JP5170844B2 - Eddy current flaw detector and eddy current flaw detection method - Google Patents

Eddy current flaw detector and eddy current flaw detection method Download PDF

Info

Publication number
JP5170844B2
JP5170844B2 JP2008298872A JP2008298872A JP5170844B2 JP 5170844 B2 JP5170844 B2 JP 5170844B2 JP 2008298872 A JP2008298872 A JP 2008298872A JP 2008298872 A JP2008298872 A JP 2008298872A JP 5170844 B2 JP5170844 B2 JP 5170844B2
Authority
JP
Japan
Prior art keywords
lift
detection
current
eddy current
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008298872A
Other languages
Japanese (ja)
Other versions
JP2010122199A (en
Inventor
俊 日比野
直樹 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP2008298872A priority Critical patent/JP5170844B2/en
Publication of JP2010122199A publication Critical patent/JP2010122199A/en
Application granted granted Critical
Publication of JP5170844B2 publication Critical patent/JP5170844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、渦電流探傷装置と渦電流探傷方法に関し、特に渦電流探傷プローブを用いて被検査体を探傷するとき、渦電流探傷プローブのコイルと被検査体の距離(ギャップ)を検出し、その検出した距離に応じて検出されたキズ信号の大きさを補正する渦電流探傷装置と渦電流探傷方法に関する。   The present invention relates to an eddy current flaw detector and an eddy current flaw detection method, and in particular, when a test object is flawed using an eddy current flaw probe, a distance (gap) between the coil of the eddy current flaw probe and the test object is detected, The present invention relates to an eddy current flaw detection apparatus and an eddy current flaw detection method for correcting the magnitude of a flaw signal detected according to the detected distance.

渦電流探傷プローブを移動して被検査体を探傷するとき、渦電流探傷プローブのコイルと被検査体の距離(いわゆるリフトオフ)が変動すると、キズ信号の大きさも変動するため探傷の精度が低下してしまう。しかしリフトオフを一定に保持した状態で渦電流探傷プローブを移動することは難しいため、従来距離センサ等によってリフトオフを検出し、その検出したリフトオフに応じてキズ信号の大きさを補正(調整)する渦電流探傷装置が提案されている(例えば、特許文献1、特許文献2参照)。   When moving the eddy current flaw detection probe to inspect the inspection object, if the distance between the coil of the eddy current flaw detection probe and the inspection object fluctuates (so-called lift-off), the flaw signal also fluctuates and the flaw detection accuracy decreases. End up. However, since it is difficult to move the eddy current flaw detection probe while keeping the lift-off constant, a conventional eddy current is detected by a distance sensor or the like, and the magnitude of the scratch signal is corrected (adjusted) according to the detected lift-off. Current flaw detection devices have been proposed (see, for example, Patent Document 1 and Patent Document 2).

図2により、リフトオフの検出に光学式の距離センサを用いた従来の渦電流探傷装置(特許文献1)を説明する。
図2(a)は、渦電流探傷プローブと被検査体を示す。
渦電流探傷プローブのコイル12は、被検査体11と対向するように配置してある。
渦電流探傷プローブのコイル12の外周には、距離センサ131〜133を取り付けてある。距離センサ131〜133は、光を利用して被検査体11までの距離、即ちリフトオフを検出する。図2(a)の渦電流探傷プローブを用いた探傷装置は、距離センサ131〜133が検出したリフトオフに対応する信号によりキズ信号を補正する。
A conventional eddy current flaw detector (Patent Document 1) using an optical distance sensor for detecting lift-off will be described with reference to FIG.
FIG. 2A shows an eddy current flaw detection probe and a test object.
The coil 12 of the eddy current flaw detection probe is arranged so as to face the object to be inspected 11.
Distance sensors 131 to 133 are attached to the outer periphery of the coil 12 of the eddy current flaw detection probe. The distance sensors 131 to 133 detect the distance to the device under test 11, that is, lift-off, using light. The flaw detection apparatus using the eddy current flaw detection probe shown in FIG. 2A corrects the scratch signal using a signal corresponding to lift-off detected by the distance sensors 131 to 133.

図2(b)は、図2(a)の距離センサ131〜133の具体的構成を示す。なお図2(b)は、一個の距離センサのみを示してある。
距離センサ13は、光源141、受光体(ホトダイオード)142、ハーフミラー143、レンズ144からなる。光源141から放射された光L1は、ハーフミラー143、レンズ144を介して被検査体11に照射され、検査体11において反射した光L2は、レンズ144、ハーフミラー143を介して受光体142に到達する。渦電流探傷装置の補正部15は、受光体142の受信信号を用いてリフトオフを検出(計測)し、その検出したリフトオフに対応する信号によりキズ信号を補正する。
FIG. 2B shows a specific configuration of the distance sensors 131 to 133 shown in FIG. Note that FIG. 2B shows only one distance sensor.
The distance sensor 13 includes a light source 141, a light receiver (photodiode) 142, a half mirror 143, and a lens 144. The light L1 emitted from the light source 141 is irradiated to the inspection object 11 via the half mirror 143 and the lens 144, and the light L2 reflected by the inspection object 11 is applied to the light receiving body 142 via the lens 144 and the half mirror 143. To reach. The correction unit 15 of the eddy current flaw detection apparatus detects (measures) lift-off using the received signal of the photoreceptor 142 and corrects the scratch signal using a signal corresponding to the detected lift-off.

リフトオフの検出には、光学式の距離センサの外リフトオフ測定用コイルを用い、渦電流探傷プローブの励磁コイルの外周にリフトオフ測定用コイルを配置したものもある(特許文献2)。リフトオフ測定器は、リフトオフ測定用コイルの検出信号を用いてリフトオフを測定し、そのリフトオフに応じて渦電流探傷プローブの励磁電流や検出電流を制御してキズ信号を補正する。   In order to detect lift-off, there is a technique in which an outer lift-off measurement coil of an optical distance sensor is used and a lift-off measurement coil is arranged on the outer periphery of an excitation coil of an eddy current flaw detection probe (Patent Document 2). The lift-off measuring device measures the lift-off using the detection signal of the lift-off measuring coil, and corrects the scratch signal by controlling the excitation current and the detection current of the eddy current flaw detection probe according to the lift-off.

特開2006−138784号公報JP 2006-138784 A 特開2003−232776号公報Japanese Patent Laid-Open No. 2003-232776

従来の渦電流探傷装置は、渦電流探傷プローブのコイルと別体の距離センサやリフトオフ測定用コイルを設けなければならないから、渦電流探傷プローブは、大型化し構造が複雑になり、かつ距離センサやリフトオフ測定用コイルの検出信号に基づいてリフトオフを検出(計測)しなければならないから、リフトオフの計測・検出手段が必要になる。
また従来の渦電流探傷装置は、渦電流探傷プローブのコイルの外周に距離センサやリフトオフ測定用コイルを取り付けてあるから、距離センサやリフトオフ測定用コイルの位置は、渦電流探傷プローブのコイルの中心からずれてしまい、リフトオフの検出点と探傷の中心点が一致しなくなる。そのため従来の渦電流探傷装置は、リフトオフの補正精度が低下する。
本願発明は、従来の渦電流探傷プローブの前記問題点に鑑み、渦電流探傷プローブのコイルとリフトオフ検出手段を一体化することを目的する。
Conventional eddy current flaw detectors must be provided with a distance sensor and lift-off measuring coil separate from the coil of the eddy current flaw probe, so that the eddy current flaw probe has a large size and a complicated structure. Since lift-off must be detected (measured) based on the detection signal of the lift-off measuring coil, a lift-off measuring / detecting means is required.
Further, since the conventional eddy current flaw detector has a distance sensor and a lift-off measurement coil attached to the outer periphery of the coil of the eddy current flaw probe, the position of the distance sensor and the lift-off measurement coil is the center of the coil of the eddy current flaw probe. The detection point of lift-off and the center point of flaw detection do not coincide with each other. Therefore, the conventional eddy current flaw detector has a lower lift-off correction accuracy.
An object of the present invention is to integrate a coil of an eddy current flaw detection probe and a lift-off detection means in view of the above-mentioned problems of a conventional eddy current flaw detection probe.

本願発明は、その目的を達成するため、請求項1に記載の渦電流探傷装置は、渦電流探傷プローブの励磁コイルに探傷励磁電流とリフトオフ検出電流を供給する励磁電源、励磁コイルを用いてリフトオフを検出するリフトオフ検出回路、及びリフトオフ検出回路によりキズ信号を補正するキズ信号補正回路を備えた渦電流探傷装置であって
前記励磁コイルを前記リフトオフ検出電流により定電流駆動する定電流駆動回路を備え、前記リフトオフは、定電流駆動回路からリフトオフに対応する駆動電圧として検出し、前記リフトオフ検出回路は、その駆動電圧に対応する補正電圧を発生することを特徴とする。
請求項2に記載の渦電流探傷装置は、請求項1に記載の渦電流探傷装置において、前記リフトオフ検出電流は、探傷励磁電流であることを特徴とする。
請求項3に記載の渦電流探傷方法は、渦電流探傷プローブの励磁コイルに探傷励磁電流とリフトオフ検出電流を供給し、励磁コイルを用いてリフトオフ検出回路によりリフトオフを検出し、そのリフトオフによりキズ信号を補正する渦電流探傷方法であって
前記リフトオフは、前記励磁コイルを前記リフトオフ検出電流により定電流駆動する定電流駆動回路からリフトオフに対応する駆動電圧として検出し、その駆動電圧に対応する補正電圧により前記キズ信号を補正することを特徴とする。
In order to achieve the object of the present invention, an eddy current flaw detection device according to claim 1 is a lift-off method using an excitation power source and an excitation coil for supplying a flaw detection excitation current and a lift-off detection current to the excitation coil of the eddy current flaw detection probe. An eddy current flaw detection device including a lift-off detection circuit for detecting a flaw and a flaw signal correction circuit for correcting a flaw signal by the lift-off detection circuit ,
A constant current drive circuit that drives the excitation coil at a constant current using the lift-off detection current is provided. The lift-off is detected as a drive voltage corresponding to lift-off from the constant-current drive circuit, and the lift- off detection circuit corresponds to the drive voltage. A correction voltage to be generated is generated .
The eddy current flaw detector according to claim 2 is the eddy current flaw detector according to claim 1, wherein the lift-off detection current is a flaw detection excitation current.
In the eddy current flaw detection method according to claim 3, a flaw detection excitation current and a lift-off detection current are supplied to the excitation coil of the eddy current flaw detection probe, and lift-off is detected by a lift-off detection circuit using the excitation coil. An eddy current flaw detection method for correcting
The lift-off, the detecting the exciting coil as a drive voltage corresponding to the lift-off from the constant current driving circuit for constant current driven by the lift off detection current, that you correct the flaw signal by the correction voltage corresponding to the drive voltage Features.

本願発明は、励磁コイルがリフトオフ検出用コイルを兼ねているから、リフトオフ検出センサを別途設ける必要がない。したがって渦電流探傷プローブは、小型で構造が簡単になり、組立てが容易になる。また本願発明は、励磁コイルがリフトオフを検出するから、リフトオフの検出点と探傷点は常に一致する。したがって本願発明の渦電流探傷装置は、リフトオフに基づいてキズ信号を正確に補正することができる。
本願発明は、励磁コイルを定電流駆動するから、リフトオフを電圧として取り出すことができ、その電圧をキズ信号の補正に用いるから、キズ信号の補正手段が簡単になる。
本願発明は、探傷励磁電源とリフトオフ検出電源を別々に設けてあるから、探傷励磁電流の周波数を変えてもリフトオフ検出電流の周波数は変える必要がない。したがってリフトオフ検出電流は、探傷の都度その設定条件を変更する必要がないから、渦電流探傷装置の取り扱いが簡単になり、探傷作業が簡単になる。
In the present invention, since the exciting coil also serves as a lift-off detection coil, there is no need to separately provide a lift-off detection sensor. Therefore, the eddy current flaw detection probe is small in size, simple in structure, and easy to assemble. In the present invention, since the excitation coil detects lift-off, the lift-off detection point and the flaw detection point always coincide. Therefore, the eddy current flaw detector according to the present invention can accurately correct the scratch signal based on the lift-off.
In the present invention, since the exciting coil is driven at a constant current, the lift-off can be taken out as a voltage, and the voltage is used for correcting the scratch signal, so that the scratch signal correcting means becomes simple.
In the present invention, since the flaw detection excitation power supply and the lift-off detection power supply are provided separately, it is not necessary to change the frequency of the lift-off detection current even if the frequency of the flaw detection excitation current is changed. Therefore, since it is not necessary to change the setting condition of the lift-off detection current every time flaw detection is performed, handling of the eddy current flaw detection apparatus is simplified, and flaw detection work is simplified.

図1により本願発明の実施例に係る渦電流探傷装置を説明する。   An eddy current flaw detector according to an embodiment of the present invention will be described with reference to FIG.

図1において、21は、励磁電源、Pは、励磁コイルECと検出コイルDCからなる、一般にΘプローブと呼ばれている渦電流探傷プローブである。励磁電源21は、探傷励磁電源211とリフトオフ検出電源212を備えている。ここでリフトオフとは、渦電流探傷プローブPの励磁コイルECと被検査体(図示せず)の検査面の距離(ギャップ)を言う。
励磁コイルECには、探傷励磁電源211から所定周波数の探傷励磁電流が、励磁増幅器23を介して供給され、同時にリフトオフ検出電源212から所定周波数のリフトオフ検出電流が、定電流駆動回路221を介して供給される。探傷励磁電流とリフトオフ検出電流は、例えば共通の原発振周波数を分周して得られた複数の周波数の中から、探傷とリフトオフ検出に適した周波数を選定する。例えば探傷励磁電流は、被検査体の材質等により探傷に適した周波数が異なるため、探傷の都度、探傷条件を勘案して探傷に適した周波数を選定する。一方リフトオフ検出電流は、探傷励磁電流の周数が変わっても同じ周波数のものを使用できる。
In FIG. 1, reference numeral 21 denotes an excitation power source, and P denotes an eddy current flaw detection probe generally called a Θ probe, which includes an excitation coil EC and a detection coil DC. The excitation power supply 21 includes a flaw detection excitation power supply 211 and a lift-off detection power supply 212. Here, lift-off refers to the distance (gap) between the excitation coil EC of the eddy current flaw detection probe P and the inspection surface of an object to be inspected (not shown).
The excitation coil EC is supplied with a flaw detection excitation current having a predetermined frequency from the flaw detection excitation power supply 211 via the excitation amplifier 23. At the same time, a lift-off detection current having a predetermined frequency is supplied from the lift-off detection power supply 212 via the constant current drive circuit 221. Supplied. As the flaw detection excitation current and the lift-off detection current, for example, a frequency suitable for flaw detection and lift-off detection is selected from a plurality of frequencies obtained by dividing the common original oscillation frequency. For example, since the flaw detection excitation current has a frequency suitable for flaw detection depending on the material of the object to be inspected, a frequency suitable for flaw detection is selected every time flaw detection is taken into consideration. On the other hand, a lift-off detection current having the same frequency can be used even if the frequency of the flaw detection excitation current changes.

励磁コイルECに探傷励磁電流を供給すると、被検査体には励磁コイルECにより渦電流が発生する。そして被検査体にキズがあるときは、その渦電流に乱れが生じ、その渦電流の乱れにより検出コイルDCに電圧が誘起する。検出コイルDCの誘起電圧は、同期検波器241に印加され、同期検波器241において探傷励磁電流と同じ周波数の搬送波により検波される。同期検波器241の検波出力は、ローパスフィルタ242へ供給される。ローパスフィルタ242は、検波出力からキズ信号を取り出してキズ信号補正回路(増幅器からなる)243へ供給する。ここでキズ信号は、被検査体のキズに起因して発生する信号である。   When a flaw detection excitation current is supplied to the excitation coil EC, an eddy current is generated in the inspection object by the excitation coil EC. And when a to-be-inspected object has a crack, disorder arises in the eddy current, and a voltage induces in detection coil DC by the disorder of the eddy current. The induced voltage of the detection coil DC is applied to the synchronous detector 241 and detected by the synchronous detector 241 with a carrier wave having the same frequency as the flaw detection excitation current. The detection output of the synchronous detector 241 is supplied to the low pass filter 242. The low-pass filter 242 extracts a scratch signal from the detection output and supplies it to a scratch signal correction circuit (comprising an amplifier) 243. Here, the scratch signal is a signal generated due to a scratch on the object to be inspected.

定電流駆動回路221は、リフトオフ検出電源212から供給されるリフトオフ検出電流により励磁コイルECを定電流駆動する。励磁コイルECを定電流駆動すると、励磁コイルECと被検査体の距離の変化、即ちリフトオフの変化に対応して励磁コイルのインピーダンスが変化し、駆動電圧が変化する。例えばリフトオフが大きいときは、インピーダンスが大きくなって駆動電圧が高くなり、逆にリフトオフが小さいときは、インピーダンスが小さくなって駆動電圧が低くなる。したがってリフトオフ検出回路222は、リフトオフが変化すると、その変化に対応した駆動電圧を検出することができる。リフトオフ補正回路223は、リフトオフ検出回路222が検出した駆動電圧に対応する補正電圧を発生し、キズ信号補正回路243へ供給する。キズ信号補正回路243は、リフトオフ検出回路222の補正電圧により増幅器のゲインを調整して、キズ信号の大きさを補正する。即ちキズ信号補正回路243は、リフトオフに対応してキズ信号の大きさを補正或いは調整する。したがってキズ信号補正回路243の出力には、リフトオフの影響を受けないキズ信号FSが得られる。   The constant current drive circuit 221 drives the exciting coil EC with a constant current by the lift-off detection current supplied from the lift-off detection power supply 212. When the exciting coil EC is driven at a constant current, the impedance of the exciting coil changes corresponding to the change in the distance between the exciting coil EC and the object to be inspected, that is, the change in lift-off, and the driving voltage changes. For example, when the lift-off is large, the impedance is increased and the drive voltage is increased. Conversely, when the lift-off is small, the impedance is decreased and the drive voltage is decreased. Therefore, when the lift-off changes, the lift-off detection circuit 222 can detect a drive voltage corresponding to the change. The lift-off correction circuit 223 generates a correction voltage corresponding to the drive voltage detected by the lift-off detection circuit 222 and supplies the correction voltage to the scratch signal correction circuit 243. The scratch signal correction circuit 243 adjusts the gain of the amplifier by the correction voltage of the lift-off detection circuit 222 to correct the magnitude of the scratch signal. That is, the scratch signal correction circuit 243 corrects or adjusts the size of the scratch signal in response to lift-off. Therefore, the output of the scratch signal correction circuit 243 provides a scratch signal FS that is not affected by lift-off.

なおリフトオフ検出回路222の補正電圧は、励磁増幅器23へ供給して励磁増幅器23のゲインを調整するように構成してもよい。その場合には、励磁電流をリフトオフ検出回路222の補正電圧により調整して、ローパスフィルタ242によって取り出されたキズ信号の大きさを補正することになるから、励磁増幅器23は、キズ信号補正回路の機能も有することになる。その場合には、キズ信号補正回路243は設けなくてよい。   The correction voltage of the lift-off detection circuit 222 may be supplied to the excitation amplifier 23 to adjust the gain of the excitation amplifier 23. In that case, the excitation current is adjusted by the correction voltage of the lift-off detection circuit 222 and the magnitude of the scratch signal extracted by the low-pass filter 242 is corrected. Therefore, the excitation amplifier 23 is connected to the scratch signal correction circuit. It will also have a function. In that case, the scratch signal correction circuit 243 may not be provided.

本実施例の渦電流探傷装置は、励磁コイルECをリフトオフの検出と被検査体の探傷に兼用しているから、リフトオフ検出センサを別途設ける必要がない。したがって渦電流探傷プローブは、小型化することができ、構造も簡単になり、組立てが容易になる。また励磁コイルECは、リフトオフの検出と探傷に兼用しているから、リフトオフの検出点と探傷点は常に一致する。したがってキズ信号は、リフトオフに対応して正確に補正される。
本実施例の渦電流探傷装置は、リフトオフ検出電流によって励磁コイルECを定電流駆動するから、リフトオフを電圧として取り出すことができ、その電圧を用いてキズ信号補正回路のゲインを調整できる。したがってリフトオフに対応してキズ信号を補正する手段が簡単になる。
また本実施例の渦電流探傷装置は、リフトオフ検出電源と探傷励磁電源を別々に設けてあるから、探傷励磁電流の周波数を変えても、リフトオフ検出電流の周波数は変える必要がない。したがって探傷の都度リフトオフ検出電流の設定条件を変える必要がなくなり、渦電流探傷装置の取り扱いが簡単になり探傷作業が簡単になる。
In the eddy current flaw detector according to the present embodiment, the excitation coil EC is used for both detection of lift-off and flaw detection of the object to be inspected, so that it is not necessary to separately provide a lift-off detection sensor. Therefore, the eddy current flaw detection probe can be miniaturized, the structure becomes simple, and the assembly becomes easy. Further, since the excitation coil EC is used for both lift-off detection and flaw detection, the lift-off detection point and the flaw detection point always coincide. Therefore, the scratch signal is accurately corrected corresponding to the lift-off.
Since the eddy current flaw detector of this embodiment drives the exciting coil EC at a constant current by the lift-off detection current, the lift-off can be taken out as a voltage, and the gain of the scratch signal correction circuit can be adjusted using the voltage. Therefore, a means for correcting the scratch signal corresponding to the lift-off is simplified.
Further, since the eddy current flaw detection apparatus of this embodiment is provided with a lift-off detection power source and a flaw detection excitation power source separately, it is not necessary to change the frequency of the lift-off detection current even if the frequency of the flaw detection excitation current is changed. Therefore, it is not necessary to change the setting condition of the lift-off detection current every time flaw detection is performed, handling of the eddy current flaw detection apparatus is simplified, and flaw detection work is simplified.

前記実施例は、リフトオフ検出電源と探傷励磁電源を別々に設けてあるが、探傷励磁電源の周波数を変える必要がないような渦電流探傷装置の場合には、探傷励磁電流をリフトオフ検出電流に使用することもできる。そのような場合には、探傷励磁電源のみを設けて励磁コイルを定電流駆動することにより、探傷とリフトオフの検出を探傷励磁電流によって行うことができる。そしてその場合には、リフトオフ検出電源を設ける必要がないから、リフトオフの検出手段が簡単になる。
前記実施例は、Θプローブを例に説明したが、Θプローブに限らず励磁コイルを備えたプローブであれば本発明を適用することができる。
In the above embodiment, the lift-off detection power source and the flaw detection excitation power source are provided separately. However, in the case of an eddy current flaw detection device that does not require changing the frequency of the flaw detection excitation power source, the flaw detection excitation current is used as the lift-off detection current. You can also In such a case, the flaw detection and the lift-off detection can be performed by the flaw detection excitation current by providing only the flaw detection excitation power source and driving the excitation coil at a constant current. In this case, since it is not necessary to provide a lift-off detection power source, the lift-off detection means is simplified.
In the above embodiment, the Θ probe has been described as an example. However, the present invention can be applied to any probe provided with an excitation coil without being limited to the Θ probe.

本願発明の実施例に係る渦電流探傷装置の構成を示す。1 shows a configuration of an eddy current flaw detector according to an embodiment of the present invention. 従来の渦電流探傷装置の構成を示す。The structure of the conventional eddy current flaw detector is shown.

符号の説明Explanation of symbols

21 励磁電源
211 探傷励磁電源
212 リフトオフ検出電源
221 定電流駆動回路
222 リフトオフ検出回路
223 リフトオフ補正回路
23 励磁増幅器
241 同期検波器
242 ローパスフィルタ
243 キズ信号補正回路
EC 励磁コイル
DC 検出コイル
21 Excitation power supply 211 Flaw detection excitation power supply 212 Lift-off detection power supply 221 Constant current drive circuit 222 Lift-off detection circuit 223 Lift-off correction circuit 23 Excitation amplifier 241 Synchronous detector 242 Low-pass filter 243 Scratch signal correction circuit EC Excitation coil DC detection coil

Claims (3)

渦電流探傷プローブの励磁コイルに探傷励磁電流とリフトオフ検出電流を供給する励磁電源、励磁コイルを用いてリフトオフを検出するリフトオフ検出回路、及びリフトオフ検出回路によりキズ信号を補正するキズ信号補正回路を備えた渦電流探傷装置であって
前記励磁コイルを前記リフトオフ検出電流により定電流駆動する定電流駆動回路を備え、前記リフトオフは、定電流駆動回路からリフトオフに対応する駆動電圧として検出し、前記リフトオフ検出回路は、その駆動電圧に対応する補正電圧を発生することを特徴とする渦電流探傷装置。
Equipped with an excitation power source that supplies flaw detection excitation current and lift-off detection current to the excitation coil of the eddy current flaw detection probe, a lift-off detection circuit that detects lift-off using the excitation coil, and a scratch signal correction circuit that corrects scratch signals by the lift-off detection circuit Eddy current flaw detector ,
A constant current drive circuit that drives the excitation coil at a constant current using the lift-off detection current is provided. The lift-off is detected as a drive voltage corresponding to lift-off from the constant-current drive circuit, and the lift- off detection circuit corresponds to the drive voltage. An eddy current flaw detector characterized by generating a correction voltage .
請求項1に記載の渦電流探傷装置において、前記リフトオフ検出電流は、探傷励磁電流であることを特徴とする渦電流探傷装置。   2. The eddy current flaw detector according to claim 1, wherein the lift-off detection current is a flaw detection excitation current. 渦電流探傷プローブの励磁コイルに探傷励磁電流とリフトオフ検出電流を供給し、励磁コイルを用いてリフトオフ検出回路によりリフトオフを検出し、そのリフトオフによりキズ信号を補正する渦電流探傷方法であって
前記リフトオフは、前記励磁コイルを前記リフトオフ検出電流により定電流駆動する定電流駆動回路からリフトオフに対応する駆動電圧として検出し、その駆動電圧に対応する補正電圧により前記キズ信号を補正することを特徴とする渦電流探傷方法。
An eddy current flaw detection method that supplies flaw detection excitation current and lift-off detection current to an excitation coil of an eddy current flaw detection probe, detects lift-off by a lift-off detection circuit using the excitation coil, and corrects a scratch signal by the lift-off ,
The lift-off, the detecting the exciting coil as a drive voltage corresponding to the lift-off from the constant current driving circuit for constant current driven by the lift off detection current, that you correct the flaw signal by the correction voltage corresponding to the drive voltage A characteristic eddy current flaw detection method.
JP2008298872A 2008-11-22 2008-11-22 Eddy current flaw detector and eddy current flaw detection method Expired - Fee Related JP5170844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298872A JP5170844B2 (en) 2008-11-22 2008-11-22 Eddy current flaw detector and eddy current flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298872A JP5170844B2 (en) 2008-11-22 2008-11-22 Eddy current flaw detector and eddy current flaw detection method

Publications (2)

Publication Number Publication Date
JP2010122199A JP2010122199A (en) 2010-06-03
JP5170844B2 true JP5170844B2 (en) 2013-03-27

Family

ID=42323661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298872A Expired - Fee Related JP5170844B2 (en) 2008-11-22 2008-11-22 Eddy current flaw detector and eddy current flaw detection method

Country Status (1)

Country Link
JP (1) JP5170844B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011477A1 (en) * 2010-07-21 2012-01-26 株式会社日立製作所 Magnetic-field measurement device
JP2012137473A (en) * 2010-12-07 2012-07-19 Kobe Steel Ltd Roughness measuring device
JP5727894B2 (en) * 2011-08-23 2015-06-03 マークテック株式会社 Eddy current flaw detection method
JP6180831B2 (en) * 2013-03-14 2017-08-16 株式会社東芝 Eddy current flaw detector, eddy current flaw detection method, and eddy current flaw detection program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627729B2 (en) * 1985-10-11 1994-04-13 住友金属工業株式会社 Eddy current flaw detector
JP2645243B2 (en) * 1990-01-19 1997-08-25 日本電装株式会社 Non-contact displacement sensor and displacement detection method
JP2001059836A (en) * 1999-08-25 2001-03-06 Daido Steel Co Ltd Method and apparatus for eddy-current flaw detection
JP4312438B2 (en) * 2002-09-13 2009-08-12 日本電産サンキョー株式会社 Wire wound type magnetic sensor

Also Published As

Publication number Publication date
JP2010122199A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
US11358836B2 (en) Wire rope inspection device, wire rope inspection system, and wire rope inspection method
US7605922B2 (en) Method and gas sensor for performing quartz-enhanced photoacoustic spectroscopy
JP5170844B2 (en) Eddy current flaw detector and eddy current flaw detection method
WO2023035435A1 (en) Non-destructive metal flaw detection device and method, and storage medium
JP6575824B2 (en) Film thickness measuring method and film thickness measuring apparatus
CN108061722B (en) Detection device and detection method for carbon monoxide concentration
EP2703793A1 (en) Terahertz spectrometry device and method, and nonlinear optical crystal inspection device and method
US20120288409A1 (en) Analysis device
JP2008014944A (en) Magnetic field compensating system increased in band width
JP2010048552A (en) Nondestructive inspecting device and method
US20160003775A1 (en) Apparatus and Circuit
EP2706324B1 (en) Ring laser gyro
KR20070097113A (en) Circuit pattern inspection device and method thereof
WO2020246130A1 (en) Wire rope examination system and wire rope examination method
JP6590525B2 (en) Metal detector
JP2017150904A (en) Flaw detection device and flaw detection method
US9086364B2 (en) Photoacoustic sensor with baseline and span correction
US20160109533A1 (en) Inspection circuit for magnetic field detector, and inspection method for the same
KR101158411B1 (en) Apparatus for detecting thickness of the conductor using differential pulsed eddy current probe
KR100946285B1 (en) The apparatus for detecting a wire rope using an eddy current
JP2008128756A (en) X-ray thickness measuring apparatus
JP2001059836A (en) Method and apparatus for eddy-current flaw detection
JPH032852Y2 (en)
RU2639592C2 (en) Flaw detector for welds
JPH05281198A (en) Eddy current flaw detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121223

R150 Certificate of patent or registration of utility model

Ref document number: 5170844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees