JPS62198052A - Laminated type zinc chloride cell - Google Patents

Laminated type zinc chloride cell

Info

Publication number
JPS62198052A
JPS62198052A JP61038190A JP3819086A JPS62198052A JP S62198052 A JPS62198052 A JP S62198052A JP 61038190 A JP61038190 A JP 61038190A JP 3819086 A JP3819086 A JP 3819086A JP S62198052 A JPS62198052 A JP S62198052A
Authority
JP
Japan
Prior art keywords
manganese dioxide
zinc chloride
zinc
electrode
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61038190A
Other languages
Japanese (ja)
Inventor
Akira Hayashi
彰 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP61038190A priority Critical patent/JPS62198052A/en
Publication of JPS62198052A publication Critical patent/JPS62198052A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To construct a cell of high performance and good storableness by using a main electrolyte composed of chemical manganese dioxide and a combined electrode of carbon and zinc consisting of three dimensional combined electrode with electroconductive carbon layer. CONSTITUTION:A cell is constructed with a main electrolyte of zinc chloride, a positive electrode active materials of chemical manganese dioxide having gammatype crystal structure, and a combined electrode of carbon and zinc consisting of a can-shaped or similar three dimensional combined electrode 3 on the whole or a part of outer surface of which an electro-conductive carbon film 2 is provided. The purity of the chemical manganese dioxide is necessary to be higher than 88wt% and desirable to be higher than 90wt%. Thereby the physical property of the zinc chloride composite can be improved without lowering of the discharge capacity in comparison with the cell made of electrolytic manganese dioxide, and especially by using together the can-shaped or similar three dimentional combined electrode the deformation of the zinc chloride composite at the stack assembly can be prevented more effectively to obtain the stack of high dimensional accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は積層形塩化亜鉛電池の二酸化マンガン正極およ
び炭素・亜鉛結合電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a manganese dioxide positive electrode and a carbon-zinc bonded electrode for a stacked zinc chloride battery.

[従来の技術] 積層形電池は、本来筒形電池を複数個結線した高圧組電
池に対して、小型・高性能の高圧電池として開発ざたも
のであり、その使用目的に応じ公称電圧4.5■から数
10″O■の範囲の大小各種の電池が商品化されている
。積層形電池の構造としては過去まざまなものが提案さ
れてきたが、現在では容積比能率、量産適性およびコス
ト面で優れた、いわゆる“Mini−max型″型造構
造のが一般的になっている。すなわち、その代表的な構
造は正極および負極の東電体を兼ね、セル間の電気的接
続の役割を果す導電性カーボン膜と負極亜鉛板を一体に
形成せしめた複合電極である炭素・亜鉛結合電極(2i
nc−carbon Duplex Electrod
e以下結合電極と略称する)を用い、この亜鉛負極面に
薄いペースト層およびカップ状セパレータを介して板状
正極合剤を載置し、この全体の周縁部を熱収縮性の環状
プラスチック・フィルム(以下セル・グロメットと略称
する)で被包して素電池(以下セルと略称する)を構成
し、複数個のセルを重積したのち両端を内部端子板を介
して圧締固定し、次に配合ワックス等の絶縁材料で全体
を被覆してセル積重体(以下スタックと略称する)を1
qる。
[Prior Art] Stacked batteries were originally developed as small, high-performance high-voltage batteries, in contrast to high-voltage assembled batteries in which multiple cylindrical batteries were wired together. Batteries of various sizes ranging from ■ to several tens of inches O■ have been commercialized.A variety of structures have been proposed for stacked batteries in the past, but at present, volumetric efficiency, suitability for mass production, and cost The so-called "Mini-max type" molded structure, which is excellent in terms of The carbon-zinc bonded electrode (2i
nc-carbon Duplex Electrod
A plate-shaped positive electrode mixture is placed on the zinc negative electrode surface via a thin paste layer and a cup-shaped separator, and the entire periphery is covered with a heat-shrinkable annular plastic film. (hereinafter referred to as a cell grommet) to form a unit cell (hereinafter referred to as a cell), and after stacking multiple cells, both ends are clamped and fixed via an internal terminal board, and then The entire cell is covered with an insulating material such as wax mixed with the cell stack (hereinafter referred to as stack).
qru.

スタックを再び熱収縮性の筒状プラスチック・フィルム
(以下スタック・グロメットと略称する)−被包したの
ち、外部端子を有する外装容器内に収納し、内部端子と
外部端子を電気的に接続し電池 (Batteries
)を完成せしめるのである。
After the stack is wrapped again in a heat-shrinkable cylindrical plastic film (hereinafter referred to as stack grommet), it is placed in an outer container with external terminals, and the internal and external terminals are electrically connected to form a battery. (Batteries
) will be completed.

この場合正極には高品位・高活性の電解二酸化マンガン
(Electrolytic Hanganese D
ioxide)およびアセチレンブラック、主電解質に
は塩化アンモニウム、負極には少量のPb、 Cd、 
AI等を添加した高純度電気亜鉛からなり、かつ汞化し
た平板状亜鉛を用いていた。
In this case, the positive electrode is made of high-grade, highly active electrolytic manganese dioxide (Electrolytic Hanganese D).
ioxide) and acetylene black, ammonium chloride as the main electrolyte, and small amounts of Pb, Cd, and anode as the negative electrode.
The zinc plate was made of high-purity electrolytic zinc added with AI, etc., and was made into a starch.

この電池の最大の特徴は層状構造であること、セル内に
空室(Air 5pace)を必要としないこと、セル
間結線を必要としないこと等の理由で容積比能率が高い
ことであるが、内部インピーダンスが比較的大きいため
急放電に適しない難点があった。
The biggest feature of this battery is that it has a layered structure, does not require an empty space (air 5 space) within the cell, and does not require interconnections between cells, so it has a high volumetric efficiency. The disadvantage was that the internal impedance was relatively large, making it unsuitable for rapid discharge.

近来電池を電源とする機器の多様化に伴い急放電容量の
向上が要求されるようになり、このための改良がなされ
てきた。その効果的な方法の一つは主電解質とし、て従
来の塩化アンモニウムに代えて塩化亜鉛を採用すること
である。衆知のように主電解質として塩化亜鉛を用いる
塩化亜鉛電池におい−は、主電解質が塩化アンモニウム
である、いわゆるルクランシェ電池とは放電時における
起電反応が異なり、製造条件が適切であれば急放電特性
および耐漏液が著しく向上される。下式にルクランシエ
電池(1)および塩化亜鉛電池(2)の起電反応式を示
す。
In recent years, with the diversification of devices that use batteries as a power source, there has been a demand for improved rapid discharge capacity, and improvements have been made for this purpose. One effective method is to use zinc chloride as the main electrolyte instead of the conventional ammonium chloride. As is well known, zinc chloride batteries that use zinc chloride as the main electrolyte have a different electromotive reaction during discharge from so-called Leclanche batteries, whose main electrolyte is ammonium chloride, and if manufacturing conditions are appropriate, rapid discharge characteristics can be achieved. and leakage resistance is significantly improved. The electromotive reaction equations of the Lecrancier battery (1) and the zinc chloride battery (2) are shown below.

2 )1no 2 +2 N84 Cl +1n=2 
)1no (0旧十Zn(NH3) 2 Cl2−(1
)8MnO2+ZnCl2+8H20+4Zn−8Mn
O(Oll)+ZnCl24 Zn(O旧2−(2)こ
のため筒形乾電池においてはすでにその相当部分が塩化
亜鉛電池化されている。一方において積層形電池を塩化
亜鉛化することには生産技術上の難点があるため、ごく
一部で商品化が試みられているに過ぎない。
2) 1no 2 +2 N84 Cl +1n=2
)1no (0 former 10 Zn(NH3) 2 Cl2-(1
)8MnO2+ZnCl2+8H20+4Zn-8Mn
O (Oll) + ZnCl24 Zn (O former 2-(2)) For this reason, a considerable portion of cylindrical dry batteries are already made with zinc chloride.On the other hand, it is difficult to use zinc chloride in laminated batteries due to production technology. Due to these drawbacks, only a few attempts have been made to commercialize it.

積層形電池を塩化亜鉛化する際のいくつかの問題点のう
ち代表的なものについて述べる。その第一は塩化亜鉛電
解液のアセチレンブラックに対する特異挙動である。す
なわち二酸化マンガンとアセチレンブラックを主とする
混合物(Dry Mix)に電解液を添加して得る湿潤
正極合剤(Wet )fix)を加圧成型する際、塩化
アンモニウムを主電解質とする電解液を含む正極合剤(
以下ルクランシ工合剤と略称する)では適度な圧縮凝集
性と反発弾性を有する粉体的挙動を示すのに対し、塩化
亜鉛を主電解質とする電解液を含む正極合剤(以下塩化
亜鉛合剤と略称する)の場合には、一種の疑似流体的挙
動を示し、成型時の圧力損が大きく所定の形状と密度に
成型することが困難である。また得られた板状成型合剤
(Mix Cake)は強度が弱く、比較的小さな外力
によっても容易に変形する難点を有することである。ま
た成型合剤が外力によって塑性変形をうけると、その程
度によっては正極合剤自体のインピーダンス上昇をもた
らし、これによる性能低下および保存特性の劣化を生ぜ
しめることもある。
We will discuss some of the most typical problems when converting laminated batteries into zinc chloride. The first is the peculiar behavior of zinc chloride electrolyte towards acetylene black. In other words, when press-molding a wet positive electrode mixture (wet fix) obtained by adding an electrolyte to a mixture (dry mix) mainly consisting of manganese dioxide and acetylene black, it contains an electrolyte containing ammonium chloride as the main electrolyte. Positive electrode mixture (
The positive electrode mixture (hereinafter referred to as zinc chloride mixture), which contains an electrolyte with zinc chloride as the main electrolyte, exhibits powder-like behavior with appropriate compressive cohesiveness and impact resilience. In the case of (abbreviated as abbreviated)), it exhibits a kind of quasi-fluid behavior, and the pressure loss during molding is large, making it difficult to mold it into a predetermined shape and density. Further, the obtained plate-shaped molded mixture (Mix Cake) has a disadvantage that it has low strength and is easily deformed even by a relatively small external force. Furthermore, if the molded mixture undergoes plastic deformation due to an external force, depending on the degree of plastic deformation, the impedance of the positive electrode mixture itself may increase, resulting in a decrease in performance and deterioration of storage characteristics.

第二の問題点は放電機構の差に起因づるものである。ル
クランシェ電池においては放電時における主たる成極イ
オンであるプロトンの供給源はNH4Clであり、従っ
て充分な放電容量をうるためには活物質たる塩化アンモ
ニウムを電解液の飽和溶解量に対して大過剰に添加した
不均一系として使用するのが普通であるが、これが結果
的に正極合剤の物性面で好ましい結果をもたらしている
The second problem is due to the difference in discharge mechanism. In Leclanche batteries, the source of protons, which are the main polarizing ions during discharge, is NH4Cl. Therefore, in order to obtain sufficient discharge capacity, the active material ammonium chloride must be used in large excess with respect to the saturated dissolved amount of the electrolyte. Generally, it is used as an added heterogeneous system, which results in favorable results in terms of the physical properties of the positive electrode mixture.

これに対して塩化亜鉛電池ではプロトン供給体がH2C
であるため充分な放電容量をうるためにはルクランシ工
合剤中におけるよりも多量の水を電解液として添加する
必要がある。周知のように正極合剤の電解液保持量は主
としてアセチレンブラックの吸液量に依存していてアセ
チレンブラックの吸液量はその種類により若干異なるが
一般に、3.6〜3.8d/(l程度のものでおる。塩
化亜鉛合剤において充分な放電利用率をうるのに必要な
電解液保持量は上記吸液量の限界値附近ないしはそれ以
上となり、このため前述した塩化亜鉛合剤の短所である
加圧時の疑似流体的挙動を一層助長している。のみなら
ず正極合剤中の多量の電解液の存在はアセチレンブラッ
クのもう一つの重要な機能である正極内での有効な電子
伝導網形成を阻害する。すなわちアセチレンブラックと
二酸化マンガン粒子間の接触不良(Loose Con
tact)によりセルの内部インピーダンスを上昇せし
めるのである。
On the other hand, in zinc chloride batteries, the proton donor is H2C
Therefore, in order to obtain a sufficient discharge capacity, it is necessary to add a larger amount of water as an electrolyte than in the Lucranci mixture. As is well known, the amount of electrolyte retained by the positive electrode mixture mainly depends on the amount of liquid absorbed by acetylene black, and the amount of liquid absorbed by acetylene black varies slightly depending on the type, but is generally 3.6 to 3.8 d/(l). The amount of electrolyte retained in the zinc chloride mixture to obtain a sufficient discharge utilization rate is close to or above the limit value of the liquid absorption amount mentioned above, and therefore the above-mentioned disadvantages of the zinc chloride mixture are This further promotes the quasi-fluid behavior when pressurized.In addition, the presence of a large amount of electrolyte in the positive electrode mixture is another important function of acetylene black, which is the ability to make effective electrons within the positive electrode. In other words, poor contact between acetylene black and manganese dioxide particles (Loose Con
tact) to increase the internal impedance of the cell.

問題点の第三は積層電池の)lini−Hax構造に起
因するものである。すなわちセルを複数個重積し、その
全体を重積方向に圧締固定することによってセル内部の
構成エレメント間およびセル間に必要な接触を維持せし
める構造であるのに対し、セル容器が可撓性で構造強度
を有しないセル・グロメットからなっているため外圧は
主として正極合剤で受ける結果となることである。ルク
ランシ工合剤を用いる場合には正極合剤が上記接触圧を
維持するのに必要最低限度の強度を有している。これに
対し塩化亜鉛合剤ではスタックの圧締に際してセル内の
正極合剤が容易に変形し、外圧に対し直角方向へ圧潰せ
しめられるのであるが、この際セル容器を形成している
セル・グロメットが正極合剤の変形を有効に阻止するだ
けの強度を有しないためセル・グロメットも同時に変形
し圧力損を大きくし、セル内のエレメント相互およびセ
ル間に必要な接触圧がjqられがたい。1なわちセルな
いしスタックに大きな変形を与えることなく電池がその
機能を果すに必要な接触状態を安定状態で維持すること
が回動なのである。
The third problem is caused by the (lini-Hax) structure of the stacked battery. In other words, the structure is such that a plurality of cells are stacked one on top of the other and the entire cell is clamped and fixed in the stacking direction to maintain the necessary contact between the structural elements inside the cells and between the cells, whereas the cell container is flexible. Since the cell grommet is made of a cell grommet with no structural strength, external pressure is mainly received by the positive electrode mixture. In the case of using the Lucranci mixture, the positive electrode mixture has the minimum strength necessary to maintain the above-mentioned contact pressure. On the other hand, with zinc chloride mixture, when the stack is compressed, the positive electrode mixture inside the cell is easily deformed and crushed in the direction perpendicular to the external pressure. does not have enough strength to effectively prevent deformation of the positive electrode mixture, the cell grommet also deforms at the same time, increasing pressure loss, making it difficult to maintain the necessary contact pressure between the elements within the cell and between the cells. 1. In other words, rotation is to maintain a stable contact state necessary for the battery to perform its function without causing large deformation to the cell or stack.

以上の理由から従来の積層形塩化亜鉛電池は性能にバラ
ツキを生じ易く、長期貯蔵時における特性劣化を大きく
せしめているのであるが、これらの基本的問題点に対す
る有効な対策は未だ提案されていない。
For the above reasons, conventional laminated zinc chloride batteries tend to exhibit variations in performance and suffer from significant deterioration of characteristics during long-term storage, but no effective countermeasures have yet been proposed to address these basic problems. .

本発明は正極活物質にγ型結晶構造を有する化学二酸化
マンガンを用いると共に、炭素・亜鉛結合電極に缶状な
いし缶類似形状の立体型結合電極を用いることによって
核上の問題点を解決し、高性能で貯蔵性のよい実用的な
積層形塩化亜鉛電池を提供することを目的とするもので
ある。
The present invention solves the nuclear problem by using chemical manganese dioxide having a γ-type crystal structure as the positive electrode active material, and using a can-shaped or can-like three-dimensional bonded electrode as the carbon-zinc bonded electrode. The purpose of this invention is to provide a practical laminated zinc chloride battery with high performance and good storability.

[問題点を解決するための手段] 上記の目的を達成するために、本発明は二酸化マンガン
を正極活物質、亜鉛を負極活物質とする積層形塩化亜鉛
電池において、主電解質に・塩化亜鉛、正極活物質がγ
型結晶構造を有する化学二酸化マンガンを用い、且つ炭
素・亜鉛結合電極としてその外面の全体または一部に導
電性カーボン膜を有する缶状ないし缶類似形状の立体型
結合電極を用いた積層形塩化亜鉛電池である。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a laminated zinc chloride battery in which manganese dioxide is used as a positive electrode active material and zinc is used as a negative electrode active material, in which zinc chloride, zinc chloride, The positive electrode active material is γ
Laminated zinc chloride using chemical manganese dioxide having a type crystal structure and a can-shaped or can-like three-dimensional bonding electrode having a conductive carbon film on the whole or part of the outer surface as a carbon-zinc bonding electrode. It's a battery.

[作 用コ 本発明者は塩化亜鉛合剤の加圧時における疑似流体的挙
動およびそれに起因する成型合剤の形状変化を緩和ない
し阻止するための手段として(1)正極合剤の電解液保
持能力および成型体の変形抵抗を高めるような物質の添
加、(2)正極合剤の電解液保持をアセチレンブラック
のみでなく二酸化マンガンにも一部分担させること、(
3)セルの構造強度を高めることにより正極合剤の変形
を制限すること、を中心に改良を試みた。
[Function] The present inventor proposed (1) electrolyte retention of the positive electrode mixture as a means for alleviating or preventing the quasi-fluid behavior of the zinc chloride mixture during pressurization and the shape change of the molded mixture caused by it. (2) Adding a substance that increases the capacity and deformation resistance of the molded body; (2) having not only acetylene black but also manganese dioxide take part in retaining the electrolyte in the positive electrode mixture;
3) Improvements were attempted mainly by limiting the deformation of the positive electrode mixture by increasing the structural strength of the cell.

まず電解二酸化マンガンに対して酸化抵抗性を有する変
性多糖類、繊維素誘導体等を選択し、その適四を正極合
剤に添加することによって塩化亜鉛合剤の欠陥を改良す
ることを試みた。先に本発明者が提案した特許第696
556号によれば積層形電池のルクランシエ電池にカラ
ヤガム(Gum Kalaya)を特定条1qで添加す
ることにより、多量の電解液を添加した場合でも成型作
業性が良好で、電池の急放電特性および耐漏液特性を著
しく向上することができる。この手法を積層形塩化亜鉛
電池に適用することを試みたが成功しなかった。すなわ
ち少量のカラヤガムの添加では僅かな成型作業性の向上
が認められるものの期待する効果は得られず、また相当
量のカラヤガムを添加した場合にはセル・インピーダン
スの茗しい上昇がありルクランシ工合剤の場合における
ような効果は認められなかった。このインピーダンス上
昇は主として正極合剤内の粒子間接触抵抗および結合電
極面の導電性カーボン膜と正極合剤との接触抵抗増大に
起因している。カラヤガム以外の種々な変性多糖類、繊
維素誘導体等を用いた場合にも一般的にセル・インピー
ダンス上昇が更に大ぎいか、正極合剤の変形抵抗を増大
できず添加の効果は得られなかった。
First, we selected modified polysaccharides, cellulose derivatives, etc. that have oxidation resistance against electrolytic manganese dioxide, and added appropriate amounts of them to the positive electrode mixture in an attempt to improve the defects in the zinc chloride mixture. Patent No. 696 previously proposed by the present inventor
According to No. 556, by adding Gum Kalaya in a specified amount of 1q to the Leclancier battery, which is a stacked battery, the molding workability is good even when a large amount of electrolyte is added, and the rapid discharge characteristics and leakage resistance of the battery are improved. Liquid properties can be significantly improved. An attempt was made to apply this method to a stacked zinc chloride battery, but without success. In other words, when a small amount of karaya gum is added, although a slight improvement in molding workability is observed, the expected effect is not obtained, and when a considerable amount of karaya gum is added, the cell impedance increases sharply and No such effect was observed in the case. This increase in impedance is mainly due to an increase in the contact resistance between particles within the positive electrode mixture and the contact resistance between the conductive carbon film on the surface of the bonded electrode and the positive electrode mixture. When various modified polysaccharides, cellulin derivatives, etc. other than karaya gum were used, the increase in cell impedance was generally even greater, or the deformation resistance of the positive electrode mixture could not be increased, and no effect of addition could be obtained. .

いずれにしても正極合剤中に相当量の第三物質を添加す
ることは相対的な活物質重の減少をともなうから、他に
余程のメリットが得られない限り余り好ましいことでは
ない。
In any case, adding a considerable amount of the third substance to the positive electrode mixture is accompanied by a relative decrease in the weight of the active material, so it is not very preferable unless significant other benefits can be obtained.

次に正極活物質である二酸化マンガン自体に正極合剤が
必要とする電解液量の一部を分担させることを試みた。
Next, we attempted to have manganese dioxide itself, which is the positive electrode active material, share a portion of the amount of electrolyte required by the positive electrode mixture.

一般に化学的な手段で調製された二酸化マンガンは電解
二酸化マンガンに比して表面積、平均孔径が大きく吸液
量は約2倍である。
Generally, manganese dioxide prepared by chemical means has a larger surface area and average pore diameter than electrolytic manganese dioxide, and has about twice the amount of liquid absorbed.

従って塩化亜鉛合剤の欠陥改善に役立つ筈である。Therefore, it should be useful for improving defects in zinc chloride mixtures.

しかしながら現在量産されている二酸化マンガンはすべ
て下式(3)で示した方法による合成二酸化マンガンで
あって、このものはρ−γ型結晶構造を有し急放電特性
が劣るため電解二酸化マンガンの代替として置換えるに
は難がある。
However, currently mass-produced manganese dioxide is all synthesized manganese dioxide by the method shown in formula (3) below, and this is a substitute for electrolytic manganese dioxide because it has a ρ-γ type crystal structure and has poor rapid discharge characteristics. It is difficult to replace it as .

2Hn2co3+02 →2Hn02 +2CO2”i
l)これに対して下式(4)または(5)に示すように
マンガンの低級酸化物を不均化反応せしめて1りられる
化学二酸化マンガンは電解二酸化マンガンと類似のγ型
結晶構造を有し急放電特性が良好である。
2Hn2co3+02 →2Hn02 +2CO2"i
l) On the other hand, chemical manganese dioxide, which is produced by subjecting a lower oxide of manganese to a disproportionation reaction, has a γ-type crystal structure similar to electrolytic manganese dioxide, as shown in the following formula (4) or (5). It has good rapid discharge characteristics.

Mn203 + H2SO4− Mn02 + HnS04+町0−−−−−−−−・(
4)Mn304 +2 H2304= )1n02 +2)1nS04+2 H20””(5)
上記不均化反応の原料である低級酸化物は高級酸化物の
還元煤焼または二価マンガン塩の加熱酸化によって得ら
れる。従って不均化反応で1qられる化学二酸化マンガ
ンの純度(Mn02)は原料である低級酸化物ないし二
価マンガン塩の純度に依存している。
Mn203 + H2SO4- Mn02 + HnS04 + Town 0 ----------・(
4) Mn304 +2 H2304= )1n02 +2)1nS04+2 H20””(5)
The lower oxide, which is the raw material for the above-mentioned disproportionation reaction, can be obtained by reduction sooting of a higher oxide or heating oxidation of a divalent manganese salt. Therefore, the purity (Mn02) of chemical manganese dioxide produced by 1q in the disproportionation reaction depends on the purity of the lower oxide or divalent manganese salt that is the raw material.

不均化反応によって得られる化学二酸化マンガンを積層
形塩化亜鉛電池に用いる際、比較的純度が低い場合、例
えば純度80%前後の場合でも急放電特性は良好である
が、放電利用率の高い軽負荷放電容量は劣る。調査の結
果、現用している電解二酸化マンガンと略々間等の軽敢
電容量をうるためには不均化反応で調製された化学二酸
化マンガンの純度が約88重足%以上、好ましくは90
重足%以上必要であることを認めた。不均化反応に用い
る低級酸化物の素原料が二価マンカン塩である場合は高
純度のものを1q易いが、素原料が天然鉱等の高級酸化
物である場合には高品位鉱を充分製錬して使用すること
が必要である。
When chemical manganese dioxide obtained by a disproportionation reaction is used in a stacked zinc chloride battery, rapid discharge characteristics are good even when the purity is relatively low, for example, around 80%. Load discharge capacity is poor. As a result of the investigation, chemical manganese dioxide prepared by disproportionation reaction must have a purity of about 88% or more, preferably 90%, in order to obtain a light capacitance that is roughly between that of the currently used electrolytic manganese dioxide.
It was acknowledged that more than 50% of weight was required. If the raw material for the lower oxide used in the disproportionation reaction is a divalent mankane salt, it is easier to use 1q of high purity, but if the raw material is a higher oxide such as a natural ore, high-grade ore is enough. It is necessary to smelt it and use it.

枝上の如く高品位の低級酸化物を不均化反応せしめるな
どして得られる純度88重量%以上のγ型結晶構造を有
する化学二酸化マンガンを塩化亜鉛合剤に用いることに
よって、電解二酸化マンガンを用いた場合に比し電池の
負荷・容量特性を低下せしめることなく成型合剤の変形
抵抗性をある程度改良することができた。この場合不均
化反応に用いる低級酸化物の原料が合成物質であるとき
得られた化学二酸化マンガンは合成二酸化マンガン(C
hemical 5ynthetic )fangan
ese Dioxide)、原料が天然の高級酸化物で
あるときは活性化二酸化マンガン(Chemical 
Activated Hanganes Dioxid
eと呼称する。
Electrolytic manganese dioxide can be produced by using chemical manganese dioxide, which has a γ-type crystal structure with a purity of 88% by weight or more and is obtained by disproportionation reaction of high-grade lower oxides such as those shown in the above, in a zinc chloride mixture. It was possible to improve the deformation resistance of the molding mixture to some extent without deteriorating the load/capacity characteristics of the battery compared to when using this method. In this case, when the raw material for the lower oxide used in the disproportionation reaction is a synthetic material, the chemical manganese dioxide obtained is synthetic manganese dioxide (C
chemical 5ynthetic)fangan
ese Dioxide), activated manganese dioxide (Chemical
Activated Hanganes Dioxide
It is called e.

またγ型結晶構造を有する化学二酸化マンガンが粒径1
μm以下のいわゆるザブミクロン粒子の多量を含有する
ときは成型合剤の外圧による変形を一層軽減せしめるこ
とが実験的に認められた。
In addition, chemical manganese dioxide with a γ-type crystal structure has a particle size of 1
It has been experimentally found that when a large amount of so-called Zabumicron particles of .mu.m or less are contained, the deformation of the molding mixture due to external pressure is further reduced.

ただし、二酸化マンガンの微細化はカサ密度の低下を伴
い、正極合剤のセル内充1affiの低下すなわち放電
容量減を伴うから、適当な処理によって実用的な見掛は
粒度の緻密な二次粒子としたのち使用覆ることが必要で
ある。二次粒子中に含まれるサブミクロン−次粒子の母
が略々30重量%を超えると効果が認められ、好ましく
は50重量%以上において効果は一層明瞭である。
However, since the miniaturization of manganese dioxide is accompanied by a decrease in bulk density and a decrease in the charging capacity of the positive electrode mixture in the cell, i.e., a decrease in discharge capacity, the practical appearance is reduced to secondary particles with a fine particle size. It is necessary to cover it after use. The effect is recognized when the amount of the submicron particles contained in the secondary particles exceeds about 30% by weight, and the effect is even more obvious when the amount of the submicron particles contained in the secondary particles is preferably 50% by weight or more.

尚、超微粉砕について附記すると、一般に既知の粉砕方
式を用い固体の細分化を行うときの経済的粉砕限界は約
3μmであり、1μm以下の微粒子を経済的収率で得る
ことは回能とされている。
In addition, regarding ultrafine pulverization, the economical pulverization limit when finely dividing solids using generally known pulverization methods is approximately 3 μm, and obtaining fine particles of 1 μm or less at an economical yield is difficult. has been done.

しかし例えば震動式ボールミル等を用いた長時間の回分
式粉砕を行うことや高圧プレスによる圧砕等の方法で多
量のサブミクロン粒子を含む化学二酸化マンガン乃至そ
の原料の微粉体をうろことは実際上可能である。
However, it is actually possible to scale the fine powder of chemical manganese dioxide or its raw material containing a large amount of submicron particles by long-term batch pulverization using a vibratory ball mill, etc., or by crushing with a high-pressure press. It is.

しかしながら上述したごときγ型結晶構造を有する高純
度の化学二酸化マンガンを用いた場合でも、塩化亜鉛合
剤の塑性変形を実用上充分効果的なまで抑制できたとは
いえない。発明者はセルないしスタックが加圧圧締され
る際の塩化亜鉛合剤の塑性変形を阻止するに必要な構造
強度をもたない従来のセル構造に変化を加える必要を認
め、その改良を行った。すなわち現行積層形電池のもつ
簡潔な構造に基づく高い容積比能率と量産適性を大ぎく
損うことなくセルに必要な構造強度をもたせる方法につ
いて検討した結果、従来平板状で用いられてきた結合電
極をその周縁部が立上り側壁部を形成する立体型構造と
することが極めて有効であることを認めた。従来の平板
状の炭素・亜鉛結合電極を用いた場合には正極成型合剤
の側面は正極合剤を被包しているカップ状セパレータの
立上り部を介して可撓性のセル・グロメット薄層で支持
されているため、塩化亜鉛合剤の変形に対して必要な抵
抗力をもたなかったのに対し、本発明における立体型結
合電極を用いた場合には結合電極の側壁部によってセル
全体に構造強度を与え合剤の変形を効果的に阻止できる
のである。
However, even when high-purity chemical manganese dioxide having a γ-type crystal structure as described above is used, it cannot be said that the plastic deformation of the zinc chloride mixture can be suppressed to a sufficiently effective level for practical use. The inventor recognized the need to make changes to the conventional cell structure, which did not have the necessary structural strength to prevent plastic deformation of the zinc chloride mixture when the cell or stack was compacted, and made improvements thereto. . In other words, as a result of considering a method to provide the cell with the necessary structural strength without significantly impairing the high volumetric efficiency and suitability for mass production based on the simple structure of current stacked batteries, we found that the bonding electrode, which had been conventionally used in a flat form, It has been found that it is extremely effective to create a three-dimensional structure in which the peripheral edge rises to form a side wall. When a conventional flat carbon/zinc bonded electrode is used, the side surface of the positive electrode mixture is covered with a flexible cell grommet thin layer through the rising part of the cup-shaped separator encasing the positive electrode mixture. However, when the three-dimensional bonding electrode of the present invention is used, the entire cell is supported by the side wall of the bonding electrode. This provides structural strength to the material and effectively prevents deformation of the mixture.

また立体型結合電極を用いることによる副次的効果とし
てセル寸法の粘度も向上される。すなわちセルの製造工
程においてセル・グロメットが熱収縮する際、従来構造
では収縮したセル・グロメットがカップ状セパレータの
立上り部へ接触するのに対し、本発明の構造では収縮し
たセルグロメットは寸法・形状が正確で表面の平滑な立
体型結合電極の側壁部に密着するからである。
Furthermore, as a side effect of using the three-dimensional bonded electrode, the viscosity of the cell dimensions is also improved. In other words, when the cell grommet heat-shrinks in the cell manufacturing process, in the conventional structure, the shrunken cell grommet comes into contact with the rising part of the cup-shaped separator, whereas in the structure of the present invention, the shrunk cell grommet has a smaller size and shape. This is because it is accurate and adheres closely to the side wall portion of the three-dimensional bonding electrode with a smooth surface.

本発明で用いる立体型結合電極の缶状とは、セル形状に
対応し円形・方形・矩形等任意形状の結合電極の端部全
体が立上った連続的な側壁を形成し結合電極全体が丸缶
状ないし角田状に形成されたものであり、缶類似形状と
は結合電極縁端部の任意の大部分が立上って側壁部を形
成し一種の缶状外観を呈するものであるが側壁部の一部
に欠載部を有し、側壁全体が連続的に形成されていない
構造のものをいう。
The can shape of the three-dimensional coupling electrode used in the present invention means that the entire end of the coupling electrode has an arbitrary shape such as circular, square, or rectangular, corresponding to the cell shape, and forms a continuous side wall that stands up. It is shaped like a round can or square box, and a can-like shape is one in which a large part of the edge of the coupling electrode rises to form a side wall, giving it a can-like appearance. This refers to a structure in which a part of the side wall has a missing part and the entire side wall is not formed continuously.

本発明における立体型結合電極のm造例を第1図a、b
、c、dに示した。第1図中の1は亜鉛電極、2は導電
性カーボン膜、3は1および2が一体に形成されてなる
結合電極の側壁部を示す。
Figures 1a and b show examples of how the three-dimensional coupling electrode of the present invention is constructed.
, c, and d. In FIG. 1, 1 is a zinc electrode, 2 is a conductive carbon film, and 3 is a side wall portion of a combined electrode in which 1 and 2 are integrally formed.

第1図aは円形セル用の缶状の立体型結合電極、第1図
すは矩形セル用の缶状の立体型結合電極、第1図dは矩
形セル用の缶類似形状の立体型結合電極をそれぞれ示す
Figure 1 a shows a can-shaped three-dimensional coupling electrode for a circular cell, Figure 1 shows a can-shaped three-dimensional coupling electrode for a rectangular cell, and Figure 1 d shows a can-like three-dimensional coupling electrode for a rectangular cell. Each electrode is shown.

また第1図a、Cは結合電極の側壁部が略々垂直に形成
されている例、第1図すは側壁部が梢々外方に向って傾
斜している例をそれぞれ示す。
Further, FIGS. 1A and 1C show an example in which the side wall portions of the coupling electrode are formed substantially vertically, and FIG. 1 shows an example in which the side wall portions are inclined outward from top to bottom.

また第1図a、b、dは立体型結合電極の外側全面に導
電性カーボン膜層が一体に形成されている例、第1図C
は立体型結合電極の外部底面すなわち隣接セル対向面の
み導電性カーボン膜が形成されている例である。
In addition, Fig. 1 a, b, and d are examples in which a conductive carbon film layer is integrally formed on the entire outer surface of the three-dimensional coupling electrode, and Fig. 1 C
This is an example in which a conductive carbon film is formed only on the external bottom surface of the three-dimensional coupling electrode, that is, the surface facing the adjacent cell.

上述したように立体型結合電極の側壁部の高さは、結合
電極内にカップ状セパレータを介して挿入された正極成
型合剤の上面よりも若干低く設計される。これは正極合
剤と隣接セルの導電性カーボン股との接触を確実にする
ためである。また結合電極の側壁部の立上りの角度は結
合電極底面に対して略々垂直であることが容積比能率上
もつとも好ましいが、生産を考慮して外方へ若干、例え
ば02〜10度程度傾斜していてもよい。
As described above, the height of the side wall portion of the three-dimensional coupling electrode is designed to be slightly lower than the upper surface of the positive electrode molding mixture inserted into the coupling electrode via the cup-shaped separator. This is to ensure contact between the positive electrode mixture and the conductive carbon crotch of the adjacent cell. In addition, it is preferable that the rising angle of the side wall portion of the coupling electrode be approximately perpendicular to the bottom surface of the coupling electrode from the viewpoint of volumetric efficiency, but in consideration of production, it may be inclined outward slightly, for example, by about 0.2 to 10 degrees. You can leave it there.

立体型結合電極は平板状の炭素・亜14)結合電極原板
を機械的に二次加工するか、電池用亜鉛原板を恢絞り加
工等の方法で得ることができる。
The three-dimensional bonding electrode can be obtained by mechanical secondary processing of a flat carbon/metallic bond electrode original plate, or by drawing a zinc original plate for batteries.

また導電性カーボン膜層の形成方法としては溶媒型ない
し非溶媒型の導電性カーボン塗料の塗装による方法、導
電性カーボン・フィルムを熱圧着する方法等任意の方法
で行うことができる。立体型結合電極の外面の一部にだ
け導電性のカーボン膜層が形成される構造の場合には、
すくなくとも立体型亜鉛負極の底部外面すなわち隣接セ
ル対向面に形成させることが必要である。
Further, the conductive carbon film layer can be formed by any method such as coating with a solvent-based or non-solvent type conductive carbon paint, or thermocompression bonding of a conductive carbon film. In the case of a structure in which a conductive carbon film layer is formed only on a part of the outer surface of the three-dimensional bonded electrode,
It is necessary to form it at least on the bottom outer surface of the three-dimensional zinc negative electrode, that is, on the surface facing adjacent cells.

上述した立体型結合電極形成方法のうち技術的。Among the above-mentioned methods for forming three-dimensional bonded electrodes, there are technical aspects.

経済的に特に適合した方法としては缶状結合電極の場合
には、電池用亜鉛原板を扱絞り加工して得た立体型亜鉛
負極の外底面に、例えばポリイソブチレンをビヒクルと
し黒鉛および/またはアセチレンブラック等のカーボン
ブラックを顔料とする感圧性の導電性フィルムを圧6づ
る方法がある。
In the case of can-shaped bonded electrodes, a particularly economically suitable method is to apply graphite and/or acetylene in a polyisobutylene vehicle to the outer bottom surface of a three-dimensional zinc negative electrode obtained by drawing a zinc blank for batteries. There is a method of forming a pressure-sensitive conductive film using carbon black such as black as a pigment.

また缶類似形状の立体型結合電極の場合には、平板状の
炭素・亜鉛結合電極原板を特殊形状に打法く工程と側壁
部の折曲げ工程のみでよいから導電性カーボン膜層の損
壊がなく材料ロスも少ない等合理的である。缶類似形状
の立体型結合電極およびその製造方法については、先に
本発明者の提案になる特許第594209号および実用
新案第925288号がある。このような缶類似形状の
立体型結合電極を用いた場合には、側壁部に一部切欠部
を有するのであるが、切欠部面積が小さければ缶状電極
と対比して塩化亜鉛合剤の変形阻止効果はほとんど劣ら
ないことが実験的に認められている。
In addition, in the case of a three-dimensional bonded electrode with a can-like shape, damage to the conductive carbon film layer is avoided because only the process of punching a flat carbon/zinc bonded electrode plate into a special shape and the process of bending the side wall are required. It is also rational, with less material loss. Regarding a three-dimensional coupling electrode having a can-like shape and a method for manufacturing the same, there are Japanese Patent No. 594209 and Utility Model No. 925288 proposed by the present inventor. When such a three-dimensional bonding electrode with a shape similar to a can is used, there is a part of the side wall with a notch, but if the notch area is small, the deformation of the zinc chloride mixture will be smaller compared to a can-shaped electrode. It has been experimentally confirmed that the blocking effect is almost as good.

本発明は枝上のごとく正極活物質にγ型結晶構造を有す
る化学二酸化マンガンを用いることにより電解二酸化マ
ンガンを用いる場合に比し放電容量を低下せしめること
なく塩化亜鉛合剤の物理的性質を改良することができ、
特に缶状ないし缶類似形状の立体型結合電極を併用する
ことによってスタック組立時における塩化亜鉛合剤の変
形を一層効果的に阻止し寸法精度の高いスタックを1q
ることができる。
As a branch of the present invention, the physical properties of the zinc chloride mixture are improved by using chemical manganese dioxide having a γ-type crystal structure as the positive electrode active material without reducing the discharge capacity compared to when electrolytic manganese dioxide is used. can,
In particular, by using can-shaped or can-like three-dimensional bonding electrodes, deformation of the zinc chloride mixture during stack assembly can be more effectively prevented, and stacks with high dimensional accuracy can be made by 1q.
can be done.

これらの結果として後述する実施例で示すように従来の
電解二酸化マンガンと平板型結合電極を用いた積層形ル
クランシエ電池に比べ重負荷特性及び#4漏液性が著し
く優れ、また従来の電解二酸化マンガンと平板型結合電
極を用いた積層形塩化亜鉛電池に比べ長期貯蔵性に優れ
るのみならず、特性のバラツキが少なく、更に負極亜鉛
を無汞化で使用することも可能である等の改良が得られ
るものである。
As a result of these, as shown in the examples described later, the heavy load characteristics and #4 leakage properties are significantly superior to the conventional stacked Lecrancier battery using electrolytic manganese dioxide and a flat bonded electrode. Compared to a stacked zinc chloride battery using a flat plate-type bonded electrode, this battery not only has superior long-term storage stability, but also has improvements such as less variation in characteristics and the ability to use negative electrode zinc without aging. It is something that can be done.

[実施例] 以下本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

第1表は各種二酸化マンガンを用いた湿潤正極合剤で積
層合剤を成型する際の成型作業性および正極合剤成型体
()fix cake)に定圧を負荷したときの変形状
態を電解二酸化マンガンとルクランシエ電解液からなる
従来合剤の場合を基準(1,0)としたときの相対的な
官能値の指数で示したものである。
Table 1 shows the molding workability when molding laminated mixtures with wet positive electrode mixtures using various types of manganese dioxide and the deformation state when constant pressure is applied to the positive electrode mixture molded body (fix cake) using electrolytic manganese dioxide. It is expressed as a relative sensory value index when the conventional mixture consisting of and Lecrancier electrolyte is set as a standard (1,0).

第1表 第1表中、従来例Aは粒径1μm以下のサブミクロン−
次粒子の含有率が18重量%で純度91.5%の電解二
酸化マンガンと、塩化アンモニウムを主電解貿とするル
クランシエ電解液とからなる代表的な従来積層乾電池の
正極合剤、従来例Bは塩化亜鉛を主電解液とする塩化亜
鉛電解液°と、従来例Aと同じ電解二酸化マンガンを含
む従来積層形塩化亜鉛電池の正極合剤、本発明Cは超微
粉含有率が66重量%で純度89.2%のγ型化学合成
二酸化マンガンと塩化亜鉛電解液とを含む正極合剤、本
発明りは超微粉含有率が22重ε%で純度91,7%の
γ型化学合成二酸化マンガンと塩化亜鉛電解液とからな
る正極合剤、本発明Eは超微粉含有率63重量%で純度
91.7%のγ型化学合成二酸化マンガンと塩化亜鉛電
解液とからなり塩化第二水銀を添加しない正極合剤、本
発明Fは超微粉含有率63重量%で純度91.7%のγ
型化半合成二酸化マンガン70重量部と超微粉含有率5
7重四%で純度91.0%の電解二酸化マンガン30重
量部とからなる二酸化マンガン混合物と塩化亜鉛電解液
とを用いた正極合剤、本発明Gは超微粉含有率63重量
%でMl!度85%のT型化半合成二酸化マンガン85
重量部と超微粉含有率15重伍%で純度91.5%の電
解二酸化マンガンとからなる混合二酸化マンガンと塩化
亜鉛電解液とを含む正極合剤をそれぞれ示す。
Table 1 In Table 1, Conventional Example A is a submicron particle with a particle size of 1 μm or less.
Conventional example B is a typical positive electrode mixture for conventional laminated dry batteries, consisting of electrolytic manganese dioxide with a secondary particle content of 18% by weight and purity of 91.5%, and Lecrancier electrolyte whose main electrolyte is ammonium chloride. A positive electrode mixture for a conventional laminated zinc chloride battery containing a zinc chloride electrolyte with zinc chloride as the main electrolyte and the same electrolytic manganese dioxide as in Conventional Example A, Invention C has an ultrafine powder content of 66% by weight and purity. A positive electrode mixture containing 89.2% γ-type chemically synthesized manganese dioxide and zinc chloride electrolyte, the present invention contains γ-type chemically synthesized manganese dioxide with an ultrafine powder content of 22 times ε% and a purity of 91.7%. Invention E is a positive electrode mixture consisting of a zinc chloride electrolyte and γ-type chemically synthesized manganese dioxide with an ultrafine powder content of 63% by weight and a purity of 91.7% and a zinc chloride electrolyte without adding mercuric chloride. The positive electrode mixture, Invention F, is γ with an ultrafine powder content of 63% by weight and a purity of 91.7%.
Molded semi-synthetic manganese dioxide 70 parts by weight and ultrafine powder content 5
Invention G, a positive electrode mixture using a manganese dioxide mixture consisting of 30 parts by weight of electrolytic manganese dioxide with a purity of 91.0% and a zinc chloride electrolyte, has an ultrafine powder content of 63% by weight and Ml! 85% T-type semi-synthetic manganese dioxide 85
Each of the positive electrode mixtures includes a mixed manganese dioxide consisting of electrolytic manganese dioxide with a purity of 91.5% and an ultrafine powder content of 15% by weight, and a zinc chloride electrolyte.

第1表の従来例AとBから判るように電解二酸化マンガ
ンとアセチレンブラックとからなる合剤に塩化亜鉛電解
液を用いると、ルクランシエ電解)1kを用いた場合に
比し成型合剤に定圧を加えたとぎの変形度が大ぎくなり
、成型作業性も著しく低下することが判る。これに対し
てγ型結晶構造を有する化学二酸化マンガンを用いるこ
とにより塩化亜鉛電解液の場合でも変形度・成型作業性
が相当程度改善されること、おにび超微粉−次粒子含有
率の高い緻密な二次粒子からなるT型化学二酸化マンガ
ンを用いた場合には一層効果的なことが判る。
As can be seen from Conventional Examples A and B in Table 1, when a zinc chloride electrolyte is used in a mixture of electrolytic manganese dioxide and acetylene black, a constant pressure is applied to the molding mixture compared to when Leclancier electrolysis) 1k is used. It can be seen that the degree of deformation caused by the addition becomes large and the molding workability is also significantly reduced. On the other hand, by using chemical manganese dioxide with a γ-type crystal structure, the degree of deformation and molding workability are considerably improved even in the case of zinc chloride electrolyte, and the content of ultrafine particles is high. It can be seen that the use of T-type chemical manganese dioxide consisting of dense secondary particles is even more effective.

またγ型化学二酸化マンガンに対して超微粉含有率の高
い電解二酸化マンガンを30重量%または超微粉含有率
の低い電解二酸化マンガンを15重量%程度置換しても
鍵形程度・作業性に顕著な低下がないことが判る。しか
し電解二酸化マンガン置換率が約40重量%を超えると
変形度・成型作業性共急速に従来例Bに近い値となるの
で好ましくない。従って本発明の実施に当り実際上30
重量%程度以下の電解二酸化マンガンの混用は可能であ
る。
Furthermore, even if 30% by weight of electrolytic manganese dioxide with a high ultrafine powder content or 15% by weight of electrolytic manganese dioxide with a low ultrafine powder content is substituted for γ-type chemical manganese dioxide, the key shape and workability will be noticeable. It can be seen that there is no decrease. However, if the electrolytic manganese dioxide substitution rate exceeds about 40% by weight, the degree of deformation and molding workability rapidly become close to those of Conventional Example B, which is not preferable. Therefore, in carrying out the present invention, in practice 30
It is possible to mix electrolytic manganese dioxide in an amount of about % by weight or less.

以下本発明につき図面を用いて説明する。The present invention will be explained below with reference to the drawings.

従来の積層乾電池用セルのMA構造断面図第2図aに、
また本発明の積層形塩化亜鉛電池用セルの構造断面図を
第2図すに示した。第2図a中21は平板状の亜鉛電極
、22は導電性カーボン膜、23は21と22を一体に
形成せしめた平板状の炭素・亜鉛結合電極、24は亜鉛
負極面またはセパレータの負極対向面に形成させた薄い
ペースト層、25はカップ状セパレータ、26は電解二
酸化マンガン1.アセチしンブラック、塩化アンモニウ
ムまたは塩化亜鉛を主電解質とする電解液、およびその
他機」の酸化亜鉛などの添加成分よりなる正極合剤、2
7はセル・グロメット、28は接着剤である。また第2
図すに本発明の積層形塩化亜鉛電池のセル構造断面図の
例を示した。1は立体型亜鉛電極、2は1の外底面すな
わち隣接セル対向面のみに形成された導電性カーボン膜
、3は1と2からなる立体型結合電極、4は立体型結合
電極周縁部の立上った側壁部、5はペースト層、6はカ
ップ状セパレータ、7はT型結晶構造よりなる化学二酸
化マンガン、アセチレンブラック、塩化亜鉛を主電解質
とする電解液、その他微量の酸化亜鉛などの添加成分よ
りなる正極合剤、8はセル・グロメット、9は接着剤で
ある。導電性カーボン膜2が比較的厚い熱圧犠牲フィル
ムよりなるときは接着剤9を省略することもできる。第
3図に本発明の一実施例である積層形塩化亜鉛電池6F
22の一部欠截図を示した。第3図中1は立体型亜鉛負
極、2は導電性カーボン膜で1と2とによって缶類似形
状の立体型結合電極3を構成している。4は結合電極の
側壁部、6はカップ状セパレータ、7はγ型結晶構造の
化学二酸化マンガン及び塩化亜鉛電解液を用いた成型合
剤、8はセル・グロメット、10は配合ワックス被覆層
、11はスタック・グロメット、12は外装缶、13は
正極端子、14は負極端子である。
A cross-sectional view of the MA structure of a conventional stacked dry battery cell is shown in Figure 2a.
Further, a cross-sectional view of the structure of a cell for a laminated zinc chloride battery according to the present invention is shown in FIG. In Fig. 2a, 21 is a flat zinc electrode, 22 is a conductive carbon film, 23 is a flat carbon-zinc bonded electrode in which 21 and 22 are integrally formed, and 24 is a zinc negative electrode surface or a negative electrode facing the separator. A thin paste layer formed on the surface, 25 a cup-shaped separator, 26 electrolytic manganese dioxide 1. A positive electrode mixture consisting of acetin black, an electrolyte containing ammonium chloride or zinc chloride as the main electrolyte, and other additive components such as zinc oxide, 2
7 is a cell grommet, and 28 is an adhesive. Also the second
An example of a cross-sectional view of a cell structure of a stacked zinc chloride battery according to the present invention is shown in the figure. 1 is a three-dimensional zinc electrode, 2 is a conductive carbon film formed only on the outer bottom surface of 1, that is, the surface facing adjacent cells, 3 is a three-dimensional bonding electrode consisting of 1 and 2, and 4 is a vertical structure at the periphery of the three-dimensional bonding electrode. In the raised side wall part, 5 is a paste layer, 6 is a cup-shaped separator, 7 is a chemical manganese dioxide having a T-type crystal structure, acetylene black, an electrolytic solution containing zinc chloride as the main electrolyte, and other additions such as trace amounts of zinc oxide. 8 is a cell grommet, and 9 is an adhesive. When the conductive carbon film 2 is made of a relatively thick heat-pressure sacrificial film, the adhesive 9 can be omitted. Figure 3 shows a stacked zinc chloride battery 6F, which is an embodiment of the present invention.
A partially cutaway view of 22 is shown. In FIG. 3, 1 is a three-dimensional zinc negative electrode, 2 is a conductive carbon film, and 1 and 2 constitute a three-dimensional bonding electrode 3 having a shape similar to that of a can. 4 is a side wall of a coupling electrode, 6 is a cup-shaped separator, 7 is a molded mixture using chemical manganese dioxide with a γ-type crystal structure and zinc chloride electrolyte, 8 is a cell grommet, 10 is a mixed wax coating layer, 11 1 is a stack grommet, 12 is an outer can, 13 is a positive terminal, and 14 is a negative terminal.

以下、従来方法および本発明の方法で製造した積層形塩
化亜鉛電池の特性比較結果について説明する。
The results of comparing the characteristics of stacked zinc chloride batteries manufactured by the conventional method and the method of the present invention will be described below.

第2表に種々な条件で製造した積層形電池6F22を2
0″C中で7日間エージングしたのちの初度放電特性比
較例、第4表に20’Cおよび45°Cの恒温常温雰囲
気中に積層形塩化亜鉛電池6ト22を長期間貯蔵したと
きの特性維持率を示す。第2表ないし第4表において従
来例Aは第1表Aと同じルクランシエ合剤および従来の
平板状結合電極を用いた積層形ルクランシエ電池、従来
例Bは第1表Bと同じ塩化亜鉛合剤および平板状結合電
極を用いた従来の積層形塩化亜鉛電池、比較例Cは第1
表Cと同じ塩化亜鉛合剤および平板状結合電極を用いた
積層形塩化亜鉛電池、本発明りは第1表りと同じ塩化亜
鉛合剤および缶状の立体型結合電極を用いた積層形塩化
亜鉛電池、本発明Eは第1表Eと同じ塩化第二水銀無添
加の塩化亜鉛合剤および缶類似形状の立体型結合電極を
用いた無汞化の積層形塩化亜鉛電池、本発明Fは第1表
Fと同じ塩化亜鉛合剤および缶状の立体型結合電極を用
いた積層形塩化亜鉛電池、本発明Gは第1表Gと同じ塩
化亜鉛合剤および缶状の立体型結合電極を用いた積層形
塩化亜鉛電池をそれぞれ示す。
Table 2 shows two stacked batteries 6F22 manufactured under various conditions.
Comparative example of initial discharge characteristics after aging for 7 days at 0''C, Table 4 shows the characteristics when 6 ton 22 stacked zinc chloride batteries are stored for a long period in a constant temperature atmosphere at 20'C and 45°C. In Tables 2 to 4, conventional example A is a laminated Lecrancier battery using the same Lecrancier mixture as in Table 1 A and a conventional flat bonding electrode, and conventional example B is a laminated Lecrancier battery using the same Lecrancier mixture as in Table 1 A, and a conventional example B as in Table 1 B. Comparative Example C is a conventional laminated zinc chloride battery using the same zinc chloride mixture and flat bonded electrode.
A laminated zinc chloride battery using the same zinc chloride mixture and flat bonding electrode as in Table C, and a laminated zinc chloride battery using the same zinc chloride mixture and can-shaped three-dimensional bonding electrode as in Table 1. A zinc battery, Invention E, is a non-transforming laminated zinc chloride battery using the same mercuric chloride-free zinc chloride mixture as in Table 1 E and a three-dimensional bonded electrode shaped like a can, Invention F is A laminated zinc chloride battery using the same zinc chloride mixture and can-shaped three-dimensional bonding electrode as in Table 1 F, and Invention G uses the same zinc chloride mixture and can-shaped three-dimensional bonding electrode as in Table 1 G. The laminated zinc chloride batteries used are shown.

第2表の初度電気特性から判るように塩化亜鉛合剤に平
板状結合電極を組合せた電池は内部インピーダンスが高
く短絡電流が小さいが、γ型結晶構造の化学二酸化マン
カンおよび立体型結合°電極を用いることにより改善さ
れる。また第3表の従来例AおよびBから判るように初
度放電特性においては塩化亜鉛電解液を用いることによ
り電解二酸化マンガンを用いた場合でもルクランシエ電
解液を用いた場合に比し特に急放電特性が著しく向上す
ることおよび塩化亜鉛合剤に立体型電極を併用すること
により急放電特性が一層向上することが判る。
As can be seen from the initial electrical characteristics in Table 2, a battery that combines a zinc chloride mixture with a plate-shaped bonded electrode has a high internal impedance and a small short-circuit current. Improved by using. Furthermore, as can be seen from conventional examples A and B in Table 3, in terms of initial discharge characteristics, by using a zinc chloride electrolyte, even when electrolytic manganese dioxide is used, compared to when using a Lecrancier electrolyte, the rapid discharge characteristics are particularly improved. It can be seen that the rapid discharge characteristics are significantly improved and that the rapid discharge characteristics are further improved by using the zinc chloride mixture together with the three-dimensional electrode.

第2表 第3表 第4表 用いているにもかかわらず長期貯蔵俊の特性維持率は良
好であり、45℃3ケ月貯蔵後および20″G12ケ月
貯蔵後の電池を分解したときにも負極亜鉛面には問題と
なるような不均一消耗や自己放電生成物は観察されなか
った。このことは用いた高M!度化学二酸化マンガンが
アルカリ可溶性の形の有害金属酸化物をほとんど含んで
いないこと、および立体型結合電極の使用によってセル
形状がよく寸法精度が高いこと等によって従来の平板形
結合電極を用いた場合に比してセル内残存空気最が極め
て制限されていること等に起因しているものと考えられ
る。
Table 2 Table 3 Table 4 Despite the use of negative electrodes, the characteristics retention rate during long-term storage was good, and even when the battery was disassembled after storage at 45°C for 3 months and at 20"G for 12 months, the negative electrode No problematic uneven consumption or self-discharge products were observed on the zinc surface, indicating that the high M!C chemical manganese dioxide used contained almost no harmful metal oxides in alkali-soluble form. This is due to the fact that the cell shape is good and the dimensional accuracy is high due to the use of the three-dimensional type bonding electrode, and the amount of air remaining in the cell is extremely limited compared to when using the conventional flat type bonding electrode. It is thought that this is the case.

技工のごとく本発明によれば実用上、生産性および経済
性が高く積層乾電池の内部インピーダンスを低減せしめ
、製造初度にお(ブる急放電特性が優れるのみならず長
期貯蔵時の特性維持率が大きく耐湿液性の優れた積層形
電池を提供することができる。また負極亜鉛が無汞化で
あっても長期貯蔵時の特性維持率を低下せしめない等工
業的価値の大ぎいものである。
The present invention, like a craftsman, has high productivity and economy in practical use, reduces the internal impedance of laminated dry batteries, and improves not only excellent rapid discharge characteristics but also low characteristic retention during long-term storage. It is possible to provide a laminated battery with large and excellent resistance to wet liquids.Also, even if the negative electrode zinc becomes non-oxidizing, the property retention rate during long-term storage is not reduced, and is of great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、b、cは本発明の一実施例における積層膜塩
化亜鉛電池に用いる缶状の立体型結合電極の縦断面図、
第1図dは同上積層形塩化亜鉛電池に用いる缶類似形状
の立体型結合電極斜視図、第2図aは従来例にあける積
層形電池の素電池の縦断面図、第2図すは本発明の一実
施例における積層膜塩化亜鉛電池の素電池の縦断面図、
第3図は本発明の一実施例における積層膜塩化亜鉛電池
6F22の一部欠截縦断面図である。 1・・・立体型亜鉛電極 2・・・導電性カーボン膜3
・・・立体型結合電極
Figures 1a, b, and c are longitudinal cross-sectional views of a can-shaped three-dimensional bonding electrode used in a laminated film zinc chloride battery according to an embodiment of the present invention;
Figure 1 d is a perspective view of a three-dimensional bonding electrode with a can-like shape used in the same laminated zinc chloride battery, Figure 2 a is a longitudinal cross-sectional view of a unit cell of a conventional laminated battery, and Figure 2 is a book. A vertical cross-sectional view of a unit cell of a laminated film zinc chloride battery in one embodiment of the invention,
FIG. 3 is a partially cutaway vertical sectional view of a laminated film zinc chloride battery 6F22 in one embodiment of the present invention. 1... Three-dimensional zinc electrode 2... Conductive carbon film 3
...3D bonding electrode

Claims (6)

【特許請求の範囲】[Claims] (1)二酸化マンガンを正極活物質、亜鉛を負極活物質
とする積層型電池において、主電解質が塩化亜鉛、正極
活物質がγ型結晶構造を有する化学二酸化マンガンから
なり、かつ炭素・亜鉛結合電極がその外面の全体または
一部に導電性カーボン膜層を有する缶状ないし缶類似形
状の立体型結合電極からなることを特徴とする積層形塩
化亜鉛電池。
(1) In a stacked battery that uses manganese dioxide as the positive electrode active material and zinc as the negative electrode active material, the main electrolyte is zinc chloride, the positive electrode active material is chemical manganese dioxide with a γ-type crystal structure, and the carbon-zinc bonded electrode 1. A stacked zinc chloride battery comprising a can-shaped or can-like three-dimensional bonded electrode having a conductive carbon film layer on the entire or part of its outer surface.
(2)該化学二酸化マンガンが合成二酸化マンガンまた
は活性化二酸化マンガンであることを特徴とする特許請
求の範囲第1項記載の積層形亜鉛電池。
(2) The laminated zinc battery according to claim 1, wherein the chemical manganese dioxide is synthetic manganese dioxide or activated manganese dioxide.
(3)該化学二酸化マンガンのMnO_2含有率が88
重量%以上であることを特徴とする特許請求の範囲第2
項記載の積層形塩化亜鉛電池。
(3) The MnO_2 content of the chemical manganese dioxide is 88
Claim 2, characterized in that it is at least % by weight.
The laminated zinc chloride battery described in .
(4)該化学二酸化マンガンが一次粒子として粒径1μ
m以下の超微粒子を30重量%以上含む微密な二次粒子
から構成されていることを特徴とする特許請求の範囲第
1項〜第3項記載の積層形塩化亜鉛電池。
(4) The chemical manganese dioxide has a particle size of 1μ as a primary particle.
4. The laminated zinc chloride battery according to claim 1, wherein the battery is composed of fine secondary particles containing 30% by weight or more of ultrafine particles with a particle size of 1.0 m or less.
(5)立体型結合電極外面の導電性カーボン膜層が隣接
セル対向面にのみ形成されていることを特徴とする特許
請求の範囲第1項記載の積層形塩化亜鉛電池。
(5) The stacked zinc chloride battery according to claim 1, wherein the conductive carbon film layer on the outer surface of the three-dimensional bonding electrode is formed only on the surface facing adjacent cells.
(6)負極亜鉛が汞化されていないことを特徴とする特
許請求の範囲第1項および第5項記載の積層形塩化亜鉛
電池。
(6) The laminated zinc chloride battery according to claims 1 and 5, characterized in that the negative electrode zinc is not oxidized.
JP61038190A 1986-02-25 1986-02-25 Laminated type zinc chloride cell Pending JPS62198052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61038190A JPS62198052A (en) 1986-02-25 1986-02-25 Laminated type zinc chloride cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61038190A JPS62198052A (en) 1986-02-25 1986-02-25 Laminated type zinc chloride cell

Publications (1)

Publication Number Publication Date
JPS62198052A true JPS62198052A (en) 1987-09-01

Family

ID=12518446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61038190A Pending JPS62198052A (en) 1986-02-25 1986-02-25 Laminated type zinc chloride cell

Country Status (1)

Country Link
JP (1) JPS62198052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291854A (en) * 1990-04-06 1991-12-24 Matsushita Electric Ind Co Ltd Laminated dry cell and manufacture of carbon coated electrode thereof
JP2006108082A (en) * 2004-09-09 2006-04-20 Mitsui Mining & Smelting Co Ltd Manganese oxide powder for anode active substance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291854A (en) * 1990-04-06 1991-12-24 Matsushita Electric Ind Co Ltd Laminated dry cell and manufacture of carbon coated electrode thereof
JP2006108082A (en) * 2004-09-09 2006-04-20 Mitsui Mining & Smelting Co Ltd Manganese oxide powder for anode active substance

Similar Documents

Publication Publication Date Title
US3765943A (en) Fabrication of lead-acid batteries
US5797971A (en) Method of making composite electrode materials for high energy and high power density energy storage devices
US5744259A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-metal hydride storage battery
US3615858A (en) Battery comprising positive electrode composed of principal and secondary active material wherein sole electronic path is through the secondary active material
US5202202A (en) Cell comprising polyaniline positive electrode and method for producing polyaniline powder therefor
US3484295A (en) Battery having a positive electrode in which the principal active material is isolated from the electrolyte by a secondary active material
US3476610A (en) Battery having two positive active materials
JPS62198052A (en) Laminated type zinc chloride cell
EP0049295B1 (en) Silver oxide cell
JP3364460B2 (en) Electrochemical capacitor
JP7049143B2 (en) Flat alkaline primary battery
JP2612002B2 (en) Battery
JP2707638B2 (en) Alkaline manganese battery
JPS62198051A (en) Laminated type zinc chloride cell
KR100305435B1 (en) Metal oxide electrode for supercapacitor and manufacturing method thereof
JPH0576745B2 (en)
JPH0545022Y2 (en)
JPS60240056A (en) Alkaline-manganese cell
JPS5978451A (en) Battery
JP3086313B2 (en) Manganese dry cell
JPS594453Y2 (en) battery
JPS5856465B2 (en) sealed battery
JPS603494Y2 (en) silver oxide battery
JPH09320589A (en) Silver oxide battery
JPH03210763A (en) Silver oxide battery