JPH03210763A - Silver oxide battery - Google Patents

Silver oxide battery

Info

Publication number
JPH03210763A
JPH03210763A JP497390A JP497390A JPH03210763A JP H03210763 A JPH03210763 A JP H03210763A JP 497390 A JP497390 A JP 497390A JP 497390 A JP497390 A JP 497390A JP H03210763 A JPH03210763 A JP H03210763A
Authority
JP
Japan
Prior art keywords
silver oxide
positive electrode
carbon
battery
circuit voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP497390A
Other languages
Japanese (ja)
Inventor
Kazuhiro Imazawa
計博 今澤
Kikuo Senoo
菊雄 妹尾
Masatsugu Kondo
近藤 正嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP497390A priority Critical patent/JPH03210763A/en
Publication of JPH03210763A publication Critical patent/JPH03210763A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a large capacity without lowering closed circuit voltage characteristic by using a mixture of carbon and silver oxide of respectively specified grain sizes for the positive electrode, zinc for the active material of the negative electrode, and water solution of alkali for electrolyte. CONSTITUTION:For the negative electrode 7 of a silver oxide battery is used zinc(Zn), for the active material of the positive electrode 2 is used silver oxide(Ag2O), and for the electrolyte 8 is used water solution of alkali. Using a press formed mixture of granular Ag2O of the grain size of 50-300mum and carbon of the grain size of 1mum or less for the positive electrode 2, a large capacity is provided without lowering closed circuit voltage characteristic.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸化銀電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in silver oxide batteries.

従来の技術 近年の電子機器の発展、多機能化は、その電源である電
池に対して高容量化を求めてきた。
BACKGROUND OF THE INVENTION The recent development and multi-functionality of electronic devices has required higher capacity batteries for their power sources.

この要求に対して答えるためには、正極の充填密度を高
めることが不可欠である。そのためには充填性を疎外す
るカーボンの量を減ら、すこ′とが有効である。しかし
、導電材であるカーボン量を単純に減少させることは、
正極内の導電性が低下し、重要な特性である閉路電圧特
性の低下をまねくことがわかっている。
In order to meet this demand, it is essential to increase the packing density of the positive electrode. To this end, it is effective to reduce the amount of carbon that impedes filling properties. However, simply reducing the amount of carbon, which is a conductive material,
It is known that the conductivity within the positive electrode decreases, leading to a decrease in closed circuit voltage characteristics, which is an important characteristic.

従来は、この欠点を解消すめためにカーボンを入れずに
顆粒状の酸化銀の表面を還元して銀でおおい、充填性と
導電性を満たしていた。
Conventionally, in order to overcome this drawback, the surface of granular silver oxide was reduced and covered with silver without adding carbon to satisfy filling properties and conductivity.

発明が解決しようとする課題 このような従来技術を用いると、特性上は要望を満足す
る。しかしながら、顆粒状の酸化銀の表面を還元する工
程が必要なことや、カーボンの替りに高価な銀を導電材
として利用するため、かなりのコストアップとなるとい
う課題があった。
Problems to be Solved by the Invention Using such conventional technology satisfies the requirements in terms of characteristics. However, this method requires a step of reducing the surface of the granular silver oxide, and uses expensive silver as a conductive material instead of carbon, resulting in a considerable cost increase.

本発明は、このような課題を解決するものであって、閉
路電圧特性を低下させることなく、より高容量の酸化銀
電池をより低コストで提供することを目的とするもので
ある。
The present invention is intended to solve these problems, and aims to provide a silver oxide battery with higher capacity at a lower cost without reducing the closed circuit voltage characteristics.

課題を解決するための手段 この課題を解決するために、本発明では正極として粒径
50〜300μmの顆粒状酸化銀と粒径1μm以下の微
粒子のカーボンとの混合物の加圧成型体を用いるもので
ある。
Means for Solving the Problem In order to solve this problem, in the present invention, a pressure-molded body of a mixture of granular silver oxide with a particle size of 50 to 300 μm and fine particle carbon with a particle size of 1 μm or less is used as the positive electrode. It is.

作用 このような大きさの材料を用いることにより、閉路電圧
特性を低下させることなく、より高容量の酸化銀電池を
より低コストで提供することができる。
Effect: By using a material of such a size, a silver oxide battery with a higher capacity can be provided at a lower cost without reducing the closed circuit voltage characteristics.

実施例 以下、第1図を用いて本発明の一実施例を説明する。Example An embodiment of the present invention will be described below with reference to FIG.

第1図はボタン形酸化銀電池の断面図である。FIG. 1 is a cross-sectional view of a button-shaped silver oxide battery.

本実施例では、直径6.8m+1.高さ2.6諭の電池
5R626SWを用いた。
In this example, the diameter is 6.8m+1. A battery 5R626SW with a height of 2.6 cm was used.

図中1は正極ケース、2は本発明にかかわる正極で、粒
径100〜2O0μmの顆粒状酸化銀と粒10.5〜0
.7μmのカーボンとの混合体を加圧成型したものであ
る。3は正極リング、4はセパレータ、5は含液材、6
は封口リング、7は負極合剤、8は封口板である。
In the figure, 1 is a positive electrode case, 2 is a positive electrode according to the present invention, which includes granular silver oxide particles with a particle size of 100 to 200 μm and particles of 10.5 to 0.0 μm.
.. A mixture with 7 μm carbon is pressure molded. 3 is a positive electrode ring, 4 is a separator, 5 is a liquid-containing material, 6
7 is a sealing ring, 7 is a negative electrode mixture, and 8 is a sealing plate.

本検討では、本発明の材料と、従来例として、一般に使
われている粒径10〜40μmの酸化銀と、粒径10〜
15μmのカーボンを比較した。
In this study, we used the material of the present invention, silver oxide with a particle size of 10 to 40 μm, which is commonly used as a conventional example, and silver oxide with a particle size of 10 to 40 μm.
15 μm carbon was compared.

第2図は、本発明の材料と従来の材料を用いて、酸化銀
とカーボンの配合比を変化させて、電池を製造した時の
内部抵抗の変化である。第2図で明確なように、従来例
の材料では5重量%以上のカーボン添加で内部抵抗が安
定するのに対し本発明の材料では1重量%の添加で同様
な内部抵抗が得られる。この電池で、閉路電圧特性の一
般的な要望を満たすためには、第2図の安定領域つまり
2OΩ程度の内部抵抗であることが必要である。
FIG. 2 shows changes in internal resistance when batteries were manufactured using the material of the present invention and conventional materials and varying the blending ratio of silver oxide and carbon. As is clear from FIG. 2, in the conventional material, the internal resistance becomes stable when carbon is added in an amount of 5% by weight or more, whereas in the material of the present invention, a similar internal resistance can be obtained with the addition of 1% by weight. In order to satisfy the general demand for closed circuit voltage characteristics with this battery, it is necessary that the internal resistance be in the stable region of FIG. 2, that is, about 20Ω.

第1表に、本発明の一実施例としてカーボンを1重量%
添加した正極を用いた電池A1従来例としてカーボンを
1重量%添加した正極を用いた電池B、5重量%添加し
た電池C1および顆粒状酸化銀の表面を還元により銀(
5重量%)でおおったものを用いた電池りを比較した。
Table 1 shows 1% by weight of carbon as an example of the present invention.
Battery A1 using a positive electrode with added carbon; Battery B using a positive electrode with 1% carbon added as a conventional example; Battery C1 using a positive electrode with 5% carbon added;
A comparison was made between battery cells coated with 5% by weight).

データは電池50個の平均値である。閉路電圧は一10
℃。
Data are average values of 50 batteries. The closed circuit voltage is -10
℃.

2にΩ、5秒の最低電圧である。2Ω, the lowest voltage for 5 seconds.

第1表かられかるように、本発明の実施例の電池Aは高
コスト、高容量である電池りと同等の充填密度になって
おり、結果として容量もほぼ同等なものとなっている。
As can be seen from Table 1, the battery A of the example of the present invention has a packing density equivalent to that of a high-cost, high-capacity battery, and as a result, the capacity is also approximately the same.

また内部抵抗、閉路電圧でも電池りや従来例の電池Cと
同様なレベルとなっている。一方電池Bは、第1図から
推定されるように、加剰のカーボンを添加しても大きな
特性向上は見られないことがわかる。
Also, the internal resistance and closed circuit voltage are at the same level as the battery and the conventional battery C. On the other hand, in battery B, as estimated from FIG. 1, it can be seen that no significant improvement in characteristics is observed even when additional carbon is added.

以上の結果より、本発明で用いた粒径の酸化銀とカーボ
ンを組み合わせることにより、高コストの処理をするこ
となく、高容量の電池を、閉路電圧特性を低下させずに
製造することができる。
From the above results, by combining silver oxide and carbon with the particle size used in the present invention, it is possible to manufacture high-capacity batteries without deteriorating the closed-circuit voltage characteristics without expensive processing. .

これは、顆粒状の大きな酸化銀電池の周辺に、微粒子の
カーボンが分布することにより。少ないカーボン量で正
極合剤内に導電性のネットワークができるためであると
考えられる。
This is due to the distribution of fine carbon particles around large granular silver oxide batteries. This is thought to be due to the formation of a conductive network within the positive electrode mixture with a small amount of carbon.

なお粒径については、50〜300μmの酸化銀と1μ
m以下のカーボンの組合せで実施例°と同様な効果が得
られた。
Regarding the particle size, silver oxide of 50 to 300 μm and 1 μm
The same effect as in Example 2 was obtained with a combination of carbons of m or less.

発明の効果 以上の結果から明らかなように、正極を粒径50〜30
0μmの顆粒状の酸化銀と、粒径1μm以下のカーボン
との混合物を加圧成型して作ることにより、閉路電圧特
性を低下させることなく、より高容量の酸化銀電池をよ
り低価格で作ることができる。
As is clear from the results above and beyond the effects of the invention, the positive electrode has a particle size of 50 to 30
By press-molding a mixture of granular silver oxide with a particle size of 0 μm and carbon with a particle size of 1 μm or less, a silver oxide battery with higher capacity can be made at a lower price without reducing the closed circuit voltage characteristics. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるボタン形酸化1・・・
・・・正極ケース、2・・・・・・正極合剤、3・・・
・・・正極リング、4・・・・・・セパレータ、5・・
・・・・含浸材、6・・・・・・封口リング、7・・・
・・・負極、8・・・・・・封口板。
Figure 1 shows button-shaped oxidation 1 in an embodiment of the present invention...
...Positive electrode case, 2...Positive electrode mixture, 3...
... Positive electrode ring, 4... Separator, 5...
... Impregnating material, 6... Sealing ring, 7...
...Negative electrode, 8... Sealing plate.

Claims (1)

【特許請求の範囲】[Claims]  負極の活物質として亜鉛(Zn)、正極の活物質とし
て酸化銀(Ag_2O)、電解液としてアルカリ水溶液
をそれぞれ用い、前記正極は粒径50〜300μmの顆
粒状のAg_2Oと粒径1μm以下のカーボンとの混合
物を加圧成型したものである酸化銀電池。
Zinc (Zn) is used as the active material of the negative electrode, silver oxide (Ag_2O) is used as the active material of the positive electrode, and an alkaline aqueous solution is used as the electrolyte. A silver oxide battery is a pressure-molded mixture of
JP497390A 1990-01-12 1990-01-12 Silver oxide battery Pending JPH03210763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP497390A JPH03210763A (en) 1990-01-12 1990-01-12 Silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP497390A JPH03210763A (en) 1990-01-12 1990-01-12 Silver oxide battery

Publications (1)

Publication Number Publication Date
JPH03210763A true JPH03210763A (en) 1991-09-13

Family

ID=11598544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP497390A Pending JPH03210763A (en) 1990-01-12 1990-01-12 Silver oxide battery

Country Status (1)

Country Link
JP (1) JPH03210763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235595A (en) * 2004-02-20 2005-09-02 Hitachi Maxell Ltd Button type alkaline battery and its manufacturing method
JP2006278091A (en) * 2005-03-29 2006-10-12 Hitachi Maxell Ltd Coin-shaped silver-oxide battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235595A (en) * 2004-02-20 2005-09-02 Hitachi Maxell Ltd Button type alkaline battery and its manufacturing method
JP2006278091A (en) * 2005-03-29 2006-10-12 Hitachi Maxell Ltd Coin-shaped silver-oxide battery

Similar Documents

Publication Publication Date Title
JP3370486B2 (en) Alkaline battery
JP3215448B2 (en) Zinc alkaline battery
JP4222488B2 (en) Alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JPH0222984B2 (en)
JPH03210763A (en) Silver oxide battery
JPS62254367A (en) Solid electrolyte secondary cell
JPS6084772A (en) Solid electrolyte battery
KR20150041696A (en) Zinc air cell, anode for zinc air cell and method of preparing the same
JPH0212762A (en) Silver oxide battery
JPS5832362A (en) Alkaline zinc secondary battery
JPH0317182B2 (en)
JPH08287902A (en) Alkaline dry battery
JPH0512824B2 (en)
JPS63158750A (en) Zink electrode for alkaline storage battery
JPS60121670A (en) Manufacture of silver oxide battery
JPH01307163A (en) Organic electrolyte battery
JPS61271747A (en) Silver oxide cell
JPH04171665A (en) Button type alkaline battery
JPS62198052A (en) Laminated type zinc chloride cell
JPS61107661A (en) Nonaqueous electrolyte battery
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JPS6398957A (en) Silver oxide battery
JPH07130364A (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the electrode
JPH06124706A (en) Sealed nickel-zinc storage battery