JPH03214003A - Non-contact displacement sensor - Google Patents

Non-contact displacement sensor

Info

Publication number
JPH03214003A
JPH03214003A JP815890A JP815890A JPH03214003A JP H03214003 A JPH03214003 A JP H03214003A JP 815890 A JP815890 A JP 815890A JP 815890 A JP815890 A JP 815890A JP H03214003 A JPH03214003 A JP H03214003A
Authority
JP
Japan
Prior art keywords
inductance
frequency
core
displacement
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP815890A
Other languages
Japanese (ja)
Other versions
JP2645243B2 (en
Inventor
Atsuo Niimi
新美 淳夫
Ataru Ichikawa
中 市川
Rokuro Okada
岡田 緑郎
Shinzo Ito
伊藤 新三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2008158A priority Critical patent/JP2645243B2/en
Publication of JPH03214003A publication Critical patent/JPH03214003A/en
Application granted granted Critical
Publication of JP2645243B2 publication Critical patent/JP2645243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To improve the resistance against electromagnetic noise and to improve detecting accuracy by improving frequency characteristics by providing a detecting coil and an inductance detecting means. CONSTITUTION:A detecting coil 1 is formed by forming a winding 3 around a core 2 wherein thin plates of iron-based amorphous alloy whose high-frequency loss is small are laminated. Both ends of the core 2 are made to face an object 4 and arranged at a fixed state. An oscillator 5, an detector 6 and a filter 7 constitute a inductance detecting means. In this constitution, when an AC at a high frequency is supplied to the winding 3 from the oscillator 5, the increase in magnetoresistance of the core 2 in the closed magnetic path constituted of the detecting coil 1 is suppressed. Therefore, magnetoresistance component caused with a gap epsilon becomes large, and the inductance change due to the displacement of the object 4 becomes large. Thus sensitivity is improved. When the oscillating frequency of the oscillator 5 is set in the flat region of the inductance, the inductance with respect to the modulated wave caused by the displacement of the object 4 becomes approximately constant, and the measuring accuracy is improved.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は、非接触状態で対象物の変位を検出する非接触
変位センサに関し、中でもインダクタンス変化検知型の
変位センサに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a non-contact displacement sensor that detects the displacement of an object in a non-contact state, and particularly to an inductance change detection type displacement sensor.

(従来技術) 近年、磁気吸引力を利用して回転軸を非接触状態で支持
する磁気軸受が提案されており、超高速回転の可能性に
ついて注目されている。この磁気軸受は、非接触状態で
対象物の変位を検出する非接触変位センサを利用i、で
、回転軸を支持するための磁気吸引力を発生する電磁石
を前記変位センサで検出した回転軸の変位に基いて制御
する、二とにより、回転軸の非接触支持を実現している
(Prior Art) In recent years, magnetic bearings have been proposed that use magnetic attraction to support a rotating shaft in a non-contact manner, and are attracting attention for their potential for ultra-high speed rotation. This magnetic bearing uses a non-contact displacement sensor that detects the displacement of an object in a non-contact state. Control based on displacement (2) realizes non-contact support of the rotating shaft.

このような磁気軸受等に利用される非接触変位センサと
しては、インダクタンス変化検知型の変位センサが測定
範囲が広く、出力が大きい等の特長を有することから広
く知られている。このインダクタンス変化検知型の変位
センサは、対象物を鉄心入りコイルの閉磁路の一部とし
て利用し2、対象物の変位により該コイルと対象物間の
空隙が変化すると、閉磁路の磁気抵抗が変化してコイル
のインダクタンスが変化するので、このインダクタンス
変化を、コイルに所定の周波数の交流電流を供給してコ
イル両端の電圧を測定することにより検出して、対象物
の変位を検出している。
As non-contact displacement sensors used in such magnetic bearings, inductance change detection type displacement sensors are widely known because they have features such as a wide measurement range and large output. This inductance change detection type displacement sensor uses the object as a part of the closed magnetic path of a coil with an iron core2.When the air gap between the coil and the object changes due to the displacement of the object, the magnetic resistance of the closed magnetic path increases. As the inductance of the coil changes, this change in inductance is detected by supplying an alternating current of a predetermined frequency to the coil and measuring the voltage across the coil to detect the displacement of the object. .

(発明が解決しようとする課題) 上記の如き従来のインダクタンス変化検知型の非接触変
位センサにおいて、前述の磁気軸受の超高速回転化への
対応を考慮した場合、超高速回転化のためには、磁気軸
受のロータ長を短縮して回転軸の曲げ共振点を向上させ
る必要があるため、モータおよび軸受用電磁石と変位セ
ンサとの距離が小さくなり、さらに大気中での高速回転
時においては回転の上昇とともに回転軸の風損が増大す
るために大出力のモータが必要となることから、変位セ
ンサに対する電磁ノイズが非常に増大し、その対策が要
求されている。
(Problems to be Solved by the Invention) In the conventional inductance change detection non-contact displacement sensor as described above, when considering the above-mentioned response to the ultra-high speed rotation of the magnetic bearing, it is necessary to , it is necessary to shorten the rotor length of the magnetic bearing to improve the bending resonance point of the rotating shaft, which reduces the distance between the motor and bearing electromagnet and the displacement sensor. Since the windage loss of the rotating shaft increases with the rise of the displacement sensor, a high-output motor is required, and as a result, electromagnetic noise to the displacement sensor increases significantly, and countermeasures are required.

また、従来の非接触変位センサは、検出コイルのコアが
通常珪素鋼板により構成されており、第3図に示すよう
に周波数が上昇するにつれてインダクタンスが低下する
特性を有している。このため、電源電圧の変動による入
力信号の周波数変化や対象物の変位により生じる変調波
によってインダクタンスが変化し、検出精度の低下が生
じていた。
Further, in conventional non-contact displacement sensors, the core of the detection coil is usually made of a silicon steel plate, and has a characteristic that the inductance decreases as the frequency increases, as shown in FIG. Therefore, the inductance changes due to a change in the frequency of the input signal due to a change in the power supply voltage or a modulated wave caused by the displacement of the object, resulting in a decrease in detection accuracy.

そこで本発明は、インダクタンス変化検知型の非接触変
位センサにおいて、電磁ノイズに対する耐性を向上させ
、また周波数特性を改善して検出精度を向上させようと
するものである。
Therefore, the present invention aims to improve the resistance to electromagnetic noise and frequency characteristics of a non-contact displacement sensor that detects changes in inductance, thereby improving detection accuracy.

(課題を解決するための手段) 上記課題を解決するために、本発明は、高周波損失の小
さいアモルファス合金よりなるコアを有し、対象物と対
向して設置されて該対象物の一部を含む閉磁路を構成す
べき検出コイルと、前記検出コイルに所定の周波数の信
号を印加して該検出コイルのインダクタンスを検出する
インダクタンス検出手段とを備えたものであり、また前
記インダクタンス検出手段の用いる前記信号は、前記検
出コイルの周波数に対するインダクタンスの変化特性の
平坦な周波数領域に設定したものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention has a core made of an amorphous alloy with low high frequency loss, and is installed opposite to an object to partially cover the object. and an inductance detection means for applying a signal of a predetermined frequency to the detection coil to detect the inductance of the detection coil, and the use of the inductance detection means. The signal is set in a frequency range in which the inductance change characteristic with respect to the frequency of the detection coil is flat.

(作用および発明の効果) 上記の如く構成された本発明では、インダクタンス検出
手段より検出コイルに供給される信号は対象物の変位の
周波数に対して非常に高く設定する必要があるが、高周
波損失の小さいアモルファス合金を用いて検出コイルの
コアを構成することにより、検出コイルが構成する閉磁
路の全磁気抵抗のうち検出コイルと対象物との空隙に起
因する磁気抵抗の割合が増大するため、センサとしての
感度が向上し、外乱である電磁ノズルの影響を低減する
ことができる。またアモルファス合金をコアに用いた検
出コイルの周波数対インダクタンス特性は、周波数変化
に対してインダクタンスが変化しない領域を有するので
、この周波数領域の中心付近に検出コイルに供給する信
号の周波数を設定することにより、対象物の変位による
変調波等が生じてもインダクタンスが変化せず、センサ
の周波数特性が平坦となり、検出精度°が向上する。
(Operation and Effects of the Invention) In the present invention configured as described above, the signal supplied from the inductance detection means to the detection coil needs to be set very high with respect to the frequency of displacement of the object. By constructing the core of the detection coil using an amorphous alloy with a small The sensitivity of the sensor is improved, and the influence of the electromagnetic nozzle as a disturbance can be reduced. In addition, the frequency versus inductance characteristic of a detection coil whose core is made of an amorphous alloy has a region where the inductance does not change with respect to frequency changes, so the frequency of the signal supplied to the detection coil should be set near the center of this frequency region. Therefore, even if a modulated wave or the like is generated due to the displacement of the object, the inductance does not change, the frequency characteristics of the sensor become flat, and the detection accuracy improves.

(実施例) 第1図は本発明の一実施例を示す図である。第1図にお
いて、検出コイル1は高周波損失の小さい鉄系のアモル
ファス合金の薄板を積層してなる略U字形のコア2の外
周に巻線3を巻装したものであり、変位が検出される対
象物4にコア2の両端を対向させて固定的に配置される
。5,6および7はインダクタンス検出手段を構成する
それぞれ発振器、検波器およびフィルタである。発振器
5の交流出力は検出コイルlの巻M3の一端に供給され
る。巻線3はその両端の電圧を測定するために他端が接
地されており、前記交流入力が供給される一端側におい
て検波器6に接続されて、検波器6により巻線3の接地
点からの端子電圧が検出される。この検波器6の出力は
ローパスまたはノツチ、あるいは両者を組合せたフィル
タ7に供給されて対象物4の変位成分のみが抽出される
(Example) FIG. 1 is a diagram showing an example of the present invention. In Fig. 1, a detection coil 1 is a roughly U-shaped core 2 made of laminated thin plates of iron-based amorphous alloy with low high-frequency loss, and a winding 3 wound around the outer circumference of the core 2, which detects displacement. The core 2 is fixedly placed on the object 4 with both ends facing each other. 5, 6, and 7 are an oscillator, a detector, and a filter, respectively, constituting the inductance detection means. The AC output of the oscillator 5 is supplied to one end of the winding M3 of the detection coil l. The other end of the winding 3 is grounded to measure the voltage across the winding 3, and one end to which the AC input is supplied is connected to a detector 6. terminal voltage is detected. The output of the detector 6 is supplied to a low-pass or notch filter 7, or a filter 7 that is a combination of both, and only the displacement component of the object 4 is extracted.

ここで、発振器5の出力インピーダンスは巻線3の入力
インピーダンスに比して大きく、発振器5からの交流出
力は定電流出力となる。また対象物4は少くともコア2
と対向する部分が磁性体で構成されており、検出コイル
1はコア2、対象物4との空隙εおよび対象物4を通る
閉磁路を構成する。この閉磁路において、空隙εの磁気
抵抗は磁性体よりなるコア2および対象物4に比して大
きく、対象物4の変位により空隙εが変化すると閉磁路
内の磁気抵抗が大きく変化し、検出コイル1のインダク
タンスが変化する。このインダクタンス変化を、上記の
如く巻線3に発振器5により交流定電流を流し、検波器
6で巻線3の両端電圧を検出し、フィルタ7で交流電圧
を平滑化して対象物4の変位成分のみを検出する。
Here, the output impedance of the oscillator 5 is larger than the input impedance of the winding 3, and the AC output from the oscillator 5 is a constant current output. In addition, object 4 is at least core 2
The detection coil 1 forms a closed magnetic path passing through the core 2, the gap ε between the core 2, the object 4, and the object 4. In this closed magnetic path, the magnetic resistance of the air gap ε is larger than that of the core 2 and the object 4 made of magnetic material, and when the air gap ε changes due to the displacement of the object 4, the magnetic resistance in the closed magnetic path changes greatly, and the detection The inductance of coil 1 changes. This inductance change is detected by applying a constant AC current to the winding 3 using the oscillator 5 as described above, detecting the voltage across the winding 3 using the detector 6, and smoothing the AC voltage using the filter 7 to generate a displacement component of the object 4. Detect only.

このとき、発振器5の発振周波数は検出しようとする対
象物4の変位の周波数に対し十分に高い周波数に設定す
る必要がある。一方、鉄系のアモルファス合金よりなる
コア2を有する検出コイル1を用いた場合、第2図に示
すように高周波領域に周波数変化に対して、インダクタ
ンスが変化せずほぼ一定となるインダクタンス平坦領域
が存在することか実験により確認されている。そこで本
実施例ではこのインダクタンス平坦領域の中心付近に発
振器5の発振周波数を設定している。
At this time, the oscillation frequency of the oscillator 5 needs to be set to a sufficiently higher frequency than the frequency of the displacement of the object 4 to be detected. On the other hand, when using the detection coil 1 having the core 2 made of an iron-based amorphous alloy, there is a flat inductance region in the high frequency region where the inductance does not change and remains almost constant as the frequency changes, as shown in FIG. Its existence has been confirmed by experiment. Therefore, in this embodiment, the oscillation frequency of the oscillator 5 is set near the center of this inductance flat region.

以りの構成において、コア2を高周波損失の小さいアモ
ルファス合金で構成したことにより、発振器5より巻線
3に高い周波数の交流電流が供給されたときに、検出コ
イル1が構成する閉磁路における磁性体部分(即ち、コ
ア2)の磁気抵抗の増大が著しく抑制されるので、該閉
磁路の全磁気抵抗中のコア2と対象物4との空隙εに起
因する磁気抵抗成分が大きく、対象物4の変位によるイ
ンダクタンス変化が大きくなり、センサとしての感度が
向上する。また、従来の珪素鋼板コアの周波数特性(第
3図参照)では存在しなかったアモルファス合金よりな
るコア2に特有の周波数特性であるインダクタンス平坦
領域に発振器5の発振周波数を設定することにより、対
象物4の変位による変調波に対してもインダクタンスが
ほぼ一定となり、センサとしての周波数特性が良好なも
のとなり、検出精度が向上する。このように本実施例に
よれば、非接触変位センサの感度を向上させ、周波数特
性を平坦にして検出精度を向上させることができるので
、電磁ノイズ等の外乱に強く、磁気軸受の超高回転化に
も対応し得るものである。
In the above configuration, since the core 2 is made of an amorphous alloy with low high frequency loss, when a high frequency alternating current is supplied from the oscillator 5 to the winding 3, the magnetic field in the closed magnetic circuit formed by the detection coil 1 is reduced. Since the increase in the magnetic resistance of the body part (i.e., the core 2) is significantly suppressed, the magnetic resistance component due to the air gap ε between the core 2 and the object 4 in the total magnetic resistance of the closed magnetic path is large, and the object The change in inductance due to the displacement of 4 becomes large, and the sensitivity of the sensor improves. In addition, by setting the oscillation frequency of the oscillator 5 in the inductance flat region, which is a frequency characteristic unique to the core 2 made of amorphous alloy, which did not exist in the frequency characteristic of the conventional silicon steel plate core (see Figure 3), the target The inductance is almost constant even with respect to modulated waves due to the displacement of the object 4, and the frequency characteristics as a sensor are good, and detection accuracy is improved. In this way, according to this embodiment, the sensitivity of the non-contact displacement sensor can be improved, and the frequency characteristics can be flattened to improve detection accuracy, so it is resistant to disturbances such as electromagnetic noise, and the ultra-high rotation speed of the magnetic bearing can be improved. It is also possible to respond to

なお、変位が検出される対象物の検出コイルによる閉磁
路が構成される部分をアモルファス合金にすることによ
り、よりセンサの感度を向上させることができる。また
、前記実施例では単一の検出コイルで対象物の変位を検
出する構成であったが、公知の2以りの検出コイルをブ
リッジ接続した構成(一方はダミーでも良い)の変位セ
ンサでも本発明は同様な効果を奏する。さらに前記実施
例では、検出コイルに交流定電流を流してその両端の電
圧を検出したが、検出コイルを交流定電圧で駆動して検
出コイルに流れる電流を検出しても良い。また制御用に
はフィルタ7は必ずしも必要ではない。
Note that the sensitivity of the sensor can be further improved by using an amorphous alloy for the portion of the object whose displacement is to be detected, in which the closed magnetic path formed by the detection coil is formed. In addition, although the configuration in the above embodiment was such that the displacement of the target object was detected using a single detection coil, a displacement sensor having a configuration in which two or more known detection coils are connected in a bridge manner (one may be a dummy) may also be used. The invention has similar effects. Further, in the embodiment described above, a constant AC current is passed through the detection coil to detect the voltage across the coil, but the detection coil may be driven with a constant AC voltage to detect the current flowing through the detection coil. Further, the filter 7 is not necessarily required for control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は本発
明の一実施例の周波数対インダクタンス特性を示す図、
第3図は従来の非接触変位センサの周波数対インダクタ
シス特性を示す図である。 1・・・・・・・・検出コイル、 2・・・・・・・・・コア、 3・・・・・・・・・巻線、 4・・・・・・・・対象物、 5・・・・・・・・・発振器、 6・・・・・・・・・検波器、 ・・・・・・・フィルタ。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing frequency versus inductance characteristics of an embodiment of the present invention.
FIG. 3 is a diagram showing frequency versus inductance characteristics of a conventional non-contact displacement sensor. 1...Detection coil, 2...Core, 3...Winding, 4...Target, 5 ......Oscillator, 6......Detector, ......Filter.

Claims (2)

【特許請求の範囲】[Claims] (1)アモルファス合金よりなるコアを有し、対象物と
対向して設置されて該対象物の一部を含む閉磁路を構成
すべき検出コイルと、前記検出コイルに所定の周波数の
信号を印加して該検出コイルのインダクタンスを検出す
るインダクタンス検出手段とを備えたことを特徴とする
非接触変位センサ。
(1) A detection coil that has a core made of an amorphous alloy and is placed facing an object to form a closed magnetic path that includes a part of the object, and a signal of a predetermined frequency is applied to the detection coil. A non-contact displacement sensor comprising: an inductance detection means for detecting inductance of the detection coil.
(2)前記インダクタンス検出手段が前記検出コイルに
印加する信号の周波数を該コイルの周波数に対するイン
ダクタンスの変化特性の平坦な周波数領域に設定したこ
とを特徴とする特許請求の範囲第1項記載の非接触変位
センサ。
(2) The inductance detection means sets the frequency of the signal applied to the detection coil to a frequency range in which the inductance change characteristic with respect to the frequency of the coil is flat. Contact displacement sensor.
JP2008158A 1990-01-19 1990-01-19 Non-contact displacement sensor and displacement detection method Expired - Fee Related JP2645243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008158A JP2645243B2 (en) 1990-01-19 1990-01-19 Non-contact displacement sensor and displacement detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008158A JP2645243B2 (en) 1990-01-19 1990-01-19 Non-contact displacement sensor and displacement detection method

Publications (2)

Publication Number Publication Date
JPH03214003A true JPH03214003A (en) 1991-09-19
JP2645243B2 JP2645243B2 (en) 1997-08-25

Family

ID=11685526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008158A Expired - Fee Related JP2645243B2 (en) 1990-01-19 1990-01-19 Non-contact displacement sensor and displacement detection method

Country Status (1)

Country Link
JP (1) JP2645243B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170844B2 (en) * 2008-11-22 2013-03-27 マークテック株式会社 Eddy current flaw detector and eddy current flaw detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080157A (en) * 1973-11-14 1975-06-30
JPS5533607A (en) * 1978-08-31 1980-03-08 Tdk Corp Force-displacement transducer
JPS5687816A (en) * 1979-12-19 1981-07-16 Matsushita Electric Ind Co Ltd Pressure or displacement sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080157A (en) * 1973-11-14 1975-06-30
JPS5533607A (en) * 1978-08-31 1980-03-08 Tdk Corp Force-displacement transducer
JPS5687816A (en) * 1979-12-19 1981-07-16 Matsushita Electric Ind Co Ltd Pressure or displacement sensor

Also Published As

Publication number Publication date
JP2645243B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
EP0366217B1 (en) Torque sensor
US4805466A (en) Device for the contactless indirect electrical measurement of the torque at a shaft
EP0217640A2 (en) A torque sensor of the non-contact type
JPS58151533A (en) Noncontact measuring method for static and dynamic torque
US20070227268A1 (en) Magnetostrictive torque sensor
ES2107948A1 (en) Sensorless measurement of electromagnetic actuator displacement device
JPH03214003A (en) Non-contact displacement sensor
JP2002022706A (en) Magnetic sensor, magnetic leakage flux flaw detection method, and its device
JPS62184323A (en) Magneto-striction type torque sensor
JPS618639A (en) Magnetostriction type torque detector
JPH01318901A (en) Magnetic induction type sensor
EP3388806A1 (en) Circumferential force measuring device
JPH05231809A (en) Electromotive force type eddy current displacement gauge
JPH0729466A (en) Proximity switch
US20220282998A1 (en) Linear motion sensor
JPH0125305B2 (en)
JP3680363B2 (en) Magnetic bearing control device
JPH05118331A (en) Magnetic bearing device
JP2001305163A (en) Current sensor
JP3216038B2 (en) Magnetic detection method and magnetic detection device using vibrator
JPH05126654A (en) Magnetostrictive torque sensor
JPH0754274B2 (en) Torque detection method
JPH07113700A (en) Magnetostrictive torque detection device and magnetostrictive stress detector
JPH088351Y2 (en) Magnetic particle type electromagnetic coupling device
JPS6050429A (en) Torque sensor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees