been a noticeable trend towards finer wiring and larger element sizes. On the other hand, packages that protect semiconductor elements from the external environment are increasingly becoming smaller and larger in size from the viewpoint of high-density mounting on printed circuit boards. Resin-sealed semiconductor devices, in which such large elements are encapsulated in small, thin packages, are prone to failures such as aluminum wiring deformation, passivation cracks, and package cracks.One solution to this problem is to reduce the stress of the encapsulation molding material. has been strongly sought after.

封止用成形材料の低応力化については、各種のゴム成分
を添加混合し低弾性率化する方法が検討されてきた。そ
の結果、現在では、シリコーンオイルを添加したエポキ
シ樹脂成形材料が広く使用されるようになっている。シ
リコーンオイルは、成形材料のベース樹脂であるエポキ
シ樹脂及び硬化剤と相溶しないため、ベース樹脂中に微
粒子分散(海鳥構造)し、耐熱性を維持したまま低弾性
率化が図れる。
In order to reduce the stress of the molding material for sealing, studies have been conducted on methods of adding and mixing various rubber components to lower the modulus of elasticity. As a result, epoxy resin molding materials to which silicone oil is added are now widely used. Since silicone oil is incompatible with the epoxy resin and curing agent that are the base resin of the molding material, fine particles are dispersed in the base resin (seabird structure), making it possible to lower the elastic modulus while maintaining heat resistance.

しかし、上記のようなシリコーンを単純ブレンドした成
形材料では、成形時にシリコーンとベース樹脂が相分離
し、シリコーンがブリードしやすいため、金型汚れ等の
問題を起しやすい、この問題の解決策としては、筬に、
シリコーンとベース樹脂を予備反応させて用いる方法が
提案されておす、良好な結果が得られている(例えば、
特公昭62−36050号公報、特公昭63−3280
7号公報)。
However, with the above-mentioned molding materials that are simply blended with silicone, the silicone and base resin phase separate during molding, and the silicone tends to bleed, which tends to cause mold stains and other problems.As a solution to this problem, On the reed,
A method of pre-reacting silicone and base resin has been proposed, and good results have been obtained (for example,
Special Publication No. 62-36050, Special Publication No. 63-3280
Publication No. 7).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように、シリコーンを予めベース樹脂と予備反応
させ、シリコーンをベース樹脂に固定化する方法を採用
すれば、金型汚れなどの成形性が改良されるものの、耐
湿性が十分でないという問題点がある6本発明は、成形
性を損なうことなく、itm性を向上させた半導体封止
用エポキシ樹脂成形材料を提供するものである。
As mentioned above, if a method is adopted in which silicone is pre-reacted with the base resin and silicone is fixed to the base resin, moldability such as mold stains can be improved, but the problem is that moisture resistance is insufficient. The present invention provides an epoxy resin molding material for semiconductor encapsulation that has improved ITM properties without impairing moldability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記の課題を解決するために鋭意検討を
重ねた結果、次に示す成形材料が有効なことを見出し、
本発明を完成させるに至った。
As a result of extensive studies to solve the above problems, the present inventors discovered that the following molding materials are effective.
The present invention has now been completed.

すなわち本発明は、 (A)1分子中に2(111以上のエポキシ基を有する
エポキシ樹脂 (B)1分子中に2i11以上のフェノール性水酸基を
有する化合物 (C)上記(A)成分又はCB)成分と反応性シリコー
ンオイルとの反応物、 (D)8大粒径150μm以下、硬度80以下の固形シ
リコーン重合体 (E)ウレイド基含有シランカップリング剤(F)無機
質充填剤 を必須成分として成ることを特徴とする半導体封止用エ
ポキシ樹脂成形材料を提供するものである。
That is, the present invention provides: (A) an epoxy resin having 2 (111 or more epoxy groups in one molecule) (B) a compound having 2i11 or more phenolic hydroxyl groups in one molecule (C) the above (A) component or CB) A reaction product of the component and reactive silicone oil, (D) 8 A solid silicone polymer with a large particle size of 150 μm or less and a hardness of 80 or less (E) A ureido group-containing silane coupling agent (F) An inorganic filler as an essential component The present invention provides an epoxy resin molding material for semiconductor encapsulation characterized by the following.

本発明において用いられる(A)成分の1分子中に26
I1以上のエポキシ基を有するエポキシ樹脂としては、
半導体対土用エポキシ樹脂成形材料で・一般に使用され
ているものであれば制限はなくフェノールノボラック型
エポキシ樹脂、オルソクレゾールノボラック型エポキシ
樹脂をはじめとするフェノール類とアルデヒド類のノボ
ラック樹脂をエポキシ化したもの、ビスフェノールA、
ビスフェノールB、ビスフェノールF、ビスフェノール
S等のジグリシジルエーテル、フタル酸、ダイマー酸等
の多塩基とエピクロルヒドリンの反応により得られるグ
リシジルエステル型エポキシ樹脂、ジアミノジフェニル
メタン、イソシアヌール酸等のポリアミンとエピクロル
ヒドリンとの反応で得られるグリシジルアミン型エポキ
シ樹脂、オレフィン結合を過Il!’酸等の過酸で酸化
して得られる線状脂肪族エポキシ樹脂及び脂環式エポキ
シ樹脂等があるが、耐熱性の点から、エポキシ当量22
0以下のノボラック型エポキシ樹脂が好ましい。
26 in one molecule of component (A) used in the present invention.
As the epoxy resin having an epoxy group of I1 or more,
Epoxy resin molding materials for semiconductors - There are no restrictions as long as they are commonly used, and epoxidized phenol and aldehyde novolac resins such as phenol novolac type epoxy resins and orthocresol novolac type epoxy resins can be used. things, bisphenol A,
Glycidyl ester type epoxy resin obtained by reacting diglycidyl ethers such as bisphenol B, bisphenol F, and bisphenol S, polybases such as phthalic acid and dimer acid with epichlorohydrin, and reaction of polyamines such as diaminodiphenylmethane and isocyanuric acid with epichlorohydrin. The glycidylamine type epoxy resin obtained in There are linear aliphatic epoxy resins and alicyclic epoxy resins obtained by oxidation with peracids such as acids, but from the viewpoint of heat resistance, the epoxy equivalent is 22
A novolac type epoxy resin having a molecular weight of 0 or less is preferred.

本発明において用いられる(B)成分の1分子中に21
!1以上のフェノール性水酸基°を有する化合物として
は、フェノール、クレゾール、キシレノール、レゾルシ
ン、カテコール、ビスフェノールA、ビスフェノールF
などのフェノール類とアルデヒド類とを酸性触媒下で縮
合反応させて得られるノボラック型フェノール樹脂、ビ
スフェノールA、ビスフェノールF、ポリバラビニルフ
ェノール樹脂、レゾルシン、カテコール、ハイドロキノ
ンなどの多価フェノール等があり、単独又は2種類以上
併用して使用することができるが、コスト及び特性のバ
ランスの点から、ノボラック型フェノール樹脂が好まし
い、また、数平均分子量は300〜600が好適である
。数平均分子量300未満では耐熱性が十分でなく、6
00を超えると成形材料の流動性が低下するためである
21 in one molecule of component (B) used in the present invention.
! Compounds having one or more phenolic hydroxyl groups include phenol, cresol, xylenol, resorcinol, catechol, bisphenol A, and bisphenol F.
There are novolak type phenol resins obtained by condensation reaction of phenols such as and aldehydes under an acidic catalyst, bisphenol A, bisphenol F, polyvarabinyl phenol resins, and polyhydric phenols such as resorcinol, catechol, and hydroquinone. They can be used alone or in combination of two or more types, but from the point of view of cost and balance of properties, novolak type phenol resins are preferred, and the number average molecular weight is preferably 300 to 600. If the number average molecular weight is less than 300, the heat resistance is insufficient, and 6
This is because if it exceeds 00, the fluidity of the molding material decreases.

次に、本発明に用いるは(C)成分は、上記(A)成分
又は(B)成分と反応性シリコーンオイルとの反応物で
あり、反応性シリコーンオイルの官能基としては、(A
)成分中のエポキシ基又は(B)成分中のフェノール性
水酸基と反応可能な官能基であれば特に制限はない。−
のようなシリコーンオイルとしては、ジメチルシリコー
ンを基本構造とし、この分子中の末端及び/又は側鎖に
アミノ基、カルボキシル基、メルカプト基、ヒドロキシ
フェニル基、エポキシ基、アルコキシ基等の官能基を有
するものであり、さらに、(A)、(B)成分との相溶
性を向上させるために、メチル基の一部がフェニル基、
2−フェニルエチル基、2−フェニルプロピル基、ポリ
オキシアルキレン基等で置換された構造であっても良い
0反応物を合成する方法としては、選択した官能基に応
じて、従来公知の触媒の存在下、溶媒の存在下又は非存
在下で、(A)成分又は(B)成分と反応性シリコーン
オイルの混合物を加熱攪拌することによって行うことが
できる。好適な溶媒としては、メチルイソブチルケトン
、トルエン、キシレン、ジオキサン等をあげることがで
きる。反応時間としては、反応系の官能基濃度、溶解性
、反応温度によっても異なるが、1〜50時間である。
Next, component (C) used in the present invention is a reaction product of component (A) or component (B) and reactive silicone oil, and the functional group of the reactive silicone oil is (A
There is no particular restriction as long as it is a functional group that can react with the epoxy group in component () or the phenolic hydroxyl group in component (B). −
Such silicone oils have a basic structure of dimethyl silicone and have functional groups such as amino groups, carboxyl groups, mercapto groups, hydroxyphenyl groups, epoxy groups, and alkoxy groups at the terminals and/or side chains of this molecule. Furthermore, in order to improve the compatibility with components (A) and (B), some of the methyl groups are phenyl groups,
As a method for synthesizing the zero reactant, which may have a structure substituted with a 2-phenylethyl group, 2-phenylpropyl group, polyoxyalkylene group, etc., conventionally known catalysts can be used depending on the selected functional group. This can be carried out by heating and stirring a mixture of component (A) or component (B) and reactive silicone oil in the presence or absence of a solvent. Suitable solvents include methyl isobutyl ketone, toluene, xylene, dioxane, and the like. The reaction time varies depending on the concentration of functional groups in the reaction system, solubility, and reaction temperature, but is 1 to 50 hours.

(C)成分の合成に際し重要なことは、(A)成分又は
(B)成分中の官能基であるエポキシ基又はフェノール
性水酸基の一部が残るように、反応性シリコーンオイル
の官能基量を調節することである。すなわち、エポキシ
基又はフェノール性水酸基の数を100とした場合、シ
リコーンオイル中の官能基数が50以下となるように配
合し合成反応を行うことが好ましい。このような条件下
で合成された(C)成分を用いることにより、成形材料
を金型内で硬化させた時、(A)成分、CB)成分、(
C)成分が均一に硬化し、可撓剤であるシリコーンが、
硬化樹脂中に均一に分散し量定化される。
When synthesizing component (C), it is important to control the amount of functional groups in the reactive silicone oil so that some of the epoxy groups or phenolic hydroxyl groups that are functional groups in component (A) or (B) remain. It's about adjusting. That is, when the number of epoxy groups or phenolic hydroxyl groups is 100, it is preferable to mix and carry out the synthesis reaction so that the number of functional groups in the silicone oil is 50 or less. By using component (C) synthesized under such conditions, when the molding material is cured in the mold, component (A), component CB), (
C) The component hardens uniformly, and the silicone as a flexible agent
Uniformly dispersed and quantified in the cured resin.

また、(C)成分合成に用いる(A)成分、CB)成分
は、先に述べた理由により、(A)成分としてはエポキ
シ当局220以下のノボラック型エポキシ樹脂、(B)
成分としては数平均分子量300〜600のノボラック
型フェノール樹脂が特に好ましい、(C)成分の添加量
は、(A) + (B)+(C)合計量に対して5〜7
5重量%の範囲とすることが好ましい、5重量%未満で
は十分な低応力性が得られず、75重量%を超えると硬
化物の機械的強度が低下するためである。 上記(A)
(B)、(C)成分の配合量としては、3次分中の(エ
ポキシ基数の合計)/(フェノール性水改基数の合計)
が0.8〜1.2となるように配合することが、バラン
スのとれた硬化物を得るために好ましい。
In addition, the (A) component and the CB) component used in the synthesis of the (C) component are, for the reasons stated above, a novolak type epoxy resin with an epoxy rating of 220 or less as the (A) component, and (B)
As a component, a novolak type phenol resin having a number average molecular weight of 300 to 600 is particularly preferable.The amount of component (C) added is 5 to 7 with respect to the total amount of (A) + (B) + (C).
The content is preferably in the range of 5% by weight; if it is less than 5% by weight, sufficient low stress properties cannot be obtained, and if it exceeds 75% by weight, the mechanical strength of the cured product will decrease. Above (A)
The blending amount of components (B) and (C) is (total number of epoxy groups)/(total number of phenolic water groups) in the tertiary component.
In order to obtain a well-balanced cured product, it is preferable to mix so that the ratio is 0.8 to 1.2.

本発明に用いる(D)成分の固形シリコーン重合体は、
最大粒径150μm以下かつ硬度80以下とする必要が
ある。ここでいう硬度とは、日本ゴム協会標準規格5R
IS−0101に準拠し、そのC型硬度計で測定した値
を示す、まず、最大粒径を150μm以下と規定した理
由は、成形時に金型ゲートづまりが起こらないようにす
るためである。樹脂封止型半導体装置を成形する金型の
ゲートサイズは、パッケージの小形薄形化とともに小さ
くなっており、最近では200〜500μm程度である
。したがって、ゲートづまり等の成形トラブルを生じさ
せないためには最大粒径150μm以下とする必要があ
る0次に、硬度については、硬度が80を超えたものを
用いた場合、耐湿性向上効果が認められないため、80
以下とする必要がある。(D)成分の具体例としては、
ポリジメチルシロキサン、ポリメチルフェニルシロキサ
ン、ジメチルシロキサン−ジフェニルシロキサンコポリ
マー等のポリオルガノシロキサン高重合体があげられる
。また、これらポリオルガノシロキサン重合体の架橋物
を用いても良い、さらに、構造中にシラノール基、ヒド
ロキシ基、カルボキシル基、ビニル基、アミノ基、メル
カプト基、工ボキシ基、アルコキシ基等の官能基を有す
るものを用いても良い、(D)成分の添加量は、(A)
+ (B)+ (C)成分合計量に対して2〜10重量
%が好ましい、2重量%未満では耐湿性向上効果がなく
、10重量%を超えると耐湿性向上効果が飽和する傾向
があり、また、機械的強度の低下を招くためである。
The solid silicone polymer as component (D) used in the present invention is:
The maximum particle size must be 150 μm or less and the hardness must be 80 or less. The hardness here refers to the Japan Rubber Association standard 5R.
The reason for specifying the maximum particle size as 150 μm or less, which is a value measured with a C-type hardness tester according to IS-0101, is to prevent mold gate clogging during molding. The gate size of a mold for molding a resin-sealed semiconductor device has become smaller as packages become smaller and thinner, and is currently about 200 to 500 μm. Therefore, in order to prevent molding problems such as gate clogging, the maximum particle size must be 150 μm or less. Next, regarding hardness, when using a material with a hardness of over 80, the effect of improving moisture resistance has been observed. 80
It is necessary to do the following. Specific examples of component (D) include:
Examples include polyorganosiloxane polymers such as polydimethylsiloxane, polymethylphenylsiloxane, and dimethylsiloxane-diphenylsiloxane copolymer. Furthermore, crosslinked products of these polyorganosiloxane polymers may be used.Furthermore, functional groups such as silanol groups, hydroxyl groups, carboxyl groups, vinyl groups, amino groups, mercapto groups, engineered boxy groups, and alkoxy groups may be used in the structure. The amount of component (D) to be added is (A)
+ (B) + (C) It is preferably 2 to 10% by weight based on the total amount of component. If it is less than 2% by weight, there is no effect of improving moisture resistance, and if it exceeds 10% by weight, the effect of improving moisture resistance tends to be saturated. This is also because mechanical strength is reduced.

本発明に用いる(E)成分のウレイド基含有シランカッ
プリング剤は、下記−数式で示す化合物である。
The ureido group-containing silane coupling agent (E) used in the present invention is a compound represented by the following formula.

X3 Si RN)−ICONHz ここで、Xはメトキシ基、エトキシ基等の加水分解性基
、Rはトリメチレン基等の低級アルキレン基である。こ
のような化合物は一般に市販されており、例えば、A−
1160(日本ユニカー製)、AY43−031 <ト
ーレ・シリコーン製)等があげられる。
X3 Si RN)-ICONHz Here, X is a hydrolyzable group such as a methoxy group or an ethoxy group, and R is a lower alkylene group such as a trimethylene group. Such compounds are generally commercially available, for example A-
1160 (manufactured by Nippon Unicar), AY43-031 (manufactured by Toray Silicone), and the like.

次に、本発明に用いる(F)成分の無機質充填剤は、硬
化物の線膨張係数を下げるために必須の成分であり、例
えば溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪
酸カルシウム、炭酸カルシウム、炭化珪素、窒化珪素、
窒化ホウ素、ベリリア、マグネシア、ジルコニア、ムラ
イト、チタニア等の粉体及び炭化珪素、窒化珪素、アル
ミナ等の単結晶繊維、ガラス繊維等をあげることができ
るが、コスト及び特性のバランスの点から溶融シリカが
好ましい、また、充填剤の形状については、角形、球形
いずれも用いることができる0球形の充填剤は、高流動
性を与えるため、充填剤の一部又は全部として用いるこ
とが好ましい、また、(F)成分の配合量は、成形材料
全体の50〜85容量%用いることが好ましい、50容
量%以下では硬化物の線膨張係数が大きくなり、パッケ
ージクラック性が劣る。また、85容量%以上では流動
性が極端に低下し、通常用いられている成形圧力下で成
形ができなくなる。
Next, the inorganic filler (F) component used in the present invention is an essential component for lowering the linear expansion coefficient of the cured product, and includes, for example, fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride,
Examples include powders such as boron nitride, beryllia, magnesia, zirconia, mullite, and titania, single crystal fibers such as silicon carbide, silicon nitride, and alumina, and glass fibers, but from the viewpoint of cost and balance of properties, fused silica is preferable. In addition, regarding the shape of the filler, both prismatic and spherical shapes can be used. A spherical filler is preferably used as part or all of the filler in order to provide high fluidity. The blending amount of component (F) is preferably 50 to 85% by volume of the entire molding material. If it is less than 50% by volume, the linear expansion coefficient of the cured product becomes large and the package cracking property is poor. Moreover, if it exceeds 85% by volume, the fluidity will be extremely reduced and molding will not be possible under commonly used molding pressures.

本発明の成形材料には、エポキシ樹脂とフェノール性水
酸基を有する化合物の硬化反応を促進する硬化促進剤を
配合することができる。この硬化促進剤としては、例え
ば1,8−ジアザ−ビシクロ(5,4,O)ウンデセン
−7、ベンジルジメチルアミン、トリエタノールアミン
、ジメチルアミノエタノール、1−リエチレンジアミン
、トリス(ジメチルアミノメチル)フェノール等の3級
アミン類、2−メチルイミダゾール、2−フェニルイミ
ダゾール、2−フェニル−4−メチルイミダゾール、2
−ヘプタデシルイミダゾールダゾール類、トリブチルホ
スフィン、メチルジフェニルホスフィン、トリフェニル
ホスフィン、ジフェニルホスフィン、フェニルホスフィ
ン等の有機ホスフィン類、テトラフェニルホスホニウム
テトラフェニルボレート、トリフェニルホスフィンテト
ラフェニルボレート、2−エチル−4−メチルイミダゾ
ールテトラフェニルボレート、N−メチルモリホリンテ
トラフェニルボレート等のテ1ーラフェニルボロン塩等
があげられる。
The molding material of the present invention may contain a curing accelerator that accelerates the curing reaction between the epoxy resin and the compound having a phenolic hydroxyl group. Examples of the curing accelerator include 1,8-diaza-bicyclo(5,4,O)undecene-7, benzyldimethylamine, triethanolamine, dimethylaminoethanol, 1-lyethylenediamine, tris(dimethylaminomethyl)phenol. Tertiary amines such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2
- Heptadecylimidazoldazoles, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, organic phosphines such as phenylphosphine, tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, 2-ethyl-4-methyl Examples include tetraphenylboron salts such as imidazole tetraphenylborate and N-methylmorpholinetetraphenylborate.

また、本発明の成形材料には、二酸化アンチモン等の難
燃剤、高級Iii肪酸、高級脂肪酸金属塩、エステル系
ワックス等の離型剤、カーボンブラック等の着色剤を必
要に応じて使用する1ことができる。
In addition, the molding material of the present invention may contain a flame retardant such as antimony dioxide, a higher III fatty acid, a higher fatty acid metal salt, a mold release agent such as an ester wax, and a coloring agent such as carbon black, if necessary. be able to.

以上のような原材料を用いて成形材料を作製する一般的
な方法としては、所定の配合量の原材料混合物をミキサ
ー等によって充分混合した後、熱ロール、押出機等によ
って混練し、冷却、粉砕することによって成形材料を得
ることができる。
A general method for producing molding materials using the above raw materials is to thoroughly mix a raw material mixture of a predetermined amount using a mixer, etc., then knead it using a heated roll, extruder, etc., cool it, and crush it. A molding material can be obtained by this process.

本発明で得られる成形材料を用いて半導体を封止する方
法としては、低圧トランスファー成形法が最も一般的で
あるが、インジェクション成形、注型等の方法によって
も可能である。
The most common method for encapsulating a semiconductor using the molding material obtained in the present invention is low-pressure transfer molding, but methods such as injection molding and casting can also be used.

〔実施例〕〔Example〕

以下、実施例により本発明を説明するが、本発明の範囲
はこれらの実施例に限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the scope of the present invention is not limited to these Examples.

実施例1 エポキシ当量200、軟化点76℃のオルソクレゾール
ノボラック型エポキシ樹a(エポキシ樹脂A、’)50
重量部、エポキシ当量400、軟化点69℃、臭素含有
率48重量%の臭素化ビスフェノールA型エポキシ樹脂
(エポキシ樹n1z)20重量部、水酸基当量106、
軟化点82℃、数平均分子量450のフェノールノボラ
ック樹脂(硬化剤B+)48重量部、両末端に2−カル
ボキシルエチル基を有し、平均重合度100のジメチル
シリコーンオイルと上記エポキシ樹脂AIとを1−リフ
ェニルホスフィンの存在下、重量比10/30 (官f
li基M比1.8/100)で反応させて得た化合物(
反応物C,)40重量部、最大粒径105μm、硬度5
6の粉末状シリコーン(固形シリコーンD□)5重量部
、トリフェニルホスフィン1.3重量部、カルナバワッ
クス1.5重量部、二酸化アンチモン8重量部、カーボ
ンブラック1.5重量部、3−ウレイドプロピルトリエ
トキシシラン4重量部、溶融シリカ450重量部を配合
し、10インチ径の加熱ロールを使用して。
Example 1 Orthocresol novolac type epoxy tree a (epoxy resin A,') with epoxy equivalent weight 200 and softening point 76°C 50
Parts by weight, epoxy equivalent 400, softening point 69°C, bromine content 48% by weight brominated bisphenol A epoxy resin (epoxy resin n1z) 20 parts by weight, hydroxyl equivalent 106,
48 parts by weight of a phenol novolak resin (curing agent B+) with a softening point of 82°C and a number average molecular weight of 450, a dimethyl silicone oil having 2-carboxylethyl groups at both ends and an average degree of polymerization of 100, and the above epoxy resin AI were mixed into 1 - in the presence of liphenylphosphine, weight ratio 10/30 (official f
Compound obtained by reacting with li group M ratio 1.8/100) (
Reactant C,) 40 parts by weight, maximum particle size 105 μm, hardness 5
5 parts by weight of powdered silicone No. 6 (solid silicone D□), 1.3 parts by weight of triphenylphosphine, 1.5 parts by weight of carnauba wax, 8 parts by weight of antimony dioxide, 1.5 parts by weight of carbon black, 3-ureidopropyl 4 parts by weight of triethoxysilane and 450 parts by weight of fused silica were blended together using a 10 inch diameter heating roll.

混線温度80〜90℃、混線時間10分の条件で混練し
た。シート状の混線物を冷却、粉砕することにより成形
材料を作製した。
The mixture was kneaded at a mixing temperature of 80 to 90°C and a mixing time of 10 minutes. A molding material was prepared by cooling and pulverizing the sheet-like mixed wire material.

実施例2 実施例1の固形シリコーンDI5重爪部を、最大粒径4
4μm、硬度41の粉末状シリコーン(固形シリコーン
D2)5重員部に代えた以外は実施例1と同様に作製し
た。
Example 2 The solid silicone DI5 heavy claw part of Example 1 was prepared with a maximum particle size of 4.
It was produced in the same manner as in Example 1 except that 5 parts by weight of powdered silicone (solid silicone D2) having a diameter of 4 μm and a hardness of 41 was used instead.

実施例3 実施例1の反応物c+40重量部を、両末端にグリシド
キシプロビル基を有し平均重合度30のジメチルシリコ
ーンオイルと実施例1中に記載した硬化剤B1とをトリ
フェニルホスフィンの存在下、重量比10/15(官能
基数比5.8/100)で反応させて得た化合物(反応
物C,)25!iX部に、また、エポキシl!1脂A1
50重]1部を80重量部に、さらに、硬化剤B、48
重量部を33重量部に代えた以外は、実施例1と同様に
作製した。
Example 3 Reactant c+40 parts by weight of Example 1 was mixed with dimethyl silicone oil having glycidoxyprobyl groups at both ends and having an average degree of polymerization of 30, and the curing agent B1 described in Example 1, into triphenylphosphine. Compound (reactant C,) obtained by reacting in the presence of at a weight ratio of 10/15 (functional group ratio 5.8/100) 25! In the iX section, epoxy l! 1 fat A1
50 parts] to 80 parts by weight, and further, curing agent B, 48 parts by weight.
It was produced in the same manner as in Example 1 except that the weight part was changed to 33 parts by weight.

実施例4 実施例3の固形シリコーンDt5重量部を、実施例2で
用いた固形シリコーンD、5重量部に代えた以外は、実
施例3と同様にして成形材料を作製した。
Example 4 A molding material was produced in the same manner as in Example 3, except that 5 parts by weight of solid silicone Dt in Example 3 was replaced with 5 parts by weight of solid silicone D used in Example 2.

比較例1 実施例1の固形シリコーンD、を除いた以外は実施例1
と同様にして成形材料を作製した。
Comparative Example 1 Example 1 except that solid silicone D of Example 1 was removed.
A molding material was prepared in the same manner.

比較例2 実施例1の3−ウレイドプロピルトリエトキシシラン4
重量部を3−グリシドキシプロピルトリメトキシシラン
4tffi部に代えた以外は、実施例1と同様にして成
形材料を作製した。
Comparative Example 2 3-ureidopropyltriethoxysilane 4 of Example 1
A molding material was prepared in the same manner as in Example 1, except that the weight part was replaced with 4 tffi parts of 3-glycidoxypropyltrimethoxysilane.

比較例3 実施例1の固形シリコーンD1を除き、また、3−ウレ
イドプロピルトリエトキシシラン4重量部を3−グリシ
ドキシプロビルトリメトキシシラン4重量部に代えた以
外は、実施例1と同様にして成形材料を作製した。
Comparative Example 3 Same as Example 1 except that solid silicone D1 of Example 1 was removed and 4 parts by weight of 3-ureidopropyltriethoxysilane was replaced with 4 parts by weight of 3-glycidoxypropyltrimethoxysilane. A molding material was prepared.

次に、上記で得られた成形材料を用いて、6I1wII
X6imのテスト素子を搭載した54ピンQFPをトラ
ンスファー成形(成形温度175℃、成形圧カフ 0k
g/mm” ) シ、ソノ後180”C15時間のV&
碩化を行うことにより、各20個の試験用パッケージを
作製した。次に、このパッケージを85℃/85%RH
172時間加温処理゛した後、215℃/90秒の条件
でvps (ペーパーフェイズソルダリング)処理を行
った。その後、PCT試験を行い、アルミ配線の断線不
良を調べた。また、各成形材料の金型汚れ性を調べるた
め、100mφX3matの円板を連続成形(50回)
し、金型表面の汚れ具合を目視により観察した。
Next, using the molding material obtained above, 6I1wII
Transfer molding of 54-pin QFP equipped with X6im test element (molding temperature 175℃, molding pressure cuff 0k
g/mm”) 180”C15 hours V & after sono
Twenty test packages were prepared by performing clarification. Next, this package was heated to 85℃/85%RH.
After heating for 172 hours, VPS (paper phase soldering) was performed at 215° C. for 90 seconds. Thereafter, a PCT test was conducted to check for disconnection defects in the aluminum wiring. In addition, in order to investigate the mold staining property of each molding material, we continuously molded a 100mφ x 3mat disc (50 times).
The degree of contamination on the surface of the mold was visually observed.

耐湿性及び金型汚れ性の結果を11表に示す。Table 11 shows the results of moisture resistance and mold stain resistance.

wi1表の結果から、実施例品は耐湿性、金型汚れ性と
もに優れている。これに対し、比較例1.2.3は金型
汚れ性は良好であるが、固形シリコーンを配合していな
い比較例1、ウレイドシランを配合していない比較例2
は、耐湿性が劣る。また、固形シリコーンとウレイドシ
ランの両者を配合していない比較例3は、更に耐湿性が
劣っている。
From the results in Table wi1, the example products are excellent in both moisture resistance and mold stain resistance. On the other hand, Comparative Examples 1, 2, and 3 have good mold stain resistance, but Comparative Example 1 does not contain solid silicone, and Comparative Example 2 does not contain ureido silane.
has poor moisture resistance. Furthermore, Comparative Example 3, which does not contain both solid silicone and ureido silane, has even worse moisture resistance.

〔発明の効果〕〔Effect of the invention〕

本発明の成形材料を用いて半導体部品を封止すれば、金
型汚れがないため成形作業性が良好であり、かつ、mm
性が向上した信頼性の高い製品を得ることができる。
If semiconductor parts are encapsulated using the molding material of the present invention, there will be no mold contamination, so molding workability will be good, and mm
A highly reliable product with improved performance can be obtained.

Claims (1)

【特許請求の範囲】 1、(A)1分子中に2個以上のエポキシ基を有するエ
ポキシ樹脂 (B)1分子中に2個以上のフェノール性水酸基を有す
る化合物 (C)上記(A)成分又は(B)成分と反応性シリコー
ンオイルとの反応物 (D)最大粒径150μm以下、硬度80以下の固形シ
リコーン重合体 (E)ウレイド基含有シランカップリング剤(F)無機
質充填剤 を必須成分として成ることを特徴とする半導体封止用エ
ポキシ樹脂成形材料。 2、(A)成分がエポキシ当量220以下のノボラック
型エポキシ樹脂である請求項1記載の半導体封止用エポ
キシ樹脂成形材料。 3、(B)成分が数平均分子量300〜600のノボラ
ック型フェノール樹脂である請求項1記載の半導体封止
用エポキシ樹脂成形材料。
[Claims] 1. (A) An epoxy resin having two or more epoxy groups in one molecule (B) A compound having two or more phenolic hydroxyl groups in one molecule (C) Component (A) above or (B) a reaction product of component and reactive silicone oil (D) a solid silicone polymer with a maximum particle size of 150 μm or less and a hardness of 80 or less (E) a ureido group-containing silane coupling agent (F) an inorganic filler as an essential component An epoxy resin molding material for semiconductor encapsulation, which is characterized by being formed as: 2. The epoxy resin molding material for semiconductor encapsulation according to claim 1, wherein the component (A) is a novolac type epoxy resin having an epoxy equivalent of 220 or less. 3. The epoxy resin molding material for semiconductor encapsulation according to claim 1, wherein the component (B) is a novolac type phenolic resin having a number average molecular weight of 300 to 600.
JP554990A 1990-01-12 1990-01-12 Semiconductor sealing epoxy resin molding material Pending JPH03210325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP554990A JPH03210325A (en) 1990-01-12 1990-01-12 Semiconductor sealing epoxy resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP554990A JPH03210325A (en) 1990-01-12 1990-01-12 Semiconductor sealing epoxy resin molding material

Publications (1)

Publication Number Publication Date
JPH03210325A true JPH03210325A (en) 1991-09-13

Family

ID=11614273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP554990A Pending JPH03210325A (en) 1990-01-12 1990-01-12 Semiconductor sealing epoxy resin molding material

Country Status (1)

Country Link
JP (1) JPH03210325A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005030A (en) * 1997-01-28 1999-12-21 Hitachi Chemical Company, Ltd. Epoxy resin composition for semiconductor sealing and resin molded type semiconductor device sealed with the epoxy resin composition
JP2002241581A (en) * 2001-02-14 2002-08-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2004504436A (en) * 2000-07-14 2004-02-12 アーベーベー・リサーチ・リミテッド Volume-modified casting material based on polymer matrix resin
JP2008266629A (en) * 2007-03-29 2008-11-06 Nippon Shokubai Co Ltd Resin composition and optical member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005030A (en) * 1997-01-28 1999-12-21 Hitachi Chemical Company, Ltd. Epoxy resin composition for semiconductor sealing and resin molded type semiconductor device sealed with the epoxy resin composition
KR100274060B1 (en) * 1997-01-28 2000-12-15 우찌가사끼 이사오 Epoxy resin composition for semiconductor sealing and resin molded type semiconductor device sealed with the epoxy resin composition
JP2004504436A (en) * 2000-07-14 2004-02-12 アーベーベー・リサーチ・リミテッド Volume-modified casting material based on polymer matrix resin
JP2002241581A (en) * 2001-02-14 2002-08-28 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2008266629A (en) * 2007-03-29 2008-11-06 Nippon Shokubai Co Ltd Resin composition and optical member

Similar Documents

Publication Publication Date Title
KR101076977B1 (en) Resin composition for encapsulating semiconductor chip and semiconductor device
EP0553371B1 (en) Epoxy resin molding material for sealing of electronic component
JPH08134179A (en) Epoxy resin molding material for sealing electronic component and semiconductor device sealed therewith
JP4560928B2 (en) Epoxy resin composition for interposer, prepreg, and copper-clad laminate using the same
JPH03210325A (en) Semiconductor sealing epoxy resin molding material
JPH11140278A (en) Resin composition for semiconductor sealing and resin-sealed type semiconductor device sealed with the composition
JP2823704B2 (en) Resin composition for semiconductor encapsulation
JPH02166116A (en) Epoxy resin molding material for sealing electronic component
JP3413962B2 (en) Epoxy resin composition for molding
JPH0521651A (en) Epoxy resin molding material for sealing semiconductor
JPH02147619A (en) Epoxy resin composition
JPH05175369A (en) Epoxy resin molding material for sealing electronic component
JP2559626B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3651013B2 (en) Epoxy resin molding material for sealing electronic parts and IC package using the same
JPH0517558A (en) Epoxy resin composition
JP2002167416A (en) Phenolic resin, resin composition and resin molding material for sealing using the same, and electronic component device
JPH0697324A (en) Resin-sealed semiconductor device
JPH05291436A (en) Epoxy resin molding material for sealing semiconductor
JP3192315B2 (en) Epoxy resin composition
JP2991847B2 (en) Resin composition for semiconductor encapsulation
JP3049898B2 (en) Epoxy resin molding material for sealing electronic parts and IC package using the same
JPH05175373A (en) Epoxy resin composition
JP3279084B2 (en) Epoxy resin composition for sealing
JP2534317B2 (en) Semiconductor device
JPH04189816A (en) Epoxy resin molding material for sealing electronic part