JPH03214076A - Fault section detector for substation - Google Patents

Fault section detector for substation

Info

Publication number
JPH03214076A
JPH03214076A JP939490A JP939490A JPH03214076A JP H03214076 A JPH03214076 A JP H03214076A JP 939490 A JP939490 A JP 939490A JP 939490 A JP939490 A JP 939490A JP H03214076 A JPH03214076 A JP H03214076A
Authority
JP
Japan
Prior art keywords
current
section
phase
zero
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP939490A
Other languages
Japanese (ja)
Inventor
Yasuaki Kojima
小島 康昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP939490A priority Critical patent/JPH03214076A/en
Publication of JPH03214076A publication Critical patent/JPH03214076A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the specifying of a section where a fault occurs even when an electric reception is made simultaneously from a plurality of lines by computing zero- phase components from data of currents and bus voltages in phases respectively to determine directions of faults in current detectors from a phase difference between both the results. CONSTITUTION:The newest data pertaining to a zero-phase voltage and a zero-phase current are stored into a memory 17 from a bus voltage transformer GPT and current detectors 9 and 10. An arithmetic section 18 reads a zero-phase current I01 from an addition circuit 14 from the memory 17 and when the current exceeds a fixed value, a phase difference is computed from a zero-phase voltage V0 read from the memory 17 as determined with an addition circuit 13. Direction of the current I01 is judged to be left when the current is the same in phase as the voltage V0 while to be right when it is opposite. Moreover, when each of breakers CB1 and CB2 makes, electric reception of one circuit is given from respective power source supply lines and when both the breakers make, electric reception of two circuits is given from both the lines. Hence, the type of condition is inputted. The arithmetic section 18 judges a fault section on specified conditions from above-mentioned information (presence and direction of zero-phase currents I01 and I02 determined from the detectors 9 and 10).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、変電所内で地絡事故が発生した場合に、そ
の地絡事故が開閉機器で区分された複数の区間のうちの
どの区間で発生したかを検出する装置に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides a method for detecting which section of a plurality of sections divided by switching equipment the ground fault occurs in when a ground fault occurs in a substation. The present invention relates to a device for detecting whether or not a problem has occurred.

〔従来の技術〕[Conventional technology]

第5図は例えば実開昭63−6361号公報に開示され
たこの種従来の事故区1m検出装置を変電所であるガス
絶縁r#!閏装置に適用したものを示す回路図である。
FIG. 5 shows, for example, a conventional accident area 1m detection device of this type disclosed in Japanese Utility Model Application Publication No. 63-6361, which is installed in a gas-insulated substation. It is a circuit diagram showing what is applied to a leap device.

図において、(1)(2>および(3)は区分された区
間としての第1.第2および第3の開開装置エレメント
で、第1.第3の開開装置エレメント(1)(3)間お
よび第2.第3の開開装置エレメント(2)(3)間は
それぞれ絶縁スペーサIS、および■S2で支持された
導体(イ)および(5)で接続されている。ILおよび
2L4.を電源供給の線路で、このガス絶縁開閉装置は
いずれか一方の線路が電源が供給される方式となってい
る。CBI、CB2は遮断器、DS、、DS2は断路器
、T H1〜′I’ lt 3は変圧器、RyIIR3
’+2は短緒保護リレー、RY 21+ R5’ 22
は地絡保護リレー、GPTは母線電圧変成器、c ’r
 、 。
In the figure, (1), (2> and (3) are the first, second and third opening device elements as divided sections; ) and between the second and third switchgear elements (2) and (3) are connected by conductors (a) and (5) supported by insulating spacers IS and ■S2, respectively. IL and 2L4 . is the power supply line, and this gas-insulated switchgear is configured such that power is supplied to either line. CBI and CB2 are circuit breakers, DS, and DS2 are disconnectors, T H1~'I' lt 3 is a transformer, RyIIR3
'+2 is short cable protection relay, RY 21+ R5' 22
is ground fault protection relay, GPT is bus voltage transformer, c'r
, .

(i i” 、は各線nLL、21−に挿入された変流
器、そして、14.おまひH2は絶縁スペーサ■S1お
よび182に設置された磁界センサである。
(i i'' is a current transformer inserted in each line nLL, 21-, and 14. Paralysis H2 is a magnetic field sensor installed in insulating spacer ■S1 and 182.

第61Mは磁界センサH,,H2及び各保護リレーR3
/II〜R1/2.の出力から事故区間を特定する事故
区間検出装置の動作回路をホすものである。即ち、磁界
センサH,は絶縁スペーサls+に支持された導体(4
)に流れる電流により生じる磁界を検出して該電流の大
きさに比例した検出信号Shlを出力する。同様に、磁
界センサH2は導体(5)に流れる電流の大きさに比例
した検出信号sh、を出力する。
No. 61M is magnetic field sensor H,, H2 and each protection relay R3
/II~R1/2. This is an operating circuit for an accident area detection device that identifies an accident area from the output of the . That is, the magnetic field sensor H, is a conductor (4) supported by an insulating spacer ls+.
) and outputs a detection signal Sh1 proportional to the magnitude of the current. Similarly, the magnetic field sensor H2 outputs a detection signal sh proportional to the magnitude of the current flowing through the conductor (5).

事故電流検出信号発生口n(6)は、短絡または地M1
N故が発生して取込んだ検出信号S h +またはSb
2またはその双方が所定のレベル以上になったとき事故
電流検出信号Saまたはsbまたはその双方を発生する
。また、短絡保護リレーRy、、およびRyI2は母線
電圧変成器G P Tと変流器CT、、CT2との出力
から短絡事故の発生を検出してそれぞれ短絡検出信号S
H4およびS+2を出力する。地絡保護リレーR5’2
1およびR3’22は同様にして地絡事故の発生を検出
してそれぞれ地絡検出信号SolおよびS22を出力す
る。
Fault current detection signal generation port n(6) is short-circuited or grounded M1
Detection signal S h + or Sb captured when an N fault occurs
When either or both of them reach a predetermined level or higher, a fault current detection signal Sa or sb or both are generated. In addition, the short circuit protection relays Ry, and RyI2 detect the occurrence of a short circuit accident from the outputs of the bus voltage transformer GP T and the current transformers CT, CT2, and issue short circuit detection signals S, respectively.
Output H4 and S+2. Ground fault protection relay R5'2
1 and R3'22 similarly detect the occurrence of a ground fault and output ground fault detection signals Sol and S22, respectively.

そして、短絡または地絡が発生した区間により各検出信
号Sa、SbおよびS、I〜S2□の発生の組合わせが
異なるので、この現象を利用して各判定回路(7a)(
7b)(8a>(8b)により事故発生区間を特定する
ことができる。
Since the combination of generation of each detection signal Sa, Sb and S, I to S2□ differs depending on the section where a short circuit or ground fault has occurred, each judgment circuit (7a) (
7b) The section where the accident occurred can be specified by (8a>(8b)).

し発明が解決しようとする課題〕 従来の事故区間検出装置は以上のよつに構成されており
、指定された方式に従がい、1しまたは21、のいずれ
か一方の線路から電源が供給されている場合には、事故
発生区間の特定は可能であるか、Mal路1しおよび2
Lから同時に電源供給を受ける場合を含む方式にその適
用範囲を拡大すると、どの区間に事故が発生しても線路
117,2Lの双方から事故電流が流れ込み、磁界セン
サH6゜1(2共に出力信号を発生して事故区間の特定
が不可能になるという問題点があった。
[Problems to be Solved by the Invention] The conventional accident section detection device is configured as described above, and according to the specified method, power is supplied from either line 1 or 21. If so, is it possible to identify the section where the accident occurred?
If the scope of application is expanded to include the case where power is simultaneously supplied from L, no matter which section an accident occurs, the fault current will flow from both lines 117 and 2L, and the output signal of magnetic field sensor H6゜1 (both 2) will be There was a problem in that this caused the accident area to become impossible to identify.

この発明は以Eのような問題点を解消するためになされ
たもので、複数の線路から同時に受電している場合にも
地絡事故の発生区間を特定することができる事故区間検
出装置を得ることを目的とする。
This invention was made to solve the problems mentioned above, and provides an accident section detection device that can identify the section where a ground fault has occurred even when power is being received from multiple lines at the same time. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る事故区間検出装置は、区間相互間に流れ
る各相電流を検出する電流検出装置、変電所の各札付1
11圧を検出する電圧検出装置、上記変電所で発生する
地i1事故を検出する地絡検出装置、上記電流および電
圧検出装置からの出力信号を所定の時間逐次記憶するメ
モリ部、および上記地絡検出装置の地絡検出信号により
動作を開始し上記変電所の電源供給線路端に設けられた
遮断器の補助接点の情報および上記遮断器の上記地絡検
出18号に基づくトリラフ動作の時点前に上記メモリ部
に記憶されていた情報から地絡事故の発生区間を演算に
より特定する演算部を備えたものである。
The accident section detection device according to the present invention includes a current detection device for detecting each phase current flowing between sections, and a current detection device for detecting each phase current flowing between sections,
a voltage detection device for detecting 11 voltage, a ground fault detection device for detecting a ground i1 fault occurring at the substation, a memory section for sequentially storing output signals from the current and voltage detection device for a predetermined period of time, and the ground fault. The operation is started by the ground fault detection signal of the detection device, and before the trilough operation based on the information of the auxiliary contact of the circuit breaker installed at the end of the power supply line of the above-mentioned substation and the above-mentioned ground fault detection No. 18 of the above-mentioned circuit breaker. The present invention is equipped with a calculation unit that specifies, by calculation, an area in which a ground fault has occurred from the information stored in the memory unit.

(作用〕 演算部は、メモリ部から読取った各相の電流および汀線
電圧のデータがらそれぞれの零相分を演算し、両者の位
相差から各検出装置毎の事故方向を求め、この事故方向
と遮断器の補助接点から得られる変電所の受電回線の状
態とから地絡事故の発生1に間を演算により特定する。
(Operation) The calculation unit calculates the zero phase portion of each phase based on the current and shore line voltage data read from the memory unit, determines the fault direction for each detection device from the phase difference between the two, and calculates the fault direction and the shoreline voltage. Based on the status of the power receiving line of the substation obtained from the auxiliary contact of the circuit breaker, the occurrence of the ground fault is determined by calculation.

〔実施例〕〔Example〕

第1図はこの発明の一実施例による事故区間検出装置を
適用した変電所を示す回路図である0図において、従来
と同一符号は同一または相当部分を示す、(9)は内部
区間(1)と内部区tm (3)との相互間に流れる各
相電流を検出する電流検出装置、(10)は内部区間(
2)と内部区間(3)との相互間に流れる各相ic流を
検出する電流検出装置、(11)は変流器C′I’ I
+ C’r2と電圧検出装置としての母線電圧変成器G
PTとの出力から変電所内で発生する地絡事故を検出す
る地絡検出装置としての地絡保護リレー (12)はi
c流検出装置(9)(10)、地絡保護リレー(11)
の出力情報、史に遮断器CB + 、 CH2の補助接
点の情報から地絡事故が発生した内部区間を特定する事
故区間検出部で、第2図にその詳細を示す。
FIG. 1 is a circuit diagram showing a substation to which an accident section detection device according to an embodiment of the present invention is applied. In FIG. ) and the internal section tm (3) A current detection device that detects each phase current flowing between the internal section (tm), (10) is the internal section (
2) and the internal section (3), a current detection device for detecting each phase IC current flowing between the current transformer C'I' I
+ C'r2 and bus voltage transformer G as voltage detection device
Ground fault protection relay (12) is a ground fault detection device that detects ground faults that occur within the substation from the output of the PT.
C current detection device (9) (10), ground fault protection relay (11)
The fault section detection section identifies the internal section where the ground fault occurred based on the output information of the circuit breaker CB + and the information of the auxiliary contacts of the CH2, the details of which are shown in Figure 2.

第2図において、(13)は母線電圧変成器GP′1゛
からの各相母線電圧を加算して零相電圧■oを演算する
加9回路、同様に(14)及び(15)はそれぞれ電流
検出装置(9)および(1(J )からの各相電流を加
算して零相−に流」。1,1゜2を演算する加算回路、
(16)は加算回路(13>(14)(15)からの出
力値をディジタル信号に変換するA / l) 9換器
、(17)はA /’ IJ変換器(16)からの出力
信号を所定の時間間隔でサンプリングし一定の時間′1
゛。の面記憶して蓄積するメモリ部、(18)はその動
作を以上で詳述する演算部、(19)は演算部(18)
により事故区間を検出した結果を表示する出力表示部で
ある。
In Figure 2, (13) is an adder 9 circuit that adds each phase bus voltage from the bus voltage transformer GP'1' to calculate the zero-phase voltage o, and similarly, (14) and (15) are respectively Adding each phase current from the current detection device (9) and (1 (J)) and flowing to the zero phase -. Addition circuit that calculates 1, 1°2,
(16) is the adder circuit (13>(14) which converts the output value from (15) into a digital signal A/l) 9 converter, (17) is the output signal from the A/' IJ converter (16) is sampled at a predetermined time interval and a fixed time '1
゛. (18) is a calculation unit whose operation will be explained in detail above, and (19) is a calculation unit (18).
This is an output display section that displays the results of detecting the accident section.

次に動作を、第3図のタイミングチャートおよび第4図
のフローチャートを参照して説明する。
Next, the operation will be explained with reference to the timing chart of FIG. 3 and the flow chart of FIG. 4.

メモリ部(17)は母線電圧変成器G P ”f’およ
び電流検出装!(9)(10)からの零相電圧および電
流に関する最新のデータを常にT0時間分蓄積している
。今、第3図に示すよつに1時刻t1で変電所内に1線
地絡本故が発生したとすると、地絡保護リレー(11)
がこれを検出して時刻t2で地絡検出信号を出力する。
The memory section (17) always stores the latest data on the zero-sequence voltage and current from the bus voltage transformer G P ``f'' and the current detection devices (9) and (10) for time T0. As shown in Figure 3, if a one-wire ground fault occurs in the substation at time t1, the ground fault protection relay (11)
detects this and outputs a ground fault detection signal at time t2.

この信号を受けて演算部く18)かその動作を開始する
が、この演算部(18)を含む事故区間検出部(12)
の動作と1句連なく上記地絡検出信号に基づき遮断器C
B1.(132が時刻t、においてトリップする。従っ
て、メモリ部(17)はこの時刻t、前′1゛。時間の
データを蓄積していることになり、その内、1線地絡事
故発生直後の12時間は、データに尚流分や高調波成分
からなる過渡分が重畳しているため、これを除< ’r
 、時fm (′I”1=Tl+  1’2) (’)
’7’−タを使用して以上の演算処理を行う。
Upon receiving this signal, the calculation section 18) starts its operation, and the accident section detection section (12) including this calculation section (18)
Based on the above ground fault detection signal, the circuit breaker C
B1. (132 trips at time t. Therefore, the memory unit (17) stores data for '1' before this time t. For 12 hours, transient components consisting of current components and harmonic components are superimposed on the data, so remove this component <'r
, when fm ('I"1=Tl+1'2) (')
The above arithmetic processing is performed using the '7'-data.

先ず、演算部(18)は加算回路(]4)によって求め
られた零相電流1111をメモリ部(17)から読取り
、これが一定レベル以上か否かを判別する。一定レベル
以上でなければ、零相電流は流れていないとして後段の
処理ステップにその結果か送られる。零相電流が一定レ
ベル以上の場合は。
First, the arithmetic unit (18) reads the zero-sequence current 1111 obtained by the adder circuit (4) from the memory unit (17), and determines whether or not this is above a certain level. If it is not above a certain level, it is assumed that no zero-sequence current is flowing, and the result is sent to a subsequent processing step. If the zero-sequence current is above a certain level.

加算回路(13)によって求められメモリ部(17)か
ら読取った零相電圧■。どの位相差を演算する。そして
、零相電流の向きが、零相電圧に対し、て同相なら左向
き、逆相なら右向きとして零相゛電流の方向を判別する
。、*lX間の識別は、この零相電流の有無および零相
電流の方向の情報に史に遮断器補助接点情報を加えてそ
の処理を行う。
Zero-sequence voltage ■ determined by the adder circuit (13) and read from the memory section (17). Which phase difference is calculated? Then, the direction of the zero-sequence current is determined by assuming that the direction of the zero-sequence current is to the left if it is in phase with the zero-sequence voltage, or to the right if it is in the opposite phase. , *lX is processed by adding circuit breaker auxiliary contact information to the information on the presence or absence of this zero-sequence current and the direction of the zero-sequence current.

この遮断3補助接点情報は、事故区間の解析に必曹とな
る地絡事故発生時点における変電所の受電目線に1系る
条件を明確にするものである。即ち、遮断3 CB 1
人、CI(2切のときは線路ILからの1回線受電、遮
断器りB1切、CB、人のときは線路21、からの1回
線受電、そして遮断器CF31人CB2人のときは両線
路IL、21−からの2回線受電としてその種別がtl
XlX間識別の処理ステップ”に人力される。
This breaking 3 auxiliary contact information clarifies the conditions from the power receiving perspective of the substation at the time of occurrence of the ground fault accident, which is essential for analyzing the accident section. That is, blocking 3 CB 1
Person, CI (when 2 people are disconnected, 1 line power is received from the line IL; when the circuit breaker B1 is disconnected, CB, 1 line power is received from line 21 when there are people, and when the circuit breaker is CF31 and CB2, both lines are received) The type is tl as 2-line power reception from IL, 21-
The processing step for XlX identification is performed manually.

演算部(18)は、以上の各情報から以下の第1表ない
し第3表に示す条件により事故区間を判定する。
The calculation unit (18) determines the accident zone based on the above information based on the conditions shown in Tables 1 to 3 below.

第1表(線路I Lからの1回線受電の場合)第2表(
線路21、からの1回線受電の場合)第3表(両線路1 L 21−からの 2回線受電の場合) 但し、上表中、1.1は電流検出装置(9)からの各相
電流から求められた零相電流、■。2は電流検出装置(
10)からの各相電流から求められた零相電流、「−」
は零相電流か一定レベル未満のもの、(左」および「右
」はnif述した零相電流と零相電圧との位相差に対応
して設定した零相電流の方向を・バす。
Table 1 (for single line power reception from line IL) Table 2 (
Table 3 (In the case of 1-line power reception from line 21) (In the case of 2-line power reception from both lines 1 L 21-) However, in the above table, 1.1 indicates each phase current from the current detection device (9) The zero-sequence current found from ■. 2 is a current detection device (
10) Zero-sequence current obtained from each phase current, "-"
is a zero-sequence current or less than a certain level, and (left) and "right" indicate the direction of the zero-sequence current set corresponding to the phase difference between the zero-sequence current and the zero-sequence voltage described above.

L:11−の条件により事故区間か演算により判別され
、時刻し、でその結果が出力表示部(19)に表示され
る訳である。
According to the condition L:11-, it is determined by calculation whether the accident zone is present, the time is determined, and the result is displayed on the output display section (19).

この発明によれば、1四線受電の場合は勿論、2回線受
電の場合にも事故区間の特定がn1能となる。そして、
地絡事故発生後、メモリ部(17)に蓄積されていたデ
ータを続出して演算処理を打つので、高速で大菫のデー
タを処理する必要がなく演算部(18)は1台のマイク
ロプロセッサで構成することができ安価で、信頼性や精
度も向上する。
According to this invention, it is possible to specify the fault section not only in the case of one-four-wire power reception but also in the case of two-line power reception. and,
After a ground fault occurs, the data stored in the memory section (17) is successively retrieved and subjected to arithmetic processing, so there is no need to process a large amount of data at high speed, and the arithmetic section (18) uses one microprocessor. It is inexpensive, and improves reliability and accuracy.

なお、上記実施例では、変電所の電源供給線路か211
!1線で遮断器が2台設けられた場合について説明した
か、回線数や遮断器の台数が更に増加した場合について
もこの発明は同様に適用することができ同等の効果を奏
する。
In addition, in the above embodiment, the power supply line of the substation or 211
! Although the case where two circuit breakers are provided for one line has been described, the present invention can be similarly applied to a case where the number of lines and the number of circuit breakers are further increased, and the same effect can be obtained.

また、変電所としては第5図で不したよつなガス絶縁開
閉装置等であってもよい3 1′発明の効果〕 この発明に係る事故区間検出装置は、以上のように構成
されているので、変電所の受電回数に係る条件がいかな
る場合にも地絡事故発生区間の特定が可能となり、かつ
必要な演算も低速処理がil能となり信頼性、精度が向
上し、装置も安価となる。
Furthermore, the substation may be a gas insulated switchgear or the like not shown in FIG. Therefore, it is possible to identify the section where a ground fault has occurred regardless of the conditions related to the number of times the substation receives power, and the required calculations can be processed at low speed, improving reliability and accuracy, and making the equipment cheaper. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による事故区間検出装置を
適用した変電所を不す回路図、第21Xlはその事故区
間検出部を示すブロック図、第3図および第4図はその
動作を説明するためのそれぞれタイムチャートおよびフ
ローチャート、第5図は従来の事故区間検出装置を適用
したカス絶縁開閉装置を示す回路図、第6図は従来のも
のの動作を説明する回路図である。 図において、(1)(’2)(3)は変電所の内部区間
、(’J)<10)は電流検出装置、(II)は地絡検
出装置としての地絡保護リレー、(12)は事故区間検
出部、(17)はメモリ部、(18)は演算部、GPT
は電圧検出装置としての母線電圧変成器、LL、21−
は電源供給線路、CB、。 CB2は遮断器である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a circuit diagram of a substation to which a fault section detection device according to an embodiment of the present invention is applied, FIG. 21X1 is a block diagram showing the fault section detection section, and FIGS. FIG. 5 is a circuit diagram showing a cass insulation switchgear to which a conventional fault section detection device is applied, and FIG. 6 is a circuit diagram explaining the operation of the conventional device. In the figure, (1), ('2), and (3) are internal sections of the substation, ('J)<10) is a current detection device, (II) is a ground fault protection relay as a ground fault detection device, and (12) is the accident section detection section, (17) is the memory section, (18) is the calculation section, GPT
is a bus voltage transformer as a voltage detection device, LL, 21-
is the power supply line, CB. CB2 is a circuit breaker. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 複数の電源供給線路に接続され内部が開閉機器で複数の
区間に区分された変電所で発生した地絡事故の事故発生
区間を検出するものにおいて、上記区間相互間に流れる
各相電流を検出する電流検出装置、上記変電所の各相母
線電圧を検出する電圧検出装置、上記変電所で発生する
地絡事故を検出する地絡検出装置、上記電流および電圧
検出装置からの出力信号を所定の時間逐次記憶するメモ
リ部、および上記地絡検出装置の地絡検出信号により動
作を開始し上記変電所の電源供給線路端に設けられた遮
断器の補助接点の情報および上記遮断器の上記地絡検出
信号に基づくトリップ動作の時点前に上記メモリ部に記
憶されていた情報から地絡事故の発生区間を演算により
特定する演算部を備えたことを特徴とする変電所の事故
区間検出装置。
For detecting the section where an earth fault occurred in a substation that is connected to multiple power supply lines and divided into multiple sections with switching equipment, detects each phase current flowing between the sections. A current detection device, a voltage detection device that detects each phase bus voltage of the substation, a ground fault detection device that detects a ground fault that occurs in the substation, and output signals from the current and voltage detection device for a predetermined period of time. A memory section that sequentially stores information, and information on an auxiliary contact of a circuit breaker that is activated by the ground fault detection signal of the ground fault detection device and is provided at the end of the power supply line of the substation, and the ground fault detection of the circuit breaker. 1. A fault section detection device for a substation, comprising a calculation section that specifies, by calculation, a section in which a ground fault has occurred from information stored in the memory section before the trip operation based on the signal.
JP939490A 1990-01-17 1990-01-17 Fault section detector for substation Pending JPH03214076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP939490A JPH03214076A (en) 1990-01-17 1990-01-17 Fault section detector for substation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP939490A JPH03214076A (en) 1990-01-17 1990-01-17 Fault section detector for substation

Publications (1)

Publication Number Publication Date
JPH03214076A true JPH03214076A (en) 1991-09-19

Family

ID=11719213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP939490A Pending JPH03214076A (en) 1990-01-17 1990-01-17 Fault section detector for substation

Country Status (1)

Country Link
JP (1) JPH03214076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271104A (en) * 2009-05-20 2010-12-02 Hitachi Ltd Ground-fault position locating method and ground-fault position locating system for realizing the method
CN103412242A (en) * 2013-08-01 2013-11-27 西南交通大学 Method for locating harmonic source based on independent rapid component analysis and mutual information

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271104A (en) * 2009-05-20 2010-12-02 Hitachi Ltd Ground-fault position locating method and ground-fault position locating system for realizing the method
CN103412242A (en) * 2013-08-01 2013-11-27 西南交通大学 Method for locating harmonic source based on independent rapid component analysis and mutual information
CN103412242B (en) * 2013-08-01 2016-03-02 西南交通大学 A kind of harmonic source location method based on Fast Independent Component Analysis and mutual information

Similar Documents

Publication Publication Date Title
KR100246203B1 (en) A control system and method for high impedance ground fault of power line in a power system
JP3284589B2 (en) Transmission line protection method and protection relay device
JP3808624B2 (en) System protection relay device
CA2007833C (en) Method and system of transformer protection and method and system of detecting a defective winding
US5566082A (en) Method of detecting a fault section of busbar
JPS59226615A (en) Offset compensator
JPH03214076A (en) Fault section detector for substation
JPH11344525A (en) Fault point plotting device
Sidhu et al. A numerical technique based on symmetrical components for protecting three-winding transformers
JP2596671B2 (en) Digital ground fault overvoltage relay for high voltage distribution lines.
JP3414921B2 (en) Protective relay
JP2002027660A (en) Ground fault detector for low-voltage circuit
US20230129666A1 (en) Coordination of protective elements in an electric power system
JP2778148B2 (en) Ground fault line selection relay for shared multi-line system
JPH07108057B2 (en) Fault detection device for distribution lines
JPS5857059B2 (en) Distribution line short circuit protection method
JP3024912B2 (en) Differential protection relay
JP2000278856A (en) Protective relay device
JPH0898350A (en) Faulty point orientating equipment of gas insulating switchgear
JPS633536B2 (en)
JP2717320B2 (en) Predicted ground fault accident detection method for high voltage distribution line and predicted ground fault accident section detection method
JPH0799901B2 (en) Protective relay
JPH0458257B2 (en)
JPH04236124A (en) Method for detecting small ground fault of high-voltage distribution line
JPS59204418A (en) Trestle multichannel ground-fault protecting relay