JPH03211822A - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JPH03211822A
JPH03211822A JP783790A JP783790A JPH03211822A JP H03211822 A JPH03211822 A JP H03211822A JP 783790 A JP783790 A JP 783790A JP 783790 A JP783790 A JP 783790A JP H03211822 A JPH03211822 A JP H03211822A
Authority
JP
Japan
Prior art keywords
wafer
resistance heater
temperature distribution
uniform
semiconductor manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP783790A
Other languages
Japanese (ja)
Inventor
Fumitake Mieno
文健 三重野
Hiroshi Miyata
宏志 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP783790A priority Critical patent/JPH03211822A/en
Publication of JPH03211822A publication Critical patent/JPH03211822A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the temperature distribution of a wafer uniform at the time of heat-treating the wafer, prevent the generation of crystal deffect, enable continuous growth, and improve throughput, by arranging a wafer and a resistance heater so as to face each other, and installing a means to change the distance between the resistance heater and the wafer. CONSTITUTION:A wafer 1 and a resistance heater 3 are arranged in a chamber 7, so as to face each other, and a means (vertically driving mechanism installed on a retaining stand 2) to change the distance between the resistance heater 3 and the wafer 1 is installed. Hence the wafer 1 can be closely brought into contact with the resistance heater 3 whose temperature distribution is almost uniform. By bringing the wafer 1 closely into contact with the resistance heater 3 in this manner, the temperature distribution of the wafer 1 can be almost uniform as compared with the case using a lamp heater. Thereby the generation of crystal defect can be prevented, and the maintenance for eliminating a film attaching to a quartz window in the case of lamp heating can be eliminated, so that continuous growth is enabled and throughput can be improved.

Description

【発明の詳細な説明】 〔概要〕 半導体製造装置に関し、 ウェーハを加熱処理する際ウェーハの温度分布をほぼ均
一にして結晶欠陥を入り難くすることができ、かつ石英
窓に付着した膜を除去するようなメンテナンスをなくす
ことができ、連続成長を可能にし、スループットを向上
させることができる半導体製造装置を提供することを目
的とし、チャンバ内にウェーハと抵抗加熱し−タが対向
して配置され、該抵抗加熱ヒータと咳つェーへとの距離
を変える手段が設けられているように構成する。
[Detailed Description of the Invention] [Summary] Regarding semiconductor manufacturing equipment, the present invention is capable of making the temperature distribution of the wafer almost uniform during heat treatment of the wafer, thereby making it difficult for crystal defects to occur, and of removing a film attached to a quartz window. The purpose of the present invention is to provide a semiconductor manufacturing equipment that can eliminate such maintenance, enable continuous growth, and improve throughput. A means is provided for changing the distance between the resistance heater and the cough tube.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体製造装置に係り、LSI製造工程にお
けるCVD、アニール等の熱処理をする高温熱処理装置
に適用することができ、ウェーハを加熱処理する際、ウ
ェーハの温度分布をほぼ均一にすることができる半導体
製造装置に関する。
The present invention relates to semiconductor manufacturing equipment, and can be applied to high-temperature heat treatment equipment that performs heat treatments such as CVD and annealing in LSI manufacturing processes, and can make the temperature distribution of the wafer almost uniform when heat treating the wafer. Regarding semiconductor manufacturing equipment that can be used.

近年、CVD、アニール等の熱処理をする半導体製造装
置においては、大口径化とプロセスの集約化が要求され
ている。そのため、枚葉化することができ、しかも高ス
ルーブツトにすることができる半導体製造装置が要求さ
れている。
In recent years, semiconductor manufacturing equipment that performs heat treatments such as CVD and annealing has been required to have larger diameters and more intensive processes. Therefore, there is a need for a semiconductor manufacturing apparatus that can produce single wafers and has a high throughput.

ところで従来、半導体やメタルの選択成長において、化
学気相成長装置としては抵抗加熱を用いたものが主流と
なっていたが、選択成長する際、ウェーハを加熱するた
めのヒータ表面等に副生物等が生じて付着し易く選択成
長が崩れてしまうことがあるため、現在ではIR(赤外
)照射加熱による方法が広く用いられているが、将来プ
ロセスの低温化を考えると低温度領域でも特に温度分布
を安定に採れる抵抗加熱による方法が必要となってくる
と思われる。
Conventionally, chemical vapor deposition equipment that uses resistance heating has been the mainstream for selective growth of semiconductors and metals, but during selective growth, by-products etc. IR (infrared) irradiation heating is currently widely used, but in the future, considering the need to lower the temperature of the process, even in the low temperature range, the temperature It seems that a method using resistance heating that can stably obtain the distribution will become necessary.

なお、IR照射加熱による方法が広く用いられているの
は石英等で蓄熱するが、サセプタ等を直接加熱すること
な(ウェーハだけを選択的に効率良く加熱することを容
易に行うことができるからである。
Note that IR irradiation heating is widely used because heat is stored in quartz, etc., but it does not directly heat the susceptor (because it is easy to selectively and efficiently heat just the wafer). It is.

〔従来の技術〕[Conventional technology]

第4図は従来の半導体製造装置の概略を示す図である。 FIG. 4 is a diagram schematically showing a conventional semiconductor manufacturing apparatus.

図示例の半導体製造装置はCVD、アニール等の熱処理
を行う枚葉式高温熱処理装置に適用する場合である。
The illustrated semiconductor manufacturing apparatus is applied to a single-wafer type high-temperature heat treatment apparatus that performs heat treatments such as CVD and annealing.

この図において、31は例えばSiからなるウェーハ、
32はウェーハ31を支持する支持台、33は例えば石
英からなり真空可能なチャンバ、34はつ工−ハ31を
加熱するためのIRランプ、35はIRクランプ4から
の熱を反射するための反射板である。
In this figure, 31 is a wafer made of Si, for example;
32 is a support base for supporting the wafer 31; 33 is a chamber made of, for example, quartz and capable of vacuum; 34 is an IR lamp for heating the wafer 31; and 35 is a reflector for reflecting the heat from the IR clamp 4. It is a board.

第4図に示すように、熱源としてはrRクランプ4を用
いており、IRクランプ4をチャンバ33上方及びチャ
ンバ33下方(どちらか一方でもよい)に設置してウェ
ーハ31を加熱していた。そして、ウェーハ31とチャ
ンバ33間(チャンバ33上面、チャンバ33下面)を
5cm程度、チャンバ33とIRランプ34間を1 c
m程度離し、結局ウェーハ31とIRランプ34間を6
cm程度離していた。
As shown in FIG. 4, an rR clamp 4 was used as a heat source, and the IR clamp 4 was installed above the chamber 33 and below the chamber 33 (either one may be used) to heat the wafer 31. Then, the distance between the wafer 31 and the chamber 33 (the upper surface of the chamber 33, the lower surface of the chamber 33) is approximately 5 cm, and the distance between the chamber 33 and the IR lamp 34 is approximately 1 cm.
The distance between the wafer 31 and the IR lamp 34 was approximately 6 m.
They were about cm apart.

[発明が解決しようとする課題] しかしながら、上記した従来の半導体製造装置にあって
は、rRクランプ4をチャンバ33内に設置することが
できず、チャンバ33上方及び下方に設置しており、ウ
ェーハ31とIRランプ34間を6cm程度離さなけれ
ばならなかった。このため、つ工−ハ31を加熱処理す
る際ウェーハ31の温度分布が不均一になり易く、具体
的には、ウェーハ31の特に周辺部(スリップライン)
の熱放散が内部より大きく(表面積が大きいため)、周
辺部の温度が低くなり周辺部に結晶欠陥が入り易かった
。そして、最悪の場合、素子部cトもダメージを与えて
しまっていた。
[Problems to be Solved by the Invention] However, in the conventional semiconductor manufacturing apparatus described above, the rR clamp 4 cannot be installed in the chamber 33, but is installed above and below the chamber 33, and the wafer 31 and the IR lamp 34 had to be separated by about 6 cm. For this reason, when the wafer 31 is heat-treated, the temperature distribution of the wafer 31 tends to become non-uniform, and specifically, the temperature distribution of the wafer 31 tends to be uneven, especially in the peripheral area (slip line).
Heat dissipates more than the inside (due to the larger surface area), and the temperature in the peripheral area becomes lower, making it easier for crystal defects to form in the peripheral area. In the worst case, the element part c would also be damaged.

また、上記装置をCVDに適用する場合、ウェーハ31
を加熱処理すると、TRランプ34用石英窓が高温とな
り、石英窓にまで成膜してしまうため、ランプ効率が悪
化するのを避けられなかった。このため、石英窓に付着
した膜を除去するクリーニングというメンテナンスを定
期的に行わなければならず、非常に面倒であった。
Furthermore, when applying the above apparatus to CVD, the wafer 31
When heat-treated, the quartz window for the TR lamp 34 becomes high temperature, and a film is formed even on the quartz window, which inevitably deteriorates the lamp efficiency. Therefore, cleaning to remove the film adhering to the quartz window must be periodically performed, which is extremely troublesome.

したがって、連続成長することができず、スループント
が上がらないという問題を生じていた。
Therefore, continuous growth was not possible, resulting in a problem that throughput was not increased.

そこで、本発明は、ウェーハを加熱処理する際ウェーハ
の温度分布をほぼ均一にして結晶欠陥を入り難くするこ
とができ、かつ石英窓に付着した膜を除去するようなメ
ンテナンスをなくすことができ、連続成長を可能にし、
スループントを向上させることができる半導体製造装置
を提供することを目的とする。
Therefore, the present invention makes it possible to make the temperature distribution of the wafer almost uniform when heat-treating the wafer, making it difficult for crystal defects to occur, and eliminating the need for maintenance such as removing the film attached to the quartz window. enable continuous growth,
An object of the present invention is to provide a semiconductor manufacturing apparatus that can improve throughput.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による半導体製造装置は上記目的達成のため、チ
ャンバ内にウェーハと抵抗加熱ヒータが対向して配置さ
れ、該抵抗加熱ヒータと酸ウェーハとの距離を変える手
段が設けられていることを特徴とするものである。
In order to achieve the above object, the semiconductor manufacturing apparatus according to the present invention is characterized in that a wafer and a resistance heater are disposed facing each other in a chamber, and a means is provided for changing the distance between the resistance heater and the acid wafer. It is something to do.

〔作用〕[Effect]

本発明は、第1図に示すように、チャンバ7内にウェー
ハ1と抵抗加熱ヒータ3が対向して配置され、抵抗加熱
ヒータ3とウェーハ1との距離を変える手段(ここでは
支持台2に設けられた上下駆動機構)が設けられるよう
に構成される。
As shown in FIG. 1, in the present invention, a wafer 1 and a resistance heater 3 are disposed facing each other in a chamber 7, and means for changing the distance between the resistance heater 3 and the wafer 1 (in this case, a support plate 2 is used) A vertical drive mechanism) is provided.

したがって、温度分布のほぼ均一な抵抗加熱ヒータ3に
ウェーハ1を密着させることができるようになるため、
ウェーハ1を加熱処理する際ウェーハ1の温度分布をほ
ぼ均一にすることができるようになる。詳細については
実施例で説明する。
Therefore, the wafer 1 can be brought into close contact with the resistance heater 3 having a substantially uniform temperature distribution.
When the wafer 1 is heat-treated, the temperature distribution of the wafer 1 can be made substantially uniform. Details will be explained in Examples.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第1図は本発明に係る半導体製造装置の一実施例の構成
を示す装置概略図である。図示例の半導体製造装置はC
VD装置に適用する場合である。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of a semiconductor manufacturing apparatus according to the present invention. The illustrated example semiconductor manufacturing equipment is C
This is a case where it is applied to a VD device.

この図において、1は例えばSiからなるウェハ、2は
ウェーハ1を支持する支持台で、上下駆動機構(本発明
に係る手段に該当する)により上下移動できるようにな
っている。3はウェーハlを加熱する抵抗加熱ヒーター
で、ここではサセプターとしても機能し得るものである
。4はシャワー、5は熱電対6によってウェーハlと抵
抗加熱ヒータ3の温度を測定する温度測定手段、7は例
えば石英からなり真空可能なヂャンバ、8はウェーハ1
をウェーハカセットから取り出して支持台2に載せたり
取り出したりするウェーハ移動装置である。
In this figure, 1 is a wafer made of, for example, Si, and 2 is a support stand for supporting the wafer 1, which can be moved up and down by a vertical drive mechanism (corresponding to the means according to the present invention). Reference numeral 3 denotes a resistance heater that heats the wafer 1, and here it can also function as a susceptor. 4 is a shower; 5 is a temperature measuring means for measuring the temperature of the wafer 1 and the resistance heater 3 using a thermocouple 6; 7 is a vacuum chamber made of quartz, for example; 8 is a wafer 1;
This is a wafer moving device that takes out the wafer from the wafer cassette, places it on the support stand 2, and takes it out.

次に、その動作原理について説明する。Next, the principle of operation will be explained.

ここでの抵抗加熱ヒータ3は電気抵抗を利用して電気を
通じて加熱するものであり、電流を流すことによって常
に加熱するようになっている。そして、ウェーハ1は抵
抗加熱ヒータ3から離れたところで熱電対6が設けられ
た4個(3個でよい)の支持台2上にウェーハ移動装置
8によって載せられる。そして、支持台2に設けられた
上下機構によりウェーハ1をゆっくりと下げていき、ウ
ェーハ1の温度を上昇させる。なお、支持台2は具体的
には抵抗加熱ヒータ3に設けられた穴を上下機構により
上下に移動できるようになっており、また、抵抗加熱ヒ
ータ3はチャンハフに固定されている。
The resistance heater 3 here uses electric resistance to heat through electricity, and is always heated by passing an electric current through it. Then, the wafer 1 is placed on four (three is sufficient) support stands 2 on which thermocouples 6 are provided at a location away from the resistance heater 3 by the wafer moving device 8. Then, the wafer 1 is slowly lowered by a vertical mechanism provided on the support table 2, and the temperature of the wafer 1 is increased. Specifically, the support stand 2 can be moved up and down by a vertical mechanism through a hole provided in the resistance heater 3, and the resistance heater 3 is fixed to a chang-huff.

そして、最終的にウェーハ1を温度分布のほぼ均一な抵
抗加熱し−タ3に密着させて加熱する。
Finally, the wafer 1 is brought into close contact with a resistance heating heater 3 having a substantially uniform temperature distribution and heated.

このように、温度分布のほぼ均一な抵抗加熱ヒータ3に
ウェーハ1を密着させることによって従来のランプ加熱
ヒータを用いる場合よりもウェーハ1の温度分布をほぼ
均一にすることができる。したがって、結晶欠陥を入り
難くすることができ、かつランプ加熱を用いた際の、石
英窓に付着した膜を除去するようなメンテナンスをなく
すことができ、連続成長を可能にしスルーブツトを向上
させることができる。
In this way, by bringing the wafer 1 into close contact with the resistance heater 3, which has a substantially uniform temperature distribution, the temperature distribution of the wafer 1 can be made more uniform than when a conventional lamp heater is used. Therefore, it is possible to make it difficult for crystal defects to occur, and it is also possible to eliminate maintenance such as removing the film attached to the quartz window when using lamp heating, enabling continuous growth and improving throughput. can.

なお、上記実施例では、ウェーハ1と抵抗加熱ヒータ3
を密着させてウェーハ1の温度を制御する場合について
説明したが、本発明はこれに限定されるものではなく、
ウェーハ1と抵抗加熱ヒータ3を密着させずにウェーハ
1と抵抗加熱ヒータ3を間隔をもたせて適宜配置し、ウ
ェーハ1と抵抗加熱ヒータ3の距離の変化と供給電力に
より抵抗加熱ヒータ3の温度を変化させることによりウ
ェーハ1の温度を制御する場合であってもよい。
In addition, in the above embodiment, the wafer 1 and the resistance heater 3
Although the case has been described in which the temperature of the wafer 1 is controlled by bringing the wafers into close contact with each other, the present invention is not limited to this.
The wafer 1 and the resistance heater 3 are not placed in close contact with each other, but the wafer 1 and the resistance heater 3 are arranged with an appropriate distance between them, and the temperature of the resistance heater 3 is controlled by changing the distance between the wafer 1 and the resistance heater 3 and the supplied power. The temperature of the wafer 1 may be controlled by changing the temperature.

また、上記実施例は、ウェーハl側を移動させて抵抗加
熱ヒータ3側(固定)に近づけたり密着させたりする場
合についてを説明したが、本発明はこれに限定されるも
のではな(、抵抗加熱ヒータ3側を移動させてウェーハ
1側(固定)に近づけたり密着させたりする場合であっ
てもよい。
Further, in the above embodiment, the case where the wafer l side is moved to bring it close to or in close contact with the resistance heater 3 side (fixed), but the present invention is not limited to this. The heater 3 side may be moved closer to or in close contact with the wafer 1 side (fixed).

更に、上記実施例は抵抗加熱ヒータ3をウェーハ1に対
して下側に設けた場合について説明したが、本発明はこ
れに限定されるものではなく、第2図に示すように、抵
抗加熱ヒータ3をウエーノ\1に対して上側に設ける場
合であってもよい。この場合、ウェーハ1処理面は抵抗
加熱ヒータ3とは反射側のシャワー4側の面(第2図に
示すX部)である。また、第3図(a)、(b)に示す
ように、抵抗加熱ヒータ3をウェーハ1の周囲を囲むよ
うなおわん形にしてもよく、この場合、ウェーハ1周辺
部の放熱を小さくすることができる点で好ましい。
Furthermore, although the above embodiment describes the case where the resistance heater 3 is provided below the wafer 1, the present invention is not limited to this, and as shown in FIG. 3 may be provided above Ueno\1. In this case, the processing surface of the wafer 1 is the surface on the shower 4 side (the X section shown in FIG. 2) which is the reflection side of the resistance heater 3. Furthermore, as shown in FIGS. 3(a) and 3(b), the resistance heater 3 may be shaped like a bowl so as to surround the wafer 1. In this case, the heat dissipation around the wafer 1 can be reduced. This is preferable because it allows for

(発明の効果〕 本発明によれば、ウェーハ1を加熱処理する際ウェーハ
の温度分布をほぼ均一にして結晶欠陥を入り難くするこ
とができ、かつ石英窓には付着した膜を除去するような
メンテナンスをなくすことができ、連続成長を可能にし
、スルーブツトを向上させることができる。
(Effects of the Invention) According to the present invention, when the wafer 1 is heat-treated, the temperature distribution of the wafer can be made almost uniform to make it difficult for crystal defects to occur, and the film attached to the quartz window can be removed. It can eliminate maintenance, enable continuous growth, and improve throughput.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る半導体製造装置の一実施例の構成
を示す装置概略図、 第2図及び第3図は他の実施例の構成を示す装置概略図
である。 第4図は従来例の構成を示す装置概略図である。 ・・・・・・ウェーハ、 ・・・・・・支持台、 ・・・・・抵抗加熱ヒータ、 ・・・・・・シャワー ・・・・・・温度測定手段、 ・・・・・・熱電対、 ・・・・・・チャンバ、 ・・・・・・ウェーハ移動装置。
FIG. 1 is a schematic diagram showing the configuration of one embodiment of a semiconductor manufacturing device according to the present invention, and FIGS. 2 and 3 are schematic diagrams showing the configuration of other embodiments. FIG. 4 is a schematic diagram of a device showing the configuration of a conventional example. ...Wafer, ...Support stand, ...Resistance heater, ...Shower, Temperature measurement means, ...Thermoelectric vs. . . . chamber, . . . wafer moving device.

Claims (1)

【特許請求の範囲】 チャンバ(7)内にウェーハ(1)と抵抗加熱ヒータ(
3)が対向して配置され、 該抵抗加熱ヒータ(3)と該ウェーハ(1)との距離を
変える手段が設けられていることを特徴とする半導体製
造装置。
[Claims] A wafer (1) and a resistance heater (
3) are arranged to face each other, and a means for changing the distance between the resistance heater (3) and the wafer (1) is provided.
JP783790A 1990-01-17 1990-01-17 Semiconductor manufacturing equipment Pending JPH03211822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP783790A JPH03211822A (en) 1990-01-17 1990-01-17 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP783790A JPH03211822A (en) 1990-01-17 1990-01-17 Semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JPH03211822A true JPH03211822A (en) 1991-09-17

Family

ID=11676723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP783790A Pending JPH03211822A (en) 1990-01-17 1990-01-17 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH03211822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179355A (en) * 2002-11-27 2004-06-24 Ulvac Japan Ltd Vacuum equipment and heat treatment equipment
WO2007116851A1 (en) * 2006-03-29 2007-10-18 Tokyo Electron Limited Substrate processing apparatus, substrate processing method and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381933A (en) * 1986-09-26 1988-04-12 Hitachi Electronics Eng Co Ltd Formation of single thin-film
JPH02216817A (en) * 1989-02-17 1990-08-29 Toshiba Corp Substrate treatment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381933A (en) * 1986-09-26 1988-04-12 Hitachi Electronics Eng Co Ltd Formation of single thin-film
JPH02216817A (en) * 1989-02-17 1990-08-29 Toshiba Corp Substrate treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179355A (en) * 2002-11-27 2004-06-24 Ulvac Japan Ltd Vacuum equipment and heat treatment equipment
JP4656808B2 (en) * 2002-11-27 2011-03-23 株式会社アルバック Vacuum apparatus and heat treatment apparatus
WO2007116851A1 (en) * 2006-03-29 2007-10-18 Tokyo Electron Limited Substrate processing apparatus, substrate processing method and storage medium

Similar Documents

Publication Publication Date Title
KR0155545B1 (en) Apparatus for heat-treating a substrate
JP2011518430A (en) Temperature measurement and control of wafer support in heat treatment chamber
JPH0794419A (en) Semiconductor treating device
JPH0845863A (en) Single wafer semiconductor substrate heat treatment device
JPH03211822A (en) Semiconductor manufacturing equipment
KR0134035B1 (en) Heat treating apparatus
JP3074312B2 (en) Vapor growth method
JPH1097999A (en) Heating device, processing device, heating method and processing method
US6149728A (en) Semiconductor manufacturing device
JP3497317B2 (en) Semiconductor heat treatment method and apparatus used therefor
JP3754846B2 (en) Heat treatment method for semiconductor wafers
JPS60116778A (en) Chemical deposition and device
JPH04260322A (en) Semiconductor manufacturing equipment
JP2001156011A (en) Heat treatment equipment for semiconductor wafer
JPH08139046A (en) Heat treatment equipment
JP2004228462A (en) Method and device for thermally treating wafer
JP3084232B2 (en) Vertical heat treatment equipment
JPH0283918A (en) Vapor growth device
JPH06267872A (en) Chemical vapor growth device
JPS627121A (en) Epitaxial growth apparatus
JP2002313734A (en) Cylindrical cvd equipment
JPH0737822A (en) Chemical vapor growth device and formation of semiconductor thin film
JPH09115838A (en) Film forming system
JPS6381921A (en) Heat treatment device
JP2003100650A (en) Soaking member, its producing method and heat treatment system of substrate