JPH07108057B2 - Fault detection device for distribution lines - Google Patents

Fault detection device for distribution lines

Info

Publication number
JPH07108057B2
JPH07108057B2 JP63005527A JP552788A JPH07108057B2 JP H07108057 B2 JPH07108057 B2 JP H07108057B2 JP 63005527 A JP63005527 A JP 63005527A JP 552788 A JP552788 A JP 552788A JP H07108057 B2 JPH07108057 B2 JP H07108057B2
Authority
JP
Japan
Prior art keywords
phase
zero
current
phase difference
slave station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63005527A
Other languages
Japanese (ja)
Other versions
JPH01180469A (en
Inventor
和明 加藤
明道 沖本
嘉孝 伊藤
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP63005527A priority Critical patent/JPH07108057B2/en
Publication of JPH01180469A publication Critical patent/JPH01180469A/en
Publication of JPH07108057B2 publication Critical patent/JPH07108057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は配電線路の複数の区間のうち、どの区間に事故
が発生したかを検出して事故区間の切り離しができる配
電線路の事故区間検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention detects a faulty section of a distribution line by detecting which section of a plurality of sections of the distribution line has an accident and disconnecting the faulty section. It relates to the device.

(従来の技術) 電線路においては、迅速な事故区間の発見と健全区間の
再送電が望まれるが、従来の配電線の事故区間検出装置
は、第7図に示すように母線Lに接地用変圧器GPTを、
又、配電線1a〜1cには零相変流器ZCTをそれぞれ装着
し、接地用変圧器GPT及び零相変流器ZCTには地絡方向継
電器DGRを接続してあり、地絡事故が発生して事故電流
が流れると、この地絡方向継電器DGRにより零相変流器Z
CTの出力した事故電流と、接地用変圧器GPTの出力した
零相電圧Voとにより事故回線を選択判別し、さらに、二
次母線地絡過電圧継電器OVGRの動作により事故配電線の
遮断器CBが開路するとともに全区間の区分開閉器SSも自
動的に開路するようになっていた。
(Prior Art) Although it is desirable to find a faulty section and retransmit power to a healthy section promptly in an electric line, a conventional faulty section detecting device for a distribution line is for grounding on a bus L as shown in FIG. Transformer GPT,
In addition, the zero-phase current transformer ZCT is attached to each of the distribution lines 1a to 1c, and the grounding transformer GPT and the zero-phase current transformer ZCT are connected to the ground fault direction relay DGR, causing a ground fault. Then, when a fault current flows, this ground fault direction relay DGR causes zero-phase current transformer Z
The fault circuit is selected and discriminated based on the fault current output from the CT and the zero-phase voltage Vo output from the grounding transformer GPT, and the breaker CB of the fault distribution line is activated by the operation of the secondary bus ground fault overvoltage relay OVGR. When the circuit was opened, the section switches SS in all sections were automatically opened.

事故区間を検出するには、まず遮断器CBを投入して、区
間ごとに設けた区分開閉器SSを順次閉路していき、事故
区間前後の区分開閉器SSが閉路されたときの前記零相変
流器ZCTの出力の変動を判別装置(図示略)により判別
して事故区間を検出していた。
To detect an accident section, first turn on the circuit breaker CB and sequentially close the section switches SS provided for each section, and the zero phase when the section switches SS before and after the accident section are closed. The output of the current transformer ZCT was discriminated by a discriminator (not shown) to detect the faulty section.

(発明が解決しようとする課題) ところが、前記従来の配電線路の事故区間検出装置で
は、区分開閉器SSを事故区間前後で閉路すると、事故区
間には再び事故電流が流れるので、再度、遮断器が開路
して全区間が停電し、電力需要家に不便を強いていた。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional fault detection device for a distribution line, when the switch section SS is closed before and after the fault segment, a fault current flows again in the fault segment. Was opened, and all the sections were cut off, making power consumers inconvenient.

又、母線に設置される接地用変圧器(GPT),零相変流
器(ZCT)とその地絡方向継電器(DGR)を各子局に設置
してその子局毎に地絡事故の有無を検出し、その情報か
ら地絡事故区間を検出する方法も考えられるが、この方
式は各子局毎にGPT,ZCT,DGRを設置する必要があり、子
局側の装置が高価なものとなってしまう。
Also, grounding transformers (GPT), zero-phase current transformers (ZCT) and their ground fault direction relays (DGR) installed on the busbars are installed in each slave station to check whether there is a ground fault in each slave station. A method of detecting and detecting the ground fault accident section from the information can be considered, but this method requires installation of GPT, ZCT, DGR for each slave station, which makes the equipment on the slave station side expensive. Will end up.

本発明の目的は、上記問題点を解消して、地絡事故等が
生じた場合に、事故区間を迅速に判別して切り離し、事
故区間以外では停電を無くするか、もしくは事故発生時
のみの短時間停電にとどめることができ、さらに各子局
毎にGPT,ZCT、DGRを設置する必要をなくして子局側の装
置を安価にできる配電線における事故区間検出装置を提
供することにある。
The object of the present invention is to solve the above problems, when a ground fault accident or the like occurs, quickly determine and disconnect the accident section, eliminate the power outage other than the accident section, or only when the accident occurs. An object of the present invention is to provide an accident section detection device in a distribution line that can be used for a short time power outage and can reduce the cost of the device on the slave station side without the need to install GPT, ZCT, DGR for each slave station.

(課題を解決するための手段) この発明は前記目的を達成するため、親局における零相
電圧(Vo)と相成分(Va又はIa)との位相差(θvo−ia
又はθvo−va)と、通信装置(5,11)を介して入力した
子局における零相電流(Io)と相成分(Va′又はIa′)
との位相差(θio−va′又はθio−ia′)とを位相比較
演算して、零相電圧(Vo)と零相電流(Io)との位相差
(θvo−io)を求め、一方の親局において地絡事故区間
を検出するとともに、事故区間となった区間の子局に指
令して該子局において区分開閉機(SS)を開閉路し事故
区間を分離するように構成している。
(Means for Solving the Problem) In order to achieve the above object, the present invention provides a phase difference (θvo-ia) between a zero-phase voltage (Vo) and a phase component (Va or Ia) in a master station.
Or θvo-va) and the zero-phase current (Io) and phase component (Va 'or Ia') in the slave station input via the communication device (5, 11).
And the phase difference (θio-va 'or θio-ia') are compared and calculated to find the phase difference (θvo-io) between the zero-phase voltage (Vo) and the zero-phase current (Io). In addition to detecting the ground fault accident section in the master station, it is configured to instruct the slave station in the section that has become the accident section to separate the accident section by opening and closing the classification switch (SS) in the slave station. .

(作用) 本発明は前記手段を採ったことにより、次のように作用
する。
(Operation) The present invention operates as follows by adopting the above means.

各子局側の検出手段により検出された零相電流及び電流
又は電圧の相成分は子局側の位相差検出回路に入力さ
れ、ここで零相電流と相成分との位相差が検出されて演
算装置に入力され、各子局側のそれぞれの通信装置から
親局側の通信装置に発信される。一方、親局側の検出手
段により検出された零相電圧及び電流又は電圧の相成分
は同じく親局側の位相差検出回路に入力され、ここで位
相差が検出されて親局側の演算装置に入力される。この
親局側では演算装置により子局側から発信された前記位
相差と前記親局側の位相差とを比較演算して、基準とな
る相成分から各子局の零相電圧と零相電流との位相差が
検出され、地絡事故が生じると、その事故区間前後の子
局側において前記位相差が変化するため、この変化した
区間を親局側の演算装置により判別して、検出する。
The zero-phase current and the phase component of the current or voltage detected by the detection means on each slave station side are input to the phase difference detection circuit on the slave station side, where the phase difference between the zero-phase current and the phase component is detected. The data is input to the arithmetic device and transmitted from each communication device on each slave station side to the communication device on the master station side. On the other hand, the zero-phase voltage and the current or the phase component of the voltage detected by the detection unit on the master station side are also input to the phase difference detection circuit on the master station side, where the phase difference is detected and the arithmetic unit on the master station side is detected. Entered in. On the master station side, the phase difference transmitted from the slave station side and the phase difference on the master station side are compared and calculated by a computing device, and the zero phase voltage and zero phase current of each slave station are calculated from the reference phase component. When a ground fault occurs, the phase difference changes on the slave station side before and after the accident section, so the changed section is detected by the arithmetic unit on the master station side. .

そして、親局側の演算回路により所定時間(たとえば1
秒間)以内に事故区間が検出された場合には、親局側の
指令によりループ点開閉器を投入するとともに事故区間
両端の開閉器を開放して、該事故区間を停電し、事故区
間以外の健全区間の配電線に送電する。
Then, an arithmetic circuit on the side of the master station sets a predetermined time (for example, 1
If a faulty section is detected within (seconds), the loop point switch is turned on at the command of the master station and the switches at both ends of the faulty section are opened to shut off the faulty section, Transmit power to distribution lines in healthy sections.

又、親局側の演算回路により前記所定時間以内に事故区
間が検出されなかった場合には、地絡方向継電器で遮断
器を開放して、前記親局側の指令により遮断器、各区分
開閉器及びループ点開閉器を投入して前記事故区間以外
の健全区間に送電する。
If the operation circuit on the master station side does not detect an accident section within the specified time, the circuit breaker is opened by the ground fault direction relay, and the breaker and each section open / close according to the command on the master station side. Turn on the switch and loop point switch to transmit power to healthy sections other than the accident section.

(実施例) 以下、本発明を具体化した一実施例を第1図〜第3図に
基づいて説明する。
(Embodiment) An embodiment embodying the present invention will be described below with reference to FIGS. 1 to 3.

第1図左側に示すように、親局としての変電所側では三
相の配電線1a,1b,1cに対し、零相電圧Voを検出するため
の零相成分の検出手段としての接地用変圧器GPTと、零
相電流Ioを検出するための零相変流器(ZCT)とが接続
されている。又、前記三相の配電線1a,1b,1cには、それ
ぞれ各相の親局側の相成分の検出手段としての変流器CT
a,CTb,CTcが装着され、各配電線の相電流Ia,Ib,Icを検
出し得るようになっている。なお、この実施例では1a相
の電流Iaを後述の位相差検出回路2へ入力するようにし
ている。
As shown on the left side of Fig. 1, on the substation side as the master station, the three-phase distribution lines 1a, 1b, 1c are connected to the grounding transformer as a zero-phase component detecting means for detecting the zero-phase voltage Vo. The device GPT and the zero-phase current transformer (ZCT) for detecting the zero-phase current Io are connected. In addition, the three-phase distribution lines 1a, 1b, 1c, the current transformer CT as a means for detecting the phase component of the parent station side of each phase
The a, CTb, and CTc are attached so that the phase currents Ia, Ib, and Ic of each distribution line can be detected. In this embodiment, the 1a phase current Ia is input to the phase difference detection circuit 2 described later.

前記接地用変圧器GPTと、変流器CTaには、前述した零相
電圧Voと前記1a相の相電流Iaとの位相差θvo−iaを検出
するための親局側の位相差検出回路2が接続されてい
る。又、前記接地変圧器GPTと零相変流器ZCTには地絡方
向継電器DGRが接続され、事故発生信号を次に述べる親
局側の演算装置4に出力し得るようにしている。
The grounding transformer GPT and the current transformer CTa include a phase difference detection circuit 2 on the master station side for detecting a phase difference θvo-ia between the zero-phase voltage Vo and the phase current Ia of the 1a phase described above. Are connected. Further, a ground fault direction relay DGR is connected to the grounding transformer GPT and the zero-phase current transformer ZCT so that an accident occurrence signal can be output to the arithmetic unit 4 on the master station side described below.

前記演算装置4は第2図に示すように中央演算処理装置
CPUと、メモリRAMと、デイジダルインプットDIと、デイ
ジタルアウトプットDOとアドレス・データバスBUSとに
より構成されている。そして、前記デイジタルインプッ
トDIには前記位相差検出回路2からの信号と、地絡方向
継電器DGRからの地絡事故が発生したかいなかを伝達す
るON・OFF信号と、さらに、遮断器CBのON・OFF状態が入
力され、又、遮断器CBはデイジタルアウトプットDOの出
力信号によってON・OFF動作する。
The processing unit 4 is a central processing unit as shown in FIG.
It is composed of a CPU, a memory RAM, a digital input DI, a digital output DO, and an address / data bus BUS. Then, to the digital input DI, a signal from the phase difference detection circuit 2, an ON / OFF signal for transmitting whether or not a ground fault has occurred from the ground fault direction relay DGR, and further ON of the circuit breaker CB.・ The OFF state is input, and the circuit breaker CB is turned ON / OFF by the output signal of the digital output DO.

さらに、前記アドレス・データバスBUSには、次に述べ
る子局側の通信装置11からの信号を受信する親局側の通
信装置5が接続されている。なお、この通信装置5は、
例えば光ファイバやリード線等の通信線12あるいは無線
により営業所の制御装置6と交信が行えるようになって
いる。
Further, the address / data bus BUS is connected to a master station side communication device 5 which receives a signal from a slave station side communication device 11 described below. In addition, this communication device 5
For example, it is possible to communicate with the control device 6 of the sales office by a communication line 12 such as an optical fiber or a lead wire or wirelessly.

一方、第1図右側に示すように配電線1a〜1cの各区間の
三相の配電線1a,1b,1cには、それぞれ各相の相成分の検
出手段としての変流器CTa,CTb,CTcが装着され、各配電
線の相電流Ia′,Ib′,Ic′を検出し得るようになってい
る。
On the other hand, as shown in the right side of FIG. 1, the three-phase distribution lines 1a, 1b, 1c in each section of the distribution lines 1a to 1c respectively include current transformers CTa, CTb, as the means for detecting the phase component of each phase. A CTc is attached so that the phase currents Ia ′, Ib ′, Ic ′ of each distribution line can be detected.

前記各変流器CTa,CTb,CTcは、零相電流検出回路7に接
続され、ここで零相電流Ioを算出するようになってい
る。なお、この実施例では前記変流器CTa〜CTcと零相電
流検出回路7により零相成分の検出手段Mを構成してい
る。
Each of the current transformers CTa, CTb, CTc is connected to the zero-phase current detection circuit 7, and the zero-phase current Io is calculated here. In this embodiment, the current transformers CTa to CTc and the zero-phase current detection circuit 7 constitute a zero-phase component detecting means M.

前記零相電流検出回路7と、三相のうち一相、例えば配
電線1aの変流器CTaには、零相電流Ioと、1a相の電流I
a′との位相差θio−ia′を検出するための子局側の位
相差検出回路8が接続されている。又、前記零相電流検
出回路7には零相電流のレベルを検出するためのIoレベ
ル検出器9が接続され、零相電流Ioの大きさによりON,O
FFするIoレベル信号を次に述べる子局側の演算装置10に
入力するようにしている。
The zero-phase current detection circuit 7 and one of the three phases, for example, the current transformer CTa of the distribution line 1a, have a zero-phase current Io and a 1a-phase current Ia.
A phase difference detection circuit 8 on the slave station side for detecting a phase difference θio-ia 'with a'is connected. Further, an Io level detector 9 for detecting the level of the zero-phase current is connected to the zero-phase current detection circuit 7 and is turned on or off depending on the magnitude of the zero-phase current Io.
The Io level signal for FF is input to the arithmetic unit 10 on the slave station side described below.

前記演算装置10は、第3図に示すように、前述した親局
側の演算装置4と同様に構成されており、デイジタルイ
ンプットDIには前記位相差検出回路8が接続され、か
つ、零相電流検出回路7に接続されたIoレベル検出器9
から出力されたON・OFF信号と、さらに、区分開閉器SS
のON・OFF状態が入力され、又、区分開閉器SSはデイジ
タルアウトプットDOの出力信号によってON・OFF動作す
る。
As shown in FIG. 3, the arithmetic unit 10 is configured in the same manner as the arithmetic unit 4 on the master station side described above, and the phase difference detection circuit 8 is connected to the digital input DI, and the zero phase Io level detector 9 connected to the current detection circuit 7
ON / OFF signal output from the
The ON / OFF state of is input, and the section switch SS is turned on / off by the output signal of the digital output DO.

又、アドレス・データバスBUSには子局側の通信装置11
が接続され、例えば光ファイバやリード線等の通信線12
により前記親局側の通信装置5に接続されている。
In addition, the communication device 11 on the slave station side is connected to the address / data bus BUS.
Are connected to each other, for example, a communication line 12 such as an optical fiber or a lead wire.
Is connected to the master station side communication device 5.

次に、前記のように構成した事故区間検出装置につい
て、その作用を説明する。
Next, the operation of the accident section detection device configured as described above will be described.

まず、親局側においては、接地用変圧器GPTにより零相
電圧Voが検出され、変流器CTaにより1a相の相電流Iaが
検出され、この零相電圧Vo及び相電流Iaは位相差検出回
路2に入力されて、ここで位相差θvo−iaが算出される
とともに、該位相差θvo−iaと地絡方向継電器DGRによ
り事故発生信号が次の演算装置4に入力される。
First, on the master station side, the zero-phase voltage Vo is detected by the grounding transformer GPT, the phase current Ia of the 1a phase is detected by the current transformer CTa, and the zero-phase voltage Vo and the phase current Ia are detected by the phase difference detection. The phase difference θvo-ia is calculated here by being input to the circuit 2, and the accident occurrence signal is input to the next arithmetic unit 4 by the phase difference θvo-ia and the ground fault direction relay DGR.

一方、配電線の子局側においては、各変流器CTa〜CTcに
より各相の相電流Ia′〜Ic′が検出され、この相電流は
零相電流検出回路7に入力されて零相電流Ioが算出され
る。そして、この零相電流Ioと1a相の相電流Ia′が位相
差検出回路8に入力され、ここで位相差θio−ia′が算
出される。そして、この位相差θio−ia′とIoレベル検
出器9から出力されたIoレベル信号は、演算装置10に入
力され、ここから通信装置11により通信線12を経て親局
側の通信装置5へ送信され、該通信装置5から親局側の
演算装置4に入力される。このようにして該演算装置4
には、前述した親局側で検出した位相差θvo−iaと子局
側で検出した位相差θio−ia′が入力されるが、配電線
1a〜1cが健全状態では、親局側の地絡方向継電器DGRか
らOFF信号が、デイジタルインプットDIに入力されてい
るので、親局側の演算装置4は動作しない。
On the other hand, on the slave station side of the distribution line, the phase currents Ia ′ to Ic ′ of the respective phases are detected by the respective current transformers CTa to CTc, and the phase currents are input to the zero phase current detection circuit 7 and the zero phase currents are detected. Io is calculated. Then, the zero-phase current Io and the 1a-phase current Ia 'are input to the phase difference detection circuit 8, where the phase difference θio-ia' is calculated. Then, the phase difference θio-ia ′ and the Io level signal output from the Io level detector 9 are input to the arithmetic unit 10, and from there, the communication unit 11 passes the communication line 12 to the master station side communication unit 5. It is transmitted and input from the communication device 5 to the arithmetic unit 4 on the master station side. In this way, the arithmetic unit 4
The phase difference θvo-ia detected on the master station side and the phase difference θio-ia ′ detected on the slave station side are input to the
When 1a to 1c are in a healthy state, the OFF signal is input from the ground fault direction relay DGR on the master station side to the digital input DI, so the arithmetic unit 4 on the master station side does not operate.

一方、子局側においては地絡事故が発生していないと、
Ioレベル検出器9からOFF信号が、デイジタルインプッ
トDIに入力されているので、子局側の演算装置10も動作
しない。
On the other hand, if there is no ground fault on the slave station side,
Since the OFF signal from the Io level detector 9 is input to the digital input DI, the arithmetic unit 10 on the slave station side does not operate.

今、配電線のある区間で例えば地絡事故が発生すると、
親局側では地絡方向継電器DGRからデジタルインプットD
Iに事故発生信号が入力されるとともに、各子局側のIo
レベル検出器9からON信号がデイジタルインプットDIに
入力されるので、親局側の演算装置4により前述した親
局の位相差θvo−iaと各子局の位相差θio−ia′から基
準となる電流成分の位相θia及びθia′を除去するよう
に減算演算を行って、零相電圧Voと零相電流Ioを求め、
両者の位相差θvo−ioを算出する。そして、事故区間の
前後において、該位相差θvo−ioが変化するので、親局
側において各子局の前記位相差を順次検出し、位相差が
変化した子局があれば、該子局とその上流側の子局との
間の区間で事故が発生していることを確認することがで
きる。
Now, for example, if a ground fault occurs in a section of the distribution line,
On the master station side, digital input D from the ground fault direction relay DGR
An accident occurrence signal is input to I and Io on each slave station side
Since the ON signal is inputted from the level detector 9 to the digital input DI, it becomes the reference from the phase difference .theta.vo-ia of the master station and the phase difference .theta.io-ia 'of each slave station mentioned above by the arithmetic unit 4 on the master station side. The subtraction operation is performed so as to remove the phases θia and θia ′ of the current component, and the zero-phase voltage Vo and the zero-phase current Io are obtained,
The phase difference θvo-io between the two is calculated. Then, since the phase difference θvo-io changes before and after the accident section, the phase difference of each slave station is sequentially detected on the master station side, and if there is a slave station with a changed phase difference, the slave station It is possible to confirm that an accident has occurred in the section with the slave station on the upstream side.

又、前記実施例では母線側の親局の零相電圧Voと電流の
相成分Iaとを前述した位相差θvo−ioの演算に用いてい
るので、各子局には相電流検出手段としての変流器(C
T)のみを設置すれば良く、従って、子局側の装置を安
価にできる。
Further, in the above embodiment, the zero phase voltage Vo of the master station on the bus side and the phase component Ia of the current are used for the calculation of the phase difference θvo-io described above, so that each slave station has a phase current detecting means. Current transformer (C
It is sufficient to install only T), and therefore the device on the slave station side can be made inexpensive.

上述した演算処理時間が所定時間(例えば1秒)以上に
なる場合には、親局側の演算装置4から遮断器CBにOFF
信号又は、DGRの遅延信号であるOFF信号が出力され、配
電線が停電状態となる。その後、親局の指令により遮断
器CB及び区分開閉器SSが操作され、事故区間以外の健全
区間に送電される。
When the above-mentioned calculation processing time becomes a predetermined time (for example, 1 second) or longer, the calculation device 4 on the master station side turns off the breaker CB.
Signal or the OFF signal which is the delay signal of DGR is output, and the distribution line goes into a power failure state. After that, the circuit breaker CB and the classification switch SS are operated according to a command from the master station, and power is transmitted to a healthy section other than the accident section.

上述した演算処理時間が所定時間(例えば1秒)以下に
なる場合には、親局の指令により、前記ループ点開閉器
(図示せず)が閉路され、事故区間をはさむ区分開閉器
SSがOFFされて事故区間のみが停電状態となる。なお、
この場合事故区間は所定時間以内に切り離されるので、
遮断器CBは開路しない。
When the above-mentioned arithmetic processing time becomes less than a predetermined time (for example, 1 second), the loop point switch (not shown) is closed according to a command from the master station, and a segment switch sandwiching an accident section.
The SS is turned off and only the accident section is in the power failure state. In addition,
In this case, the accident section will be cut off within a predetermined time,
Circuit breaker CB does not open.

なお、前記実施例では変電所の建物内に設置されている
接地用変圧器GPTを親局における零相成分の検出手段と
して使用することにより、子局側で、屋外に絶縁信頼性
の点で難点のあるGPTを配設する場合に比較して、信頼
性を向上することができる。
In the above-mentioned embodiment, by using the grounding transformer GPT installed in the building of the substation as a means for detecting the zero-phase component in the master station, the slave station side, in terms of insulation reliability outdoors. The reliability can be improved as compared with the case where a GPT having a difficulty is provided.

なお、本発明は次のように具体化することも可能であ
る。
The present invention can also be embodied as follows.

(1)前記実施例では親局側において地絡方向継電器DG
RからのON・OFF信号を演算装置4に入力するようにした
が、これに代えて第1図に示すように親局側に別途設け
た零相変流器ZCTからの零相電流Ioを第4図に示すIoレ
ベル検出器15に入力し、この検出器15から出力されるON
・OFF信号を演算装置4に入力するように構成し、子局
側の装置は第3図と同様に構成すること。
(1) In the above embodiment, the ground fault direction relay DG on the master station side
Although the ON / OFF signal from R is input to the arithmetic unit 4, instead of this, the zero-phase current Io from the zero-phase current transformer ZCT separately provided on the master station side as shown in FIG. 1 is used. ON input to the Io level detector 15 shown in FIG. 4 and output from this detector 15
-Configure to input the OFF signal to the arithmetic unit 4, and configure the device on the slave station side in the same way as in Fig. 3.

(2)第5図に示すように、親局側の基準となる相電流
Iaに代えて、相成分の検出手段としての計器用変圧器PT
aにより検出された相電圧Va′を位相差検出回路2に入
力し、該検出回路2から位相差θvo−vaを出力するよう
に構成する。一方、子局側において、前記変流器CTaに
代えて、第6図に示すように、各区分に設けた計器用変
圧器PTaからの相電圧Va′を位相差検出回路8に入力
し、該検出回路8から位相差θio−va′を出力するよう
にすること。
(2) As shown in Fig. 5, the reference phase current on the master station side
Instead of Ia, the transformer PT for instrument as a means of detecting the phase component
The phase voltage Va ′ detected by a is input to the phase difference detection circuit 2 and the phase difference θvo-va is output from the detection circuit 2. On the other hand, on the slave station side, instead of the current transformer CTa, as shown in FIG. 6, the phase voltage Va ′ from the instrument transformer PTa provided in each section is input to the phase difference detection circuit 8. The phase difference θio-va 'is output from the detection circuit 8.

(3)第5図に示す親局側の地絡方向継電器DGRに代え
て、前記Ioレベル検出器15からON・OFF信号を演算装置
4に入力するようにすること。
(3) Instead of the ground fault direction relay DGR on the master station side shown in FIG. 5, ON / OFF signals from the Io level detector 15 should be input to the arithmetic unit 4.

前述した第1〜3図に示す実施例及び第4図に示す別例
と、第5,6図に示す別例から明らかなように、前記親局
側の位相差検出回路2には、零相電圧Vo及び相電流Ia又
は相電圧Vaが入力され、それらの位相差θvo−ia、θvo
−vaが出力されることになる。
As is clear from the embodiment shown in FIGS. 1 to 3 and the another example shown in FIG. 4 and the other examples shown in FIGS. 5 and 6, the phase difference detection circuit 2 on the master station side has zero The phase voltage Vo and the phase current Ia or the phase voltage Va are input, and their phase difference θvo−ia, θvo
-Va will be output.

又、子局側の位相差検出回路8には、零相電流Io及び相
電流Ia又は相電圧Va′が入力され、それらの位相差θio
−ia′又はθio−va′が出力されることになる。これら
の位相差情報をもとに子局毎の位相差θvo−ioを求め、
地絡事故区間が前述したように検出される。
Further, the zero phase current Io and the phase current Ia or the phase voltage Va ′ are input to the phase difference detection circuit 8 on the slave station side, and the phase difference θio between them is inputted.
-Ia 'or θio-va' will be output. Based on these phase difference information, the phase difference θvo-io for each slave station is calculated,
The ground fault accident section is detected as described above.

発明の効果 以上詳述したように、本発明は配電線のどの区間に地絡
事故等が生じたかを迅速に検出して、事故区間以外の配
電の停電をなくするか、又は、最少回数にとどめること
ができ、さらに各子局毎にGPT,ZCT、DGRを設置する必要
をなくして子局側の装置を安価にできる効果がある。
Effect of the Invention As described in detail above, the present invention quickly detects in which section of the distribution line a ground fault or the like has occurred, and eliminates the power outage of the distribution other than the accident section, or minimizes the number of times. Further, there is an effect that it is not necessary to install GPT, ZCT and DGR for each slave station and the cost of the device on the slave station side can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の事故区間検出装置の一実施例を示す電
気ブロック回路図、第2図は親局側の演算装置及びその
接続機器の電気ブロック回路図、第3図は子局側の演算
装置及びその接続機器の電気ブロック回路図、第4図は
本発明の別の実施例を示す親局側のみの電気ブロック回
路図、第5図及び第6図はさらに本発明の別の実施例を
示す親局側及び子局側の電気ブロック回路図、第7図は
従来の事故区間検出装置を示す電気回路図である。 1a,1b,1c……配電線、2……親局側の位相差検出回路、
4……親局側の演算装置、5……親局側の通信装置、7
……子局側の零相電流検出回路、8……子局側の位相差
検出回路、9……Ioレベル検出器、10……子局側の演算
装置、11……子局側の通信装置、Vo……零相電圧(成
分)、Io……零相電流(成分)、Ia,Ia′……相電流
(成分)、Va,Va′……相電圧(成分)、θvo−ia,θvo
−va、θio−va′,θio−ia′……位相差、SS……区分
開閉器、GPT……接地用変圧器、DGR……地絡方向継電
器、ZCT……零相変流器、CTa〜CTc……相電流(成分)
検出手段としての変流器、PTa〜PTc……相電圧(成分)
検出手段としての計器用変圧器、M……変流器CTa〜CTc
と零相電流検出回路7とからなる零相電流(成分)検出
手段。
FIG. 1 is an electric block circuit diagram showing an embodiment of the accident section detection device of the present invention, FIG. 2 is an electric block circuit diagram of a computing device on the master station side and its connecting equipment, and FIG. 3 is a slave station side. FIG. 4 is an electrical block circuit diagram of the arithmetic unit and its connected equipment, FIG. 4 is an electrical block circuit diagram only on the master station side showing another embodiment of the present invention, and FIGS. 5 and 6 are further implementations of the present invention. FIG. 7 is an electric block circuit diagram showing a master station side and a slave station side showing an example, and FIG. 7 is an electric circuit diagram showing a conventional accident section detection device. 1a, 1b, 1c …… Distribution lines, 2 …… Phase difference detection circuit on the master station side,
4 ... Calculation device on the master station side, 5 ... Communication device on the master station side, 7
...... Slave station side zero phase current detection circuit, 8 ...... Slave station side phase difference detection circuit, 9 ...... Io level detector, 10 ...... Slave station side arithmetic unit, 11 ...... Slave station side communication Device, Vo ... Zero phase voltage (component), Io ... Zero phase current (component), Ia, Ia '... Phase current (component), Va, Va' ... Phase voltage (component), θvo-ia, θvo
−va, θio−va ′, θio−ia ′ …… Phase difference, SS …… Differential switch, GPT …… Grounding transformer, DGR …… Ground fault direction relay, ZCT …… Zero phase current transformer, CTa ~ CTc …… Phase current (component)
Current transformer as detection means, PTa to PTc ... Phase voltage (component)
Transformer for instrument as detecting means, M ... Current transformer CTa to CTc
Zero-phase current (component) detection means including a zero-phase current detection circuit 7 and the zero-phase current detection circuit 7.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】三相配電線(1a,1b,1c)の系統を区分した
複数の区間において、親局とする一つの区間には、前記
三相配電線(1a,1b,1c)の零相電圧(Vo)と、任意の一
相の電圧あるいは電流の相成分(Va又はIa)の検出手段
(GPT,PTa,CTa)と、前記零相電圧(Vo)と相成分(Va
又はIa)の位相差検出回路(2)とを設け、一方、子局
とする他の区間にはそれぞれ前記三相配電線(1a,1b,1
c)の零相電流(Io)と、前記の任意の一相と同相の電
圧あるいは電流の相成分(Va′又はIa′)の検出手段
(M、CTa,PTa)と,前記零相電流(Io)と相成分(V
a′又はIa′)の位相差検出回路(8)とを設け、か
つ、両位相差検出回路(2,8)にはそれぞれ演算装置
(4,10)と該演算装置(4,10)に接続した区間相互の通
信装置(5,11)とを設けてなり、 親局における零相電圧(Vo)と相成分(Va又はIa)との
位相差(θvo−ia又はθvo−va)と、前記通信装置(5,
11)を介して入力した子局における零相電流(Io)と相
成分(Va′又はIa′)との位相差(θio−va′又はθio
−ia′)とを位相比較演算して、零相電圧(Vo)と零相
電流(Io)との位相差(θvo−io)を求め、一方の親局
において地絡事故区間を検出するとともに、事故区間と
なった区間の子局に指令して該子局において区分開閉器
(SS)を開閉路し事故区間を分離するように構成したこ
とを特徴とした配電線路の事故区間検出装置。
1. In a plurality of sections dividing the system of the three-phase distribution line (1a, 1b, 1c), one section serving as a master station has a zero-phase voltage of the three-phase distribution line (1a, 1b, 1c). (Vo), the detection means (GPT, PTa, CTa) of any one-phase voltage or current phase component (Va or Ia), the zero-phase voltage (Vo) and the phase component (Va)
Alternatively, the phase difference detection circuit (2) of Ia) is provided, and on the other hand, the three-phase distribution lines (1a, 1b, 1) are respectively provided in the other sections which are slave stations.
c) zero-phase current (Io), means (M, CTa, PTa) for detecting the phase component (Va 'or Ia') of the voltage or current in phase with the arbitrary one phase, and the zero-phase current (Io). Io) and phase component (V
a'or Ia ') phase difference detection circuit (8) is provided, and both phase difference detection circuits (2,8) are provided with arithmetic unit (4,10) and arithmetic unit (4,10) respectively. A communication device (5, 11) for connecting sections is provided, and a phase difference (θvo-ia or θvo-va) between the zero-phase voltage (Vo) and the phase component (Va or Ia) in the master station, The communication device (5,
Phase difference (θio-va 'or θio) between the zero-phase current (Io) and the phase component (Va' or Ia ') in the slave station input via 11).
-Ia ') is phase-computed and the phase difference (θvo-io) between the zero-phase voltage (Vo) and the zero-phase current (Io) is calculated. An apparatus for detecting a faulty section of a distribution line, characterized in that a faulty section of a power distribution line is configured to be instructed to a slave station in a section that has become a faulty section so as to open and close a section switch (SS) in the slave station to separate the faulty section.
JP63005527A 1988-01-12 1988-01-12 Fault detection device for distribution lines Expired - Fee Related JPH07108057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63005527A JPH07108057B2 (en) 1988-01-12 1988-01-12 Fault detection device for distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63005527A JPH07108057B2 (en) 1988-01-12 1988-01-12 Fault detection device for distribution lines

Publications (2)

Publication Number Publication Date
JPH01180469A JPH01180469A (en) 1989-07-18
JPH07108057B2 true JPH07108057B2 (en) 1995-11-15

Family

ID=11613662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63005527A Expired - Fee Related JPH07108057B2 (en) 1988-01-12 1988-01-12 Fault detection device for distribution lines

Country Status (1)

Country Link
JP (1) JPH07108057B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331417A (en) * 1991-05-01 1992-11-19 Nissin Electric Co Ltd System for detecting fault section of distribution line
JPH04331418A (en) * 1991-05-01 1992-11-19 Nissin Electric Co Ltd Method and device for detecting grounded section of distribution line
JPH0580109A (en) * 1991-09-20 1993-04-02 Matsushita Electric Ind Co Ltd Troubled division sensing device for power distribution line
JP3317557B2 (en) * 1992-12-21 2002-08-26 東京電力株式会社 Transmission line constant measuring device and method for improving measurement accuracy

Also Published As

Publication number Publication date
JPH01180469A (en) 1989-07-18

Similar Documents

Publication Publication Date Title
US7117105B2 (en) Method and apparatus for ground fault protection
JP3863123B2 (en) 3-phase circuit load unbalance elimination control system
EP2206208B1 (en) Differential protection method, system and device
KR100347488B1 (en) Positive electrode fire extinguishing system of distribution line
Mohamed et al. A review on the proposed solutions to microgrid protection problems
EP0496997B1 (en) Power receiving system
JPH07108057B2 (en) Fault detection device for distribution lines
Amau et al. A Next‐Generation Distribution Automation System Using IEC 61850 GOOSE and Section Switches with Sensors
JP2743522B2 (en) Different power supply contact detection method and device
JPH06311642A (en) Fault point isolating system for distribution line
JP3480671B2 (en) Bus protection system for spot network power receiving equipment
JP3328365B2 (en) Islanding detection device
JP2932440B2 (en) Accident point classification device for distribution lines
JP2558350B2 (en) How to disconnect the faulty section of the distribution line
JPH071980B2 (en) Distribution line accident section detection and separation device
JP6729483B2 (en) Ratio differential relay
RU171206U1 (en) DEVICE FOR PROTECTING ELECTRIC TRANSMISSION LINES FROM SINGLE-PHASE EARTH CLOSES IN A THREE-PHASE NETWORK WITH INSULATED NEUTRAL
JP4540621B2 (en) Line selection relay device with electrical premises protection function and line selection relay system with electrical premises protection function
JP4018497B2 (en) Accident line selection relay device
JPH1080057A (en) Distribution automating system
JP3403752B2 (en) Islanding detection device
JP3641567B2 (en) Ground fault protection device for distribution substation
Ammar Analysis of protection system setting in 11KV distribution system/Ammar Alamshah
JP2821473B2 (en) Detection and disconnection method of predictive ground fault section of high voltage distribution line
JP2547647B2 (en) Failure zone detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees