JPH03209622A - Video tape for high-density recording - Google Patents

Video tape for high-density recording

Info

Publication number
JPH03209622A
JPH03209622A JP400090A JP400090A JPH03209622A JP H03209622 A JPH03209622 A JP H03209622A JP 400090 A JP400090 A JP 400090A JP 400090 A JP400090 A JP 400090A JP H03209622 A JPH03209622 A JP H03209622A
Authority
JP
Japan
Prior art keywords
film
film layer
thermoplastic resin
particles
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP400090A
Other languages
Japanese (ja)
Other versions
JP2666500B2 (en
Inventor
Iwao Okazaki
巌 岡崎
Koichi Abe
晃一 阿部
Shoji Nakajima
彰二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP400090A priority Critical patent/JP2666500B2/en
Publication of JPH03209622A publication Critical patent/JPH03209622A/en
Application granted granted Critical
Publication of JP2666500B2 publication Critical patent/JP2666500B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To enhance scratch resistance and dubbing resistance by using a thermoplastic resin contg. particles and specifying the relation between the size of particles and the thickness of a film, the content, the relation between the standard deviation of the height distribution of surface projections on a nonmagnetic surface and the number of the projections, etc. CONSTITUTION:This video tape consists of the biaxially oriented thermoplastic resin film having a film layer A to form the nonmagnetic surface and a magnetic layer. The standard deviation sigma of the height distribution of the surface projections on this magnetic surface and the number N of the projections exceeding 225nm height is 0<=(3sigma-225)N<5X10<4>. The scratch resistance and dubbing resistance are degraded if the values are off this range. The film layer A consists essentially of the thermoplastic resin A and the particles and the thickness thereof is 0.005 to 3mum. In addition, the average grain size of the particles incorporated into the film layer A is 0.1 to 10 times the thickness of the film layer A. Further, the content of the particles is 0.5 to 50wt.%. The effect is not obtainable if this range is exceeded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高密度記録用ビデオテープに関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-density recording videotape.

[従来の技術] 近年磁気記録テープの進歩は著しいが、その中でも、ビ
デオテープの需要は家庭用ビデオテープレコーダーの普
及と共に急激に増大し、これに伴い、より高性能な機種
への要望が高まっている。
[Prior Art] Magnetic recording tapes have made remarkable progress in recent years, but the demand for video tapes has increased rapidly with the spread of home video tape recorders, and as a result, the demand for higher-performance models has increased. ing.

特に高密度記録への技術の進歩には著しいものがあり、
磁性層及びベースフィルム両面からの改良が加えられて
きた。磁性層の改良としては、塗布型から電気メツキ、
無電解メツキ、真空蒸着、スパッタリング、イオンブレ
ーティング等の方法による磁性層厚みの薄膜化か考えら
れてきた。一方、ベースフィルムの改良としては、その
表面形態、表面特性の改良や、フィルムの機械的特性の
改良等が行なわれてきた(特開昭62−80825号公
報等)。
In particular, there have been remarkable advances in technology for high-density recording.
Improvements have been made in both the magnetic layer and the base film. Improvements to the magnetic layer include coating type, electroplating,
Attempts have been made to reduce the thickness of the magnetic layer by methods such as electroless plating, vacuum deposition, sputtering, and ion blating. On the other hand, improvements have been made to the base film, including improvements in its surface morphology and surface properties, as well as improvements in the mechanical properties of the film (Japanese Patent Laid-Open Publication No. 80825/1984, etc.).

[発明が解決しようとする課題] しかし、上記ベースフィルムでは過酷な特性が要求され
る高密度記録用途にはまだ不十分であり、またダビング
してソフトテープ等を製造する工程等の工程速度の増大
に伴い、接触するロールやガイドで非磁性面に傷がつく
という欠点があった。
[Problems to be solved by the invention] However, the base film described above is still insufficient for high-density recording applications that require harsh characteristics, and the process speed of dubbing and manufacturing soft tapes etc. As the number of magnets increases, there has been a drawback that the non-magnetic surface is scratched by the rolls and guides that come into contact with it.

また、上記ダビング時の画質低下のために、画質すなわ
ち、S/N (シグナル/ノイズ比)も不十分であると
いう欠点かあった。
Furthermore, due to the deterioration in image quality during dubbing, the image quality, that is, the S/N (signal/noise ratio) was also insufficient.

本発明は、かかる従来技術の欠点を解決し、特に高速工
程でテープ非磁性面に傷がつきにくく(以下耐スクラッ
チ性に優れるという)、シかもダビング時の画質低下の
少ない(以下耐ダビング性に優れるという)高密度記録
用ビデオテープを提供せんとするものである。
The present invention solves the drawbacks of the prior art, and the non-magnetic surface of the tape is less likely to be scratched (hereinafter referred to as "excellent scratch resistance") especially during high-speed processes, and there is less deterioration in image quality during dubbing (hereinafter referred to as "excellent scratch resistance"). The aim is to provide a high-density recording videotape (which is said to have excellent performance).

[課題を解決するための手段] 本発明は、非磁性面を形成するフィルム層Aを有する二
軸配向熱可塑性樹脂フィルム及び磁性層からなり、該非
磁性面における表面突起の高さ分布標準偏差σ(n m
 )と高さ225nmを超える突起数N(個/mm2)
がO≦(3σ−225)N<5X104であるビデオテ
ープであって、該フィルム層Aは熱可塑性樹脂Aと粒子
とを主成分とする厚さ0.005〜3μmで、かつ該フ
ィルム層A中に含有される粒子の平均粒径がフィルム層
Aの厚さの0.1〜10倍、該粒子の含有量が0.5〜
50重量%である高密度記録用ビデオテープに関するも
のである。
[Means for Solving the Problems] The present invention comprises a biaxially oriented thermoplastic resin film having a film layer A forming a non-magnetic surface and a magnetic layer, and the height distribution standard deviation σ of surface protrusions on the non-magnetic surface is (n m
) and the number of protrusions with a height exceeding 225 nm N (pieces/mm2)
is O≦(3σ-225)N<5X104, the film layer A is mainly composed of thermoplastic resin A and particles and has a thickness of 0.005 to 3 μm, and the film layer A The average particle diameter of the particles contained therein is 0.1 to 10 times the thickness of the film layer A, and the content of the particles is 0.5 to 10 times the thickness of the film layer A.
50% by weight of a high-density recording videotape.

本発明を構成する熱可塑性樹脂Aはポリエステル、ポリ
オレフィン、ポリアミド、ポリフェニレンスルフィドな
ど特に限定されることはないが、特に、ポリエステル、
中でも、エチレンテレフタレート、エチレンα、β−ビ
ス(2−クロルフェノキシ)エタン−4,4′−ジカル
ボキシレート、エチレン26−ナフタレート単位から選
ばれた少なくとも一種の構造単位を主要構成成分とする
場合に耐スクラッチ性、耐ダビング性がより一層良好と
なるので望ましい。また、本発明を構成する熱可塑性樹
脂は結晶性、あるいは溶融時光学異方性である場合に耐
スクラッチ性、耐ダビング性がより一層良好となるので
きわめて望ましい。ここでいう結晶性とはいわゆる非晶
質ではないことを示すものであり、定量的には結晶化パ
ラメータにおける冷結晶化温度Tccが検出され、かつ
結晶化パラメータΔTcgが150°C以下のものであ
る。さらに、示差走査熱量計で測定された融解熱(融解
エンタルピー変化)が7.5cal/g以上の結晶性を
示す場合に耐スクラッチ性、耐ダビング性がより一層良
好となるのできわめて望ましい。また、エチレンテレフ
タレートを主要構成成分とするポリエステルの場合に耐
ダビング性と耐スクラッチ性がより一層良好となるので
特に望ましい。なお、本発明を阻害しない範囲内で、2
種以上の熱可塑性樹脂を混合しても良いし、共重合ポリ
マを用いても良い。
The thermoplastic resin A constituting the present invention is not particularly limited to polyester, polyolefin, polyamide, polyphenylene sulfide, etc., but in particular, polyester, polyphenylene sulfide, etc.
Among them, when the main constituent component is at least one structural unit selected from ethylene terephthalate, ethylene α, β-bis(2-chlorophenoxy)ethane-4,4′-dicarboxylate, and ethylene 26-naphthalate units. This is desirable because it provides even better scratch resistance and dubbing resistance. Further, it is extremely desirable that the thermoplastic resin constituting the present invention be crystalline or optically anisotropic when melted, since this will further improve scratch resistance and dubbing resistance. Crystallinity here indicates that it is not so-called amorphous, and quantitatively, the cold crystallization temperature Tcc in the crystallization parameter is detected, and the crystallization parameter ΔTcg is 150°C or less. be. Furthermore, it is extremely desirable that the heat of fusion (change in enthalpy of fusion) measured by a differential scanning calorimeter exhibits crystallinity of 7.5 cal/g or more, since scratch resistance and dubbing resistance will be even better. Further, polyester containing ethylene terephthalate as a main component is particularly desirable because it has even better dubbing resistance and scratch resistance. In addition, within the range that does not impede the present invention, 2
More than one type of thermoplastic resin may be mixed, or a copolymer may be used.

本発明の熱可塑性樹脂A中の粒子は、フィルム層A中で
の粒径比(粒子の長径/短径)が1.0〜1.3の粒子
、特に、球形状の粒子の場合に耐スクラッチ性がより一
層良好となるので望ましい。
The particles in the thermoplastic resin A of the present invention have a particle size ratio (longer diameter/breadth diameter) of 1.0 to 1.3 in the film layer A, especially spherical particles. This is desirable because the scratch resistance becomes even better.

また、本発明の熱可塑性樹脂A中の粒子はフィルム層A
中での単一粒子指数が0. 7以上、好ましくは0. 
9以上である場合に耐スクラッチ性、耐ダビング性がよ
り一層良好となるので特に望ましい。
Further, the particles in the thermoplastic resin A of the present invention are contained in the film layer A.
The single particle index within is 0. 7 or more, preferably 0.
A value of 9 or more is particularly desirable because scratch resistance and dubbing resistance become even better.

また、本発明の熱可塑性樹脂A中の粒子は、フィルム層
A中での相対標準偏差が0.6以下、好ましくは0.5
以下の場合に耐スクラッチ性、耐ダビング性がより一層
良好となるので望ましい。
Further, the particles in the thermoplastic resin A of the present invention have a relative standard deviation of 0.6 or less, preferably 0.5 in the film layer A.
The following cases are desirable because the scratch resistance and dubbing resistance become even better.

本発明の熱可塑性樹脂A中の粒子の種類は特に限定され
ないが、上記の好ましい粒子特性を満足するにはアルミ
ナ珪酸塩、1次粒子が凝集した状態のシリカ、内部析出
粒子などは好ましくな(、コロイダルシリカに起因する
実質的に球形のシリカ粒子、架橋高分子による粒子(た
とえば架橋ポリスチレン)などがあるが、特に10重量
%減量時温度(窒素中で熱重量分析装置島津TG−30
Mを用いて測定。昇温速度20°C/分)が380℃以
上になるまで架橋度を高くした架橋高分子粒子の場合に
耐スクラッチ性、耐ダビング性がより一層良好となるの
で特に望ましい。なお、コロイダルシリカに起因する球
形シリカの場合にはアルコキシド法で製造された、ナト
リウム含有量が少ない、実質的に球形のシリカの場合に
耐スクラッチ性がより一層良好となるので特に望ましい
。しかしながら、その他の粒子、例えば炭酸カルシウム
、二酸化チタン、アルミナ等の粒子でもフィルム厚さと
平均粒径の適切なコントロールにより十分使いこなせる
ものである。
The type of particles in the thermoplastic resin A of the present invention is not particularly limited, but in order to satisfy the above preferable particle characteristics, alumina silicate, silica in a state where primary particles are aggregated, internally precipitated particles, etc. are not preferred ( , substantially spherical silica particles caused by colloidal silica, and particles made of crosslinked polymers (e.g. crosslinked polystyrene).
Measured using M. It is particularly desirable to use crosslinked polymer particles in which the degree of crosslinking is increased to a temperature increase rate of 20°C/min) of 380°C or higher, since the scratch resistance and dabbing resistance will be even better. Note that in the case of spherical silica derived from colloidal silica, substantially spherical silica with a low sodium content produced by an alkoxide method is particularly desirable because the scratch resistance is even better. However, other particles, such as particles of calcium carbonate, titanium dioxide, alumina, etc., can also be used satisfactorily with proper control of film thickness and average particle size.

本発明の熱可塑性樹脂A中の粒子の結晶化促進係数は特
に限定されないが、−15〜15℃、好ましくは一5℃
〜10℃の場合に、耐スクラッチ性がより一層良好とな
るので特に望ましい。
The crystallization promotion coefficient of the particles in the thermoplastic resin A of the present invention is not particularly limited, but is -15 to 15°C, preferably -5°C.
A temperature of 10° C. to 10° C. is particularly desirable because the scratch resistance becomes even better.

粒子の大きさは、フィルム層A中での平均粒径がフィル
ム層Aの厚さの0.1〜10倍、好ましくは0゜5〜5
倍、さらに好ましくは1.1〜3倍の範囲であることが
必要である。平均粒径/フィルム層Aの厚さ比が上記の
範囲より小さいと耐スクラッチ性が不良となり、逆に大
きくても耐スクラッチ性、耐ダビング性が不良となるの
で好ましくない。
Regarding the particle size, the average particle diameter in film layer A is 0.1 to 10 times the thickness of film layer A, preferably 0.5 to 5.
It needs to be in the range of 1.1 to 3 times, more preferably 1.1 to 3 times. If the average particle diameter/thickness ratio of the film layer A is smaller than the above range, the scratch resistance will be poor, and if it is too large, the scratch resistance and dubbing resistance will be poor, which is not preferable.

また熱可塑性樹脂A中の粒子のフィルム層A中での平均
粒径(直径)が0.007〜1.0μm1好ましくは0
.02〜0.8μmの範囲である場合に、耐スクラッチ
性、耐ダビング性がより一層良好となるので望ましい。
Further, the average particle size (diameter) of the particles in the thermoplastic resin A in the film layer A is 0.007 to 1.0 μm1, preferably 0.
.. A thickness in the range of 0.02 to 0.8 μm is desirable because scratch resistance and dubbing resistance become even better.

本発明の熱可塑性樹脂A中の粒子の含有量は0゜5〜5
0重量%、好ましくは1〜30重量%、さらに好ましく
は2〜15重量%であることが必要である。粒子の含有
量が上記の範囲より少なくても、逆に大きくても耐スク
ラッチ性が不良となるので好ましくない。
The content of particles in the thermoplastic resin A of the present invention is 0.5 to 5.
It is necessary that the amount is 0% by weight, preferably 1 to 30% by weight, and more preferably 2 to 15% by weight. If the content of the particles is less than the above range, or conversely if it is greater than the above range, the scratch resistance will be poor, so it is not preferable.

本発明のフィルム層Aは上記熱可塑性樹脂Aと粒子から
なる組成物を主要成分とするが、本発明の目的を阻害し
ない範囲内で、他種ポリマをブレンドしてもよいし、ま
た酸化防止剤、熱安定剤、滑剤、紫外線吸収剤などの有
機添加剤が通常添加される程度添加されていてもよい。
The main component of the film layer A of the present invention is a composition consisting of the thermoplastic resin A and particles, but other types of polymers may be blended within a range that does not impede the purpose of the present invention. Organic additives such as additives, heat stabilizers, lubricants, and ultraviolet absorbers may be added to the extent that they are normally added.

本発明のフィルム層Aは上記組成物を二軸配向せしめた
フィルムである。−軸あるいは無配向フィルムでは耐ス
クラッチ性が不良となるので好ましくない。
Film layer A of the present invention is a film in which the above composition is biaxially oriented. - Axial or non-oriented films are not preferred because they have poor scratch resistance.

また、本発明のフィルム層Aは、フィルムの厚さ方向の
一部分、例えば、表層付近のポリマ分子の配向が無配向
、あるいは、−軸配向になっていない、すなわち、厚さ
方向の全部分の分子配向が二軸配向である場合に耐スク
ラッチ性、耐ダビング性がより一層良好となるので特に
望ましい。
In addition, the film layer A of the present invention has a part in the thickness direction of the film, for example, the orientation of the polymer molecules near the surface layer is non-oriented or -axially oriented, that is, in the entire thickness direction. It is particularly desirable that the molecular orientation is biaxial because the scratch resistance and dubbing resistance will be even better.

特にアツベ屈折率計、レーザーを用いた屈折率計、全反
射レーザーラマン法などによって測定される分子配向が
、表面、裏面ともに二軸配向である場合に耐スクラッチ
性、耐ダビング性がより一層良好となるので特に望まし
い。
In particular, scratch resistance and dubbing resistance are even better when the molecular orientation measured by Atsube refractometer, laser refractometer, total internal reflection laser Raman method, etc. is biaxially oriented on both the front and back surfaces. This is particularly desirable.

さらに熱可塑性樹脂Aが結晶性ポリエステルであり、こ
れを主成分とする本発明のフィルム層Aの表面の全反射
ラマン結晶化指数が2Qcm−1以下、好ましくは18
cm’以下、さらに17cm1以下の場合に耐スクラッ
チ性、耐ダビング性かより一層良好となるのできわめて
望ましい。
Further, the thermoplastic resin A is a crystalline polyester, and the total reflection Raman crystallization index of the surface of the film layer A of the present invention containing this as a main component is 2Qcm-1 or less, preferably 18
cm' or less, more preferably 17 cm1 or less, is extremely desirable because scratch resistance and dubbing resistance are even better.

本発明の熱可塑性樹脂Aを主成分とするフィルム層Aの
2次イオンマススペクトルによって測定される表層粒子
濃度比は特に限定されないか、1/10以下、特に11
50以下である場合に耐スクラッチ性がより一層良好と
なるので特に望ましい。
The surface layer particle concentration ratio measured by the secondary ion mass spectrum of the film layer A mainly composed of the thermoplastic resin A of the present invention is not particularly limited, or is 1/10 or less, especially 11
When it is 50 or less, the scratch resistance becomes even better, so it is particularly desirable.

本発明の熱可塑性樹脂Aを主成分とするフィルム層Aの
厚さは0.005〜3μm1好ましくは0.01〜1μ
m1さらに好ましくは0.03〜0.5μmであること
が必要である。フィルム厚さが上記の範囲より小さいと
耐ダビング性が不良となり逆に大きいと耐スクラッチ性
が不良となるので好ましくない。
The thickness of the film layer A mainly composed of the thermoplastic resin A of the present invention is 0.005 to 3 μm, preferably 0.01 to 1 μm.
It is necessary that m1 is more preferably 0.03 to 0.5 μm. If the film thickness is smaller than the above range, the dubbing resistance will be poor, and if it is larger than the above range, the scratch resistance will be poor, which is not preferable.

本発明の熱可塑性樹脂Aを主成分とするフィルム層Aの
表面の平均突起高さは5〜500nm。
The average protrusion height on the surface of the film layer A containing the thermoplastic resin A of the present invention as a main component is 5 to 500 nm.

好ましくは10〜300nm、さらに好ましくは15〜
200nmの範囲である場合に耐スクラッチ性、耐ダビ
ング性がより一層良好となるので特に望ましい。
Preferably 10-300 nm, more preferably 15-300 nm
A range of 200 nm is particularly desirable because scratch resistance and dubbing resistance become even better.

本発明の熱可塑性樹脂Aを主成分とするフィルム層Aの
平均突起間隔は6μm以下、好ましくは4μm以下であ
る場合に耐スクラッチ性、耐ダビング性がより一層良好
となるので特に望ましい。
It is particularly desirable that the average distance between the protrusions of the film layer A containing the thermoplastic resin A of the present invention as a main component is 6 μm or less, preferably 4 μm or less, since the scratch resistance and dubbing resistance will be even better.

本発明の熱可塑性樹脂Aを主成分とするフィルム層Aの
表面の中心線深さRpは特に限定されないが、Rpが1
.80 n m以下、特に160nm以下の場合に耐ダ
ビング性がより一層良好となるので特に望ましい。また
、上記Rpと最大高さRtの比、Rt / Rpが1.
5〜2.5、特に、1゜7〜2.3の場合に耐スクラッ
チ性、耐ダビング性がより一層良好となるので特に望ま
しい。
The centerline depth Rp of the surface of the film layer A mainly composed of the thermoplastic resin A of the present invention is not particularly limited, but Rp is 1
.. A thickness of 80 nm or less, especially 160 nm or less is particularly desirable because the dubbing resistance becomes even better. Further, the ratio of the above Rp to the maximum height Rt, Rt/Rp, is 1.
5 to 2.5, especially 1.degree. to 2.3, which is particularly desirable because scratch resistance and dubbing resistance become even better.

本発明の熱可塑性樹脂Aを主成分とするフィルム層Aの
表面の中心線平均粗さRaと最大高さRtの比、Rt 
/ Raが9.0以下、特に8.5以下の場合に耐スク
ラッチ性、耐ダビング性がより一層良好となるので特に
望ましい。
The ratio of the center line average roughness Ra to the maximum height Rt of the surface of the film layer A mainly composed of the thermoplastic resin A of the present invention, Rt
/Ra is 9.0 or less, especially 8.5 or less, as this is particularly desirable since scratch resistance and dubbing resistance become even better.

本発明のフィルム層Aは上述したように、構成する熱可
塑性樹脂が結晶性あるいは溶融光学異方性であることが
きわめて望ましいが、溶融等方性フィルムの場合、結晶
化パラメータΔTcgが25〜65℃である場合に耐ス
クラッチ性がより一層良好となるので特に望ましい。
As mentioned above, it is extremely desirable that the thermoplastic resin constituting the film layer A of the present invention be crystalline or melt-optically anisotropic, but in the case of a melt-isotropic film, the crystallization parameter ΔTcg is 25 to 65. ℃ is particularly desirable because the scratch resistance becomes even better.

なお熱可塑性樹脂Aがポリエステルの場合には熱可塑性
樹脂A面の厚さ方向屈折率が1.5以下の場合に、耐ス
クラッチ性、耐ダビング性がより一層良好となるので特
に望ましい。
In addition, when the thermoplastic resin A is polyester, it is particularly desirable that the refractive index of the thermoplastic resin A surface in the thickness direction is 1.5 or less, since scratch resistance and dubbing resistance become even better.

本発明のフィルム層A成する熱可塑性樹脂Aがポリエス
テルの場合はフィルムの固有粘度が0゜60以上、特に
0.70以上の場合に耐スクラッチ性がより一層良好と
なるので特に望ましい。
When the thermoplastic resin A constituting the film layer A of the present invention is polyester, it is particularly preferable that the intrinsic viscosity of the film is 0.60 or more, particularly 0.70 or more because the scratch resistance will be even better.

本発明における二軸配向熱可塑性樹脂フィルムは、もち
ろん単体(単層フィルム)でも用いられるが、熱可塑性
樹脂Bからなるフィルム層Bの少なくとも片面に上記フ
ィルム層Aを積層した後二軸配向したフィルムの形で用
いると、機械的特性が良好となるのみならず、耐スクラ
ッチ性、耐ダビング性もより一層良好となるのできわめ
て望ましい。ここで熱可塑性樹脂AとBは同じ種類でも
、異なるものでも良い。
The biaxially oriented thermoplastic resin film in the present invention can of course be used alone (single layer film), but it is a biaxially oriented film in which the above film layer A is laminated on at least one side of the film layer B made of thermoplastic resin B. When used in this form, not only the mechanical properties are improved, but also the scratch resistance and dabbing resistance are further improved, which is extremely desirable. Here, the thermoplastic resins A and B may be the same type or different types.

上記は積層構成が層A/層B/層A、層A/層Bの場合
であるが、もちろん、層Aと異なる表面状態を有する層
Cを層Aと反対面に設けた層A/層B/層Cでも、ある
いはそれ以上の多層構造でもよい。(ここで、層A1層
B1層Cそれぞれの熱可塑性樹脂の種類は同種でも、異
種でもよい。
The above is a case where the laminated structure is Layer A/Layer B/Layer A, Layer A/Layer B, but of course, Layer A/Layer is provided with Layer C having a different surface condition from Layer A on the opposite side of Layer A. It may be B/layer C or a multilayer structure of more layers. (Here, the types of thermoplastic resins in the layers A, B, and C may be the same or different.

また、少なくとも片方の表面は層Aであることが必要で
ある。) 熱可塑性樹脂Bとしては結晶性ポリマが望ましく、特に
、結晶性パラメータΔTCgが20〜100℃の範囲の
場合に、耐ダビング性がより一層良好となるので望まし
い。具体例として、ポリエステル、ポリアミド、ポリフ
ェニレンスルフィド、ポリオレフィンが挙げられるが、
ポリエステルの場合に耐ダビング性がより一層良好とな
るので特に望ましい。また、ポリエステルとしては、エ
チレンテレフタレート、エチレンα、β−ビス(2クロ
ルフエノキシ)エタン−4,4′−ジカルボキシレ−ト
、エチレン2.6−ナフタレート単位から選ばれた少な
くとも一種の構造単位を主要構成成分とする場合に耐ダ
ビング性が特に良好となるので望ましい。ただし、本発
明を阻害しない範囲内、望ましい結晶性を損なわない範
囲内で、好ましくは5モル%以内であれば他成分が共重
合されていてもよい。
Further, at least one surface needs to be layer A. ) As the thermoplastic resin B, a crystalline polymer is desirable, and it is particularly desirable when the crystallinity parameter ΔTCg is in the range of 20 to 100°C, since the dubbing resistance becomes even better. Specific examples include polyester, polyamide, polyphenylene sulfide, and polyolefin.
Polyester is particularly desirable because it provides even better dubbing resistance. In addition, as a polyester, the main constituent component is at least one structural unit selected from ethylene terephthalate, ethylene α, β-bis(2chlorophenoxy)ethane-4,4'-dicarboxylate, and ethylene 2,6-naphthalate units. This is desirable because the dubbing resistance is particularly good. However, other components may be copolymerized within a range that does not impede the present invention, within a range that does not impair desirable crystallinity, and preferably within 5 mol%.

本発明の熱可塑性樹脂Bにも、本発明の目的を阻害しな
い範囲内で、他種ポリマをブレンドしてもよいし、また
酸化防止剤、熱安定剤、滑剤、紫外線吸収剤などの有機
添加剤が通常添加される程度添加されていてもよい。
The thermoplastic resin B of the present invention may also be blended with other types of polymers within the range that does not impede the purpose of the present invention, and organic additives such as antioxidants, heat stabilizers, lubricants, and ultraviolet absorbers may be added. The agent may be added to the extent that it is normally added.

熱可塑性樹脂Bを主成分とするフィルム層B中には粒子
を含有している必要は特にないが、平均粒径が0.00
7〜2μm1特に0.02〜1μmの粒子が0.001
〜0.5重量%、特に0゜005〜0.3重量%、さら
には0.005〜0゜2重量%含有されていると、耐ス
クラッチ性がより一層良好となるのできわめて望ましい
。含有する粒子の種類は熱可塑性樹脂Aに望ましく用い
られるものを使用することが望ましい。熱可塑性樹脂A
(!:Bに含有する粒子の種類、大きさは同じでも異な
っていても良い。
There is no particular need to contain particles in the film layer B, which has thermoplastic resin B as its main component, but if the average particle size is 0.00
7-2 μm1 especially 0.02-1 μm particles 0.001
A content of up to 0.5% by weight, especially 0.005 to 0.3% by weight, and even 0.005 to 0.2% by weight is highly desirable because the scratch resistance becomes even better. As for the types of particles contained, it is desirable to use those preferably used for thermoplastic resin A. Thermoplastic resin A
(!: The types and sizes of particles contained in B may be the same or different.

上記熱可塑性樹脂Aと熱可塑性樹脂Bの結晶化パラメー
タΔTagの差(A−B)は特に限定されないが、−3
0〜+20℃の場合に、耐スクラッチ性、耐ダビング性
がより一層良好となるので特に望ましい。
The difference (A-B) in the crystallization parameter ΔTag between thermoplastic resin A and thermoplastic resin B is not particularly limited, but -3
A temperature of 0 to +20° C. is particularly desirable because scratch resistance and dubbing resistance become even better.

本発明では、フィルム層Aが非磁性面を形成する。即ち
、二軸配向熱可塑性樹脂フィルムが単膜の場合は、該フ
ィルムの一方の面が非磁性面で、他面に磁性層を形成す
ることになる。また、フィルム層Aとフィルム層Bとの
複合フィルムの場合は、フィルム層Aが非磁性面を形成
し、フィルム層Bに磁性層が設けられる。また、フィル
ム層A/フィルム層B/フィルム層Aの3層複合フィル
ムの場合は、一方のフィルム層Aが非磁性面を形成し、
他方のフィルム層Aに磁性層が設けられる。
In the present invention, film layer A forms the non-magnetic surface. That is, when the biaxially oriented thermoplastic resin film is a single film, one surface of the film is a nonmagnetic surface and a magnetic layer is formed on the other surface. Further, in the case of a composite film of film layer A and film layer B, film layer A forms a non-magnetic surface, and film layer B is provided with a magnetic layer. In addition, in the case of a three-layer composite film of film layer A/film layer B/film layer A, one film layer A forms a non-magnetic surface,
The other film layer A is provided with a magnetic layer.

本発明では、非磁性面における表面突起の高さ分布標準
偏差σ(n m )と高さ225nmを超える突起数N
(個/mm2)がO≦(3(7−225)N<5X10
’を満足する。好ましくは0≦(3σ−225)N<3
X10’ 、さらに好ましくは0≦(3σ−225)N
<1xlO’である。この値が小さいと耐スクラッチ性
が満足されず、方大きすぎると耐ダビング性が悪化する
In the present invention, the height distribution standard deviation σ (n m ) of surface protrusions on a non-magnetic surface and the number N of protrusions exceeding 225 nm in height are calculated.
(pieces/mm2) is O≦(3(7-225)N<5X10
'Satisfy. Preferably 0≦(3σ-225)N<3
X10', more preferably 0≦(3σ-225)N
<1xlO'. If this value is too small, the scratch resistance will not be satisfied, and if this value is too large, the dubbing resistance will deteriorate.

本発明における磁性層としては、特に限定はされないが
、磁性体にはγ−Fe2O3、Co含有7−Fe203
 、CrO2、Fe−Co、Fe−Co−Ni等の金属
粉末をポリ塩化ビニル、ポリ酢酸ビニル、ポリウレタン
、ニトロセルロース等、これらの共重合体もしくは混合
物又はこれらと他の樹脂などからなる結合剤に分散せし
めて得た磁性塗料が挙げられる。更に磁性体として、C
01Co−Crその他の金属を真空蒸着、スパッタリン
グ又はイオンブレーティングの如き、真空沈着法により
蒸着されるものが含まれる。
The magnetic layer in the present invention is not particularly limited, but magnetic materials include γ-Fe2O3, Co-containing 7-Fe203
, CrO2, Fe-Co, Fe-Co-Ni, etc., into a binder made of polyvinyl chloride, polyvinyl acetate, polyurethane, nitrocellulose, etc., a copolymer or mixture thereof, or a binder made of these and other resins. Examples include magnetic paints obtained by dispersion. Furthermore, as a magnetic material, C
01Co--Cr and other metals may be deposited by vacuum deposition methods such as vacuum evaporation, sputtering, or ion blasting.

次に本発明に用いるフィルムの製造方法について説明す
る。
Next, a method for manufacturing the film used in the present invention will be explained.

まず、熱可塑性樹脂Aに粒子を含有せしめる方法として
は、熱可塑性樹脂がポリエステルの場合には、ジオール
成分であるエチレングリコールのスラリーの形で分散せ
しめ、このエチレングリコールを所定のジカルボン酸成
分と重合せしめるのが延伸破れなく、本発明範囲の厚さ
と平均粒径の関係、含有量、望ましい範囲の配向状態の
フィルムを得るのに有効である。また、粒子を含有する
ポリエステルの溶融粘度、共重合成分などを調節して、
その結晶化パラメータΔTcgを40〜65℃の範囲に
しておく方法は延伸破れなく、本発明範囲の厚さと平均
粒径の関係、含有量、望ましい範囲の配向状態、表層粒
子濃度比、平均突起高さ、Rt/Rp比、Rt / R
a比のフィルムを得るのに有効である。
First, as a method for incorporating particles into thermoplastic resin A, when the thermoplastic resin is polyester, it is dispersed in the form of a slurry of ethylene glycol, which is a diol component, and this ethylene glycol is polymerized with a predetermined dicarboxylic acid component. This is effective in obtaining a film that does not tear during stretching, has a relationship between thickness and average grain size, has a content within the range of the present invention, and has an orientation state within a desirable range. In addition, by adjusting the melt viscosity and copolymerization components of the polyester containing the particles,
The method of keeping the crystallization parameter ΔTcg in the range of 40 to 65°C does not cause stretching breakage, and the relationship between the thickness and average grain size within the range of the present invention, the content, the orientation state within the desired range, the surface layer particle concentration ratio, and the average protrusion height. Rt/Rp ratio, Rt/R
This is effective in obtaining a film with an a ratio.

また、粒子のエチレングリコールのスラリーを140〜
200℃、特に180〜200℃の温度で30分〜5時
間、特に1〜3時間熱処理する方法は延伸破れなく、本
発明範囲の厚さと平均粒径の関係、含有量、望ましい範
囲の配向状態、表層粒子濃度比のフィルムを得るのに有
効である。
In addition, a slurry of ethylene glycol of particles was added to
The method of heat treatment at a temperature of 200°C, especially 180 to 200°C for 30 minutes to 5 hours, especially 1 to 3 hours, does not cause stretching breakage, and the relationship between thickness and average grain size, content, and orientation state within the desired range of the present invention can be achieved. , is effective in obtaining a film with a surface layer particle concentration ratio.

また熱可塑性樹脂に粒子を含有せしめる方法として、粒
子を上記と同様にして熱処理した後、溶媒を水に置換し
たスラリーの形で熱可塑性樹脂と混合し、ベント方式の
2軸押用機を用いて混練して熱可塑性樹脂に練り込む方
法も本発明範囲の厚さと平均粒径の関係、含有量、望ま
しい範囲の配向状態、表層粒子濃度比、平均突起高さ、
Rt/Rp比、Rt / Ra比のフィルムを得るのに
きわめて有効である。
In addition, as a method for incorporating particles into a thermoplastic resin, the particles are heat-treated in the same manner as above, and then mixed with the thermoplastic resin in the form of a slurry in which the solvent is replaced with water, using a vent-type twin-screw extrusion machine. The method of kneading and kneading into a thermoplastic resin also depends on the relationship between the thickness and average particle diameter within the range of the present invention, the content, the orientation state within the desired range, the surface layer particle concentration ratio, the average protrusion height,
It is extremely effective in obtaining films with Rt/Rp ratios and Rt/Ra ratios.

粒子の含有量を調節する方法としては、上記方法で高濃
度マスターを作っておき、それを製膜時に粒子を実質的
に含有しない熱可塑性樹脂で希釈して粒子の含有量を調
節する方法か有効である。
One way to adjust the particle content is to prepare a high-concentration master using the method described above, and then dilute it with a thermoplastic resin that does not substantially contain particles during film formation to adjust the particle content. It is valid.

かくして、粒子を所定量含有するペレットを必要に応じ
て乾燥したのち、公知の溶融押出機に供給し、熱可塑性
樹脂の融点以上、分解点以下でスリット状のダイからシ
ート状に押出し、キャスティングロール上で冷却固化せ
しめて未延伸フィルムを作る。この場合、未延伸フィル
ムに押出し成形する時の、口金スリット間隙/未延伸フ
ィルム厚さの比を5〜30、好ましくは8〜20の範囲
にし、静電印加キャスト法の電圧を5000〜1500
0V、好ましくは6000〜]、 2000 Vとする
ことが、延伸破れなく本発明範囲の厚さと平均粒径の関
係、含有量の範囲、望ましい範囲の配向状態、表層粒子
濃度比、全反射ラマン結晶化指数のフィルムを得るのに
有効である。
After drying the pellets containing a predetermined amount of particles as necessary, the pellets are supplied to a known melt extruder, extruded into a sheet through a slit-shaped die at a temperature above the melting point of the thermoplastic resin and below the decomposition point, and then passed through a casting roll. The film is then cooled and solidified to form an unstretched film. In this case, when extruding into an unstretched film, the ratio of die slit gap/unstretched film thickness is set in the range of 5 to 30, preferably 8 to 20, and the voltage of the electrostatic casting method is set in the range of 5000 to 1500.
0V, preferably from 6000 to 2000V, the relationship between thickness and average grain size within the range of the present invention, content range, orientation state within a desirable range, surface layer particle concentration ratio, total reflection Raman crystal without stretching tearing. It is effective to obtain a film with a high chemical index.

次にこの未延伸フィルムを二軸延伸し、二軸配向せしめ
る。延伸方法としては、逐次二軸延伸法または同時二軸
延伸法を用いることができる。ただし、最初に長手方向
、次に幅方向の延伸を行なう逐次二軸延伸法を用い、長
手方向の延伸を3段階以上に分けて、総縦延伸倍率を3
.0〜6.5倍で行なう方法は延伸破れなく、本発明範
囲の厚さと平均粒径の関係、含有量、望ましい範囲の配
向状態、表層粒子濃度比のフィルムを得るのに有効であ
る。ただし、熱可塑性樹脂が溶融光学異方性樹脂である
場合は長手方向延伸倍率は1〜1゜1倍が適切である。
Next, this unstretched film is biaxially stretched and biaxially oriented. As the stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used. However, by using a sequential biaxial stretching method that first stretches in the longitudinal direction and then in the width direction, the longitudinal stretching is divided into three or more stages, and the total longitudinal stretching ratio is 3.
.. The method carried out at 0 to 6.5 times is effective for obtaining a film without tearing due to stretching and having the relationship between thickness and average grain size, content, orientation state and surface layer particle concentration ratio within the range of the present invention. However, when the thermoplastic resin is a molten optically anisotropic resin, the stretching ratio in the longitudinal direction is suitably 1 to 1.times.1.

長手方向延伸温度は熱可塑性樹脂の種類によって異なり
一種には言えないが、通常、その1段目を50〜130
℃とし、2段目以降はそれより高くすることが本発明範
囲の厚さと平均粒径の関係、含有量、望ましい範囲の配
向状態、平均突起高さ、表層粒子濃度比のフィルムを得
るのに有効である。長手方向延伸速度は5000〜50
000%/分の範囲か好適である。幅方向の延伸方法と
してはステンタを用いる方法が一般的である。延伸倍率
は、3.0〜5.0倍の範囲が適当である。幅方向の延
伸速度は、1000〜20000%/分、温度は80〜
1600Cの範囲が好適である。次にこの延伸フィルム
を熱処理する。この場合の熱処理温度は170〜220
℃、特に170〜210℃、時間は0. 5〜60秒の
範囲が好適である。
The longitudinal stretching temperature varies depending on the type of thermoplastic resin, but it is usually 50 to 130 degrees at the first stage.
℃, and higher than that for the second and subsequent stages to obtain a film with the relationship between thickness and average particle size, content, orientation state within the desired range, average protrusion height, and surface layer particle concentration ratio within the range of the present invention. It is valid. Longitudinal stretching speed is 5000-50
A range of 000%/min is suitable. A common method for stretching in the width direction is to use a stenter. The appropriate stretching ratio is 3.0 to 5.0 times. The stretching speed in the width direction is 1000-20000%/min, and the temperature is 80-2000%/min.
A range of 1600C is preferred. Next, this stretched film is heat treated. The heat treatment temperature in this case is 170-220
℃, especially 170-210℃, time is 0. A range of 5 to 60 seconds is suitable.

次に、熱可塑性樹脂Bを主成分とするフィルムの少なく
とも片面に熱可塑性樹脂Aを主成分とするフィルムを積
層する方法としては、次の方法が有効である。
Next, as a method for laminating a film mainly composed of thermoplastic resin A on at least one side of a film mainly composed of thermoplastic resin B, the following method is effective.

所定の熱可塑性樹脂A組成物と熱可塑性樹脂B(A、B
は同種、異種どちらでもよい)を公知の溶融積層用押出
機に供給し、スリット状のダイからシート状に押出し、
キャスティングロール上で冷却固化せしめて未延伸フィ
ルムを作る。すなわち、2または3台の押出し機、2ま
たは3層のマニホールドまたは合流ブロックを用いて、
熱可塑性樹脂A、Bを積層し、口金から2または3層の
シートを押し出し、キャスティングロールで冷却して未
延伸フィルムを作る。この場合、積層厚みをコントロー
ルする方法として、合流ブロックの幅方向温度を積層厚
みに対応してコントロールする方法は延伸破れなく、本
発明範囲の厚さと平均粒径の関係、含有量、望ましい範
囲の配向状態、平均突起高さ、Rt/Rp比、Rt /
 Ra比、表層粒子濃度比のフィルムを得るのに有効で
ある。
Predetermined thermoplastic resin A composition and thermoplastic resin B (A, B
may be the same or different types) is fed to a known melt lamination extruder and extruded into a sheet from a slit-shaped die,
It is cooled and solidified on a casting roll to form an unstretched film. That is, using 2 or 3 extruders, 2 or 3 layer manifolds or merging blocks,
Thermoplastic resins A and B are laminated, two or three layers of sheets are extruded from a die, and the sheets are cooled with a casting roll to form an unstretched film. In this case, as a method of controlling the lamination thickness, a method of controlling the temperature in the width direction of the merging block in accordance with the lamination thickness will prevent stretching tearing, and the relationship between the thickness and average grain size within the range of the present invention, the content, and the desired range. Orientation state, average protrusion height, Rt/Rp ratio, Rt/
This is effective in obtaining a film with a good Ra ratio and a surface layer particle concentration ratio.

また、熱可塑性樹脂A側の押し出し機の溶融温度を、熱
可塑性樹脂B側より、10〜40°C高くすることが、
延伸破れなく、本発明範囲の厚さと平均粒径の関係、含
有量、望ましい範囲の配向状態、平均突起高さ、Rt/
Rp比、Rt / Ra比、表層粒子濃度比、全反射ラ
マン結晶化指数のフィルムを得るのに有効である。
In addition, the melting temperature of the extruder on the thermoplastic resin A side can be made higher by 10 to 40°C than on the thermoplastic resin B side.
No stretching tear, relationship between thickness and average grain size within the range of the present invention, content, orientation state within a desirable range, average protrusion height, Rt/
It is effective in obtaining a film with Rp ratio, Rt/Ra ratio, surface particle concentration ratio, and total reflection Raman crystallization index.

次にこの未延伸フィルムを二軸延伸し、二軸配向せしめ
る方法のポイントは、基本的に上述した単層フィルムと
同様である。ただし、積層フィルムの場合の延伸温度の
設定は熱可塑性樹脂Bを基準として設定する必要がある
。さらに2層積層フィルムの熱処理工程は、熱可塑性樹
脂A層に吹き付ける熱風温度を熱可塑性樹脂B層よりも
3〜20℃低くすることが、本発明範囲の厚さと平均粒
径の関係、含有量、望ましい範囲の配向状態、平均突起
高さ、Rt/Rp比、Rt / Ra比、表層粒子濃度
比、全反射ラマン結晶化指数のフィルムを得るのに有効
である。
Next, the points of the method for biaxially stretching this unstretched film to achieve biaxial orientation are basically the same as those for the single-layer film described above. However, in the case of a laminated film, the stretching temperature must be set based on thermoplastic resin B. Furthermore, in the heat treatment process of the two-layer laminated film, the temperature of the hot air blown onto the thermoplastic resin A layer is 3 to 20°C lower than that of the thermoplastic resin B layer. , is effective in obtaining a film with desired range of orientation state, average protrusion height, Rt/Rp ratio, Rt/Ra ratio, surface layer particle concentration ratio, and total reflection Raman crystallization index.

かくして得られた二軸配向フィルムに所定の磁性層を塗
布する。磁性層を塗布する方法は公知の方法で行なうこ
とができるが、塗布後の乾燥工程は、温度を90〜12
0℃とするのが好ましい。
A predetermined magnetic layer is applied to the biaxially oriented film thus obtained. The magnetic layer can be applied by a known method, but the drying process after application is performed at a temperature of 90 to 12
The temperature is preferably 0°C.

また、カレンダー工程は、ポリアミドまたはポリエステ
ルを弾性ロールに用い、25〜90℃、特に40〜70
℃の温度範囲で行なうのが本発明範囲の厚さと平均粒径
の関係、本発明の望ましい範囲の表層粒子濃度比のフィ
ルムを得るのに有効である。さらに、このフィルムの磁
性層をキュアした後、その原反(広幅)をスリットして
本発明の高密度記録用ビデオテープを得る。
In addition, the calendering process uses polyamide or polyester as an elastic roll, and
C. is effective for obtaining a film having a relationship between thickness and average particle size within the range of the present invention and a surface layer particle concentration ratio within the desired range of the present invention. Further, after curing the magnetic layer of this film, the original (wide width) film is slit to obtain the high-density recording videotape of the present invention.

[物性の測定方法ならびに効果の評価方法]本発明の特
性値の測定方法並びに効果の評価方法は次の通りである
[Method of Measuring Physical Properties and Evaluating Effects] The methods of measuring the characteristic values and evaluating the effects of the present invention are as follows.

(1)粒子の平均粒径 フィルムから熱可塑性樹脂をプラズマ低温灰化処理法で
除去し粒子を露出させる。処理条件は熱可塑性樹脂は灰
化されるが粒子はダメージを受けない条件を選択する。
(1) Average particle size of particles The thermoplastic resin is removed from the film by plasma low-temperature ashing treatment to expose the particles. The processing conditions are selected so that the thermoplastic resin is incinerated but the particles are not damaged.

これをSEM(走査型電子顕微鏡)で観察し、粒子の画
像(粒子によってで゛きる光の濃淡)をイメージアナラ
イザーに結び付け、観察箇所を変えて粒子数5000個
以上で次の数値処理を行ない、それによって求めた数平
均径りを平均粒径とする。
This is observed with a SEM (scanning electron microscope), and the image of the particles (shades of light produced by the particles) is connected to an image analyzer.The observation points are changed and the following numerical processing is performed when the number of particles is 5000 or more. The number average diameter thus determined is defined as the average particle diameter.

D−ΣD、/N ここで、DIは粒子の円相光径、 Nは個数である。D-ΣD, /N Here, DI is the circular diameter of the particle, N is the number.

(2)粒子の含有量 熱可塑性樹脂は溶解し粒子は溶解させない溶媒を選択し
、粒子を熱可塑性樹脂から遠心分離し、粒子の全体重量
に対する比率(重量%)をもって粒子含有量とする。場
合によっては赤外分光法の併用も有効である。
(2) Particle content A solvent that dissolves the thermoplastic resin but does not dissolve the particles is selected, the particles are centrifuged from the thermoplastic resin, and the ratio (% by weight) to the total weight of the particles is defined as the particle content. In some cases, infrared spectroscopy may also be effective.

(3)結晶化パラメータΔT c g、融解熱DSC(
示差走査熱量計)を用いて測定した。
(3) Crystallization parameter ΔT c g, heat of fusion DSC (
It was measured using a differential scanning calorimeter).

DSCの測定条件は次の通りである。すなわち、試料1
0mgをDSC装置にセットし、300℃の温度で5分
間溶融した後、液体窒素中に急冷する。
The DSC measurement conditions are as follows. That is, sample 1
0 mg was set in a DSC device, melted at a temperature of 300° C. for 5 minutes, and then rapidly cooled in liquid nitrogen.

この急冷試料を10°C/分で昇温し、ガラス転移点T
gを検知する。さらに昇温を続け、ガラス状態からの結
晶化発熱ピーク温度をもって冷結晶化温度Tccとした
。さらに昇温を続け、融解ピークから融解熱を求めた。
This rapidly cooled sample was heated at a rate of 10°C/min, and the glass transition point T
g is detected. The temperature was further increased, and the exothermic peak temperature of crystallization from the glass state was defined as the cold crystallization temperature Tcc. The temperature was further increased, and the heat of fusion was determined from the melting peak.

ここでTccとTgの差(Tcc−Tg)を結晶化パラ
メータΔTcgと定義する。
Here, the difference between Tcc and Tg (Tcc-Tg) is defined as a crystallization parameter ΔTcg.

(4)表面の分子配向(屈折率) ナトリウムD線(589nm)を光源として、アツベ屈
折率計を用いて測定した。マウント液にはヨウ化メチレ
ンを用い、25℃、65%RHにて測定した。ポリマの
二軸配向性は長手方向、幅方向、厚さ方向の屈折率をN
1、N2、N3とした時、(NI  N2)の絶対値が
0.07以下、かつ、N3 / [(Nl +N2 )
/2]が0.95以下であることをひとつの基準とでき
る。また、レーザー型屈折率計を用いて屈折率を測定し
ても良い。さらに、この方法では測定が難しい場合は全
反射レーザーラマン法を用いることもできる。
(4) Surface molecular orientation (refractive index) Measured using an Atsube refractometer using sodium D line (589 nm) as a light source. Methylene iodide was used as the mounting solution, and the measurement was performed at 25° C. and 65% RH. The biaxial orientation of the polymer has a refractive index of N in the longitudinal direction, width direction, and thickness direction.
1, N2, and N3, the absolute value of (NI N2) is 0.07 or less, and N3 / [(Nl + N2 )
/2] is 0.95 or less. Alternatively, the refractive index may be measured using a laser refractometer. Furthermore, if measurement is difficult with this method, total internal reflection laser Raman method can also be used.

レーザー全反射ラマンの測定は、Jobin−Yvon
社製Ramanor U−1000ラマンシステムによ
り、全反射ラマンスペクトルを測定し、例えばPETの
場合テは、1615cm−’(ベンゼン環の骨格振動)
と1730cm−”(カルボニル基の伸縮振動)のバン
ド強度比の偏光測定比(YY/XX比など。
Laser total internal reflection Raman measurement is performed by Jobin-Yvon
The total reflection Raman spectrum is measured using a Ramanor U-1000 Raman system manufactured by the company.
Polarization measurement ratio (YY/XX ratio, etc.) of the band intensity ratio of and 1730 cm-'' (stretching vibration of carbonyl group).

ここでYY:レーザーの偏光方向をYにしてYに対して
平行なうマン光検出、Xxニレーザーの偏光方向をXに
してXに対して平行なうマン光検出)が分子配向と対応
することを利用できる。ポリマの二軸配向性はラマン測
定から得られたパラメータを長手方向、幅方向の屈折率
に換算して、その絶対値、差などから判定できる。この
場合の測定条件は次のとおりである。
Here, use the fact that YY (man light detection parallel to Y with the polarization direction of the laser set to Y, Xx (man light detection parallel to X with the polarization direction of the laser set to X) corresponds to molecular orientation. can. The biaxial orientation of a polymer can be determined by converting the parameters obtained from Raman measurement into refractive indices in the longitudinal direction and width direction, and based on their absolute values, differences, etc. The measurement conditions in this case are as follows.

■光源 アルゴンイオンレーザ−(5145A)■試料のセツテ
ィング フィルム表面を全反射プリズムに圧着させ、レーザのプ
リズムへの入射角(フィルム厚さ方向との角度)は60
°とした。
■Light source Argon ion laser (5145A) ■Setting the sample The surface of the film is pressed against a total reflection prism, and the incident angle of the laser to the prism (angle with the film thickness direction) is 60°.
°.

■検出器 PM : RCA31034/Photon Coun
ting System(Ilamamafsu Cl
23[1)  (supply 16(JOY)■測定
条件 5LIT        1000μmLASER10
0mW GATE TIME     1.0secSCAN 
5PEED     12c+N’/m1nS八MPL
ING  INTERVAL  0.2cmREPEA
T TIME    6 (5)全反射ラマン結晶化指数 上記(4)と同様にして、全反射ラマンスペクトルを測
定し、カルボニル基の伸縮振動である1730 Cm−
”の半価幅をもって表面の全反射ラマン結晶化指数とし
た。測定深さは、表面から500〜1000オングスト
ロ一ム程度である。
■Detector PM: RCA31034/Photon Coun
ting System (Ilamamafsu Cl
23 [1) (supply 16 (JOY) ■Measurement conditions 5LIT 1000μm LASER10
0mW GATE TIME 1.0secSCAN
5PEED 12c+N'/m1nS 8MPL
ING INTERVAL 0.2cmREPEA
T TIME 6 (5) Total reflection Raman crystallization index The total reflection Raman spectrum was measured in the same manner as in (4) above, and 1730 Cm-, which is the stretching vibration of the carbonyl group, was measured.
The half-width of the surface was taken as the total reflection Raman crystallization index of the surface.The measurement depth was about 500 to 1000 angstroms from the surface.

(6)表面突起の平均高さ 2検出器力式の走査型電子顕微鏡[ESM−3200、
エリオニクス(株)製]と断面測定装置[PMS−1、
エリオニクス(株)製]においてテープ非磁性面の平坦
面の高さをOとして走査した時の突起の高さ測定値を画
像処理装置[I BAS 2000.カールツアイス(
株)製コに送り、画像処理装置上にフィルム表面突起画
像を再構築する。次に、この表面突起画像で突起部分を
2値化して得られた個々の突起部分の中で最も高い値を
その突起の高さとし、これを個々の突起について求める
。この測定を場所をかえて500回繰返し、突起個数を
求め、測定された全突起についてその高さの平均値を平
均高さとした。突起高さ分布の標準偏差は、正規分布関
数 Ni =Aexp(−hi 2/2(72)(但し、h
i 、Ni 、Aはそれぞれ突起高さ、高さhiの突起
数、定数)から最小二乗法で得られるσで定義される。
(6) Average height of surface projections 2-detector power type scanning electron microscope [ESM-3200,
manufactured by Elionix Co., Ltd.] and a cross-sectional measuring device [PMS-1,
Elionix Co., Ltd.], the height of the protrusion was scanned with the height of the flat surface of the non-magnetic tape as O. Carl Zeis (
The film is sent to Seiko Co., Ltd., and an image of the protrusions on the film surface is reconstructed on an image processing device. Next, the highest value among the individual protrusion parts obtained by binarizing the protrusion parts using this surface protrusion image is determined as the height of the protrusion, and this value is determined for each protrusion. This measurement was repeated 500 times at different locations to determine the number of protrusions, and the average value of the heights of all the measured protrusions was taken as the average height. The standard deviation of the protrusion height distribution is the normal distribution function Ni = Aexp (-hi 2/2 (72) (however, h
i, Ni, and A are respectively defined as σ obtained by the least squares method from the protrusion height, the number of protrusions at height hi, and a constant.

また走査型電子顕微鏡の倍率は、1000〜8000倍
の間の値を選択する。
Further, the magnification of the scanning electron microscope is selected to be between 1000 and 8000 times.

なお、場合によっては、高精度光干渉式3次元表面解析
装置(WYKO社製TOPO−3D、対物レンズ:40
〜200倍、高解像度カメラ使用が有効)を用いて得ら
れる高さ情報を上記SEMの値に読み替えて用いてもよ
い。
In some cases, a high-precision optical interference type three-dimensional surface analysis device (TOPO-3D manufactured by WYKO, objective lens: 40
~200 times, use of a high-resolution camera is effective) may be read as the above-mentioned SEM value and used.

(7)中心線平均表面粗さRa、中心線深さRp、最大
高さRt、突起間隔Sm 小板研究所製の高精度薄膜段差測定器ET−10を用い
て測定した。条件は下記のとおりであり、20回の測定
の平均値をもって値とした。
(7) Centerline average surface roughness Ra, centerline depth Rp, maximum height Rt, protrusion spacing Sm Measured using a high-precision thin film step measuring instrument ET-10 manufactured by Koita Research Institute. The conditions were as follows, and the average value of 20 measurements was taken as the value.

・触針先端半径二0.5μm ・触針荷重  :5mg ・測定長   :1mm ・カットオフ値:0.08mm なお、Ra、Rp、RtXSmの定義は、たとえば、奈
良治部著「表面粗さの測定・評価法」 (総合技術セン
ター 1983)に示されているものである。
・Stylus tip radius: 20.5 μm ・Stylus load: 5 mg ・Measurement length: 1 mm ・Cutoff value: 0.08 mm The definitions of Ra, Rp, and Rt ``Measurement and Evaluation Methods'' (Sogo Technological Center 1983).

(8)ヤング率 J I 5−Z−1702に規定された方法にしたがっ
て、インストロンタイプの引っ張り試験機を用いて、2
5℃、65%RHにて測定した。
(8) Young's modulus 2 using an Instron type tensile tester according to the method specified in J I 5-Z-1702.
Measurement was performed at 5° C. and 65% RH.

(9)固有粘度[η] (単位はdi/g)オルソクロ
ルフェノール中、25℃で測定した溶液粘度から下記式
から計算される値を用いる。
(9) Intrinsic viscosity [η] (unit: di/g) A value calculated from the following formula from the solution viscosity measured at 25° C. in orthochlorophenol is used.

すなわち、 ηsp/C””  [ηコ +K [η] 2 ・ に
こで、η5.=(溶液粘度/溶媒粘度)−1、Cは溶媒
100m lあたりの溶解ポリマ重量(g/100m1
、通常1.2)、Kはハギンス定数(0,343とする
)。また、溶液粘度、溶媒粘度はオストワルド粘度計を
用いて測定した。
That is, ηsp/C”” [ηko +K [η] 2 ・ With a smile, η5. = (solution viscosity/solvent viscosity) -1, C is the weight of dissolved polymer per 100ml of solvent (g/100ml
, usually 1.2), K is the Huggins constant (assumed to be 0,343). In addition, solution viscosity and solvent viscosity were measured using an Ostwald viscometer.

(10)表層粒子濃度比 2次イオンマススペクトル(SIMS)を用いて、フィ
ルム中の粒子に起因する元素の内のもっとも高濃度の元
素とポリエステルの炭素元素の濃度比を粒子濃度とし、
厚さ方向の分析を行なう。
(10) Surface layer particle concentration ratio Using secondary ion mass spectrometry (SIMS), the concentration ratio of the highest concentration element among the elements caused by particles in the film and the carbon element of the polyester is defined as the particle concentration,
Perform analysis in the thickness direction.

SIMSによって測定される最表層粒子濃度(深さ0の
点)における粒子濃度Aとさらに深さ方向の分析を続け
て得られる最高濃度Bの比、A/Bを表層濃度比と定義
した。測定装置、条件は下記のとおりである。測定装置
、条件は下記のとおりである。
The ratio of the particle concentration A at the outermost layer particle concentration (point at depth 0) measured by SIMS to the maximum concentration B obtained by further analysis in the depth direction, A/B, was defined as the surface layer concentration ratio. The measuring device and conditions are as follows. The measuring device and conditions are as follows.

■ 測定装置 2次イオン質量分析装置(SIMS) 西独、ATOMIKA社製 A−DIDA3000■ 
測定条件 1次イオン種 :0□ 1次イオン加速電圧:12KV 1次イオン電流:200nA ラスター領 域:400μm口 分析領域:ゲート30% 測定真空度: 6. OX 10−9TorrE  −
G  U  N:0.5KV−3,0A(11)単一粒
子指数 フィルムの断面を透過型電子顕微鏡(TEM)で写真観
察し、粒子を検知する。観察倍率を100000倍程度
にすれば、それ以上分けることができない1個の粒子が
観察できる。粒子の占める全面積をA1その内2個以上
の粒子が凝集している凝集体の占める面積をBとした時
、(A−B)/Aをもって、単一粒子指数とする。TE
M条件は下記のとおりであり1視野面積:2μm2の測
定を場所を変えて、500視野測定する。
■ Measuring device Secondary ion mass spectrometer (SIMS) A-DIDA3000 manufactured by ATOMIKA, West Germany ■
Measurement conditions Primary ion species: 0□ Primary ion acceleration voltage: 12KV Primary ion current: 200nA Raster area: 400μm Mouth analysis area: Gate 30% Measurement vacuum degree: 6. OX 10-9 TorrE −
GUN: 0.5KV-3,0A (11) Single particle index A cross section of the film is photographed and observed using a transmission electron microscope (TEM) to detect particles. If the observation magnification is set to about 100,000 times, a single particle that cannot be separated any further can be observed. When the total area occupied by particles is A1 and the area occupied by aggregates in which two or more particles are aggregated is B, (A-B)/A is defined as a single particle index. T.E.
The M conditions are as follows: one field of view area: 2 μm2 is measured at different locations, and 500 fields of view are measured.

・装置二日本電子製JEM−1200EX・観察倍率:
 100000倍 ・加速電圧:100kV ・切片厚さ:約1000オングストローム(12)粒径
比 上記(1)の測定において個々の粒子の長径の平均値/
短径の平均値の比である。
・Equipment 2 JEM-1200EX ・Observation magnification:
100,000 times Acceleration voltage: 100 kV Section thickness: Approximately 1000 angstroms (12) Particle size ratio Average value of the long diameter of each particle in the measurement of (1) above /
It is the ratio of the average value of the short axis.

すなわち、下式で求められる。That is, it can be obtained using the following formula.

長径=ΣD1./N 短径=ΣD2./N Di、 、D2.はそれぞれ個々の粒子の長径(最大径
)、短径(最短径)、Nは総個数である。
Long axis=ΣD1. /N Short diameter=ΣD2. /N Di, ,D2. are the major axis (maximum diameter) and minor axis (shortest axis) of each individual particle, and N is the total number.

(13)粒径の相対標準偏差 上記(1)の方法で測定された個々の粒径り6、平均径
D1粒子総数Nから計算される標準偏差σ(=f(Σ(
D、−D) 2/N+ )を平均径りで割った値(σ/
D)で表わした。
(13) Relative standard deviation of particle size Standard deviation σ(=f(Σ(
D, -D) 2/N+) divided by the average diameter (σ/
D).

(14)積層フィルム中の熱可塑性樹脂A層の厚さ 2次イオン質量分析装置(SIMS)を用いて、フィル
ム中の粒子の内殻も高濃度の粒子に起因する元素とポリ
エステルの炭素元素の濃度比(M”/C+)を粒子濃度
とし、熱可塑性樹脂A層の表面から深さ(厚さ)方向の
分析を行なう。表層では表面という界面のために粒子濃
度は低く表面から遠ざかるにつれて粒子濃度は高くなる
。本発明フィルムの場合は深さ[I]でいったん極大値
となった粒子濃度がまた減少し始める。この濃度分布曲
線をもとに極大値の粒子濃度の1/2になる深さ[■]
 (ここでII>I)を積層厚さとした。
(14) Thickness of thermoplastic resin A layer in laminated film Using a secondary ion mass spectrometer (SIMS), it was determined that the inner shell of particles in the film also contained a high concentration of elements originating from particles and carbon elements of polyester. The concentration ratio (M”/C+) is defined as the particle concentration, and analysis is performed in the depth (thickness) direction from the surface of the thermoplastic resin layer A.In the surface layer, the particle concentration is low due to the interface called the surface, and the particle concentration increases as the distance from the surface increases. The concentration increases.In the case of the film of the present invention, the particle concentration once reached the maximum value at depth [I] begins to decrease again.Based on this concentration distribution curve, the particle concentration becomes 1/2 of the maximum value. Depth [■]
(Here, II>I) was taken as the lamination thickness.

条件は測定法(10)と同様である。The conditions are the same as in measurement method (10).

なお、フィルム中にもっとも多く含有する粒子が有機高
分子粒子の場合はSIMSでは測定が難しいので、表面
からエツチングしなからXPS(X線光電子分光法)、
IR(赤外分光法)あるいはコンフォーカル顕微鏡など
で、その粒子濃度のデプスプロファイルを測定し、上記
同様の手法から積層厚さを求めても良い。
Note that if the most abundant particles in the film are organic polymer particles, it is difficult to measure with SIMS, so instead of etching from the surface, XPS (X-ray photoelectron spectroscopy),
The depth profile of the particle concentration may be measured using IR (infrared spectroscopy) or a confocal microscope, and the layer thickness may be determined using the same method as described above.

さらに、上述した粒子濃度のデプスプロファイルからで
はなく、フィルムの断面観察あるいは薄膜段差測定機等
によって熱可塑性樹脂Aの積層厚さを求めても良い。
Furthermore, the laminated thickness of the thermoplastic resin A may be determined not from the depth profile of the particle concentration described above, but by observing the cross section of the film, using a thin film step measuring device, or the like.

なお、単層フィルムの場合の厚さは、公知の方法、例え
ばダイヤルゲージ法、光干渉法、重量法、薄膜段差測定
法等によって求めることができる。
In addition, the thickness in the case of a single layer film can be determined by a known method such as a dial gauge method, an optical interference method, a gravimetric method, a thin film step measurement method, and the like.

(15)耐スクラッチ性 テープ走行性試験機を使用して、ガイドピン(表面粗度
:Raで10100n上を走行させる(走行速度100
0m/分、走行回数10パス、巻き付はm:60°、走
行張カニ80g)。この時、テープ非磁性面に入った傷
を顕微鏡で観察し、幅2.5μm以上の傷がテープ幅あ
たり2本未満は優、2本以上10本未満は良、10本以
上は不良と判定した。優が望ましいが、良でも実用的に
は使用可能である。
(15) Using a scratch resistance tape running tester, run on a guide pin (surface roughness: Ra, 10100n (running speed 100).
0 m/min, number of runs: 10 passes, wrapping: m: 60°, running tension crab: 80 g). At this time, the scratches on the non-magnetic surface of the tape are observed under a microscope, and less than 2 scratches with a width of 2.5 μm or more per tape width are considered good, 2 or more and less than 10 scratches are considered good, and 10 or more scratches are considered poor. did. Excellent is desirable, but good is still usable for practical purposes.

(16)耐ダビング性 テープに家庭用VTRを用いてシバツク製のテレビ試験
波形発生器(TG7/U706)により100%クロマ
信号を記録し、その再生信号からシバツク製カラービデ
オノイズ測定器(925D/1)でクロマS/Nを測定
しAとした。また上記と同じ信号を記録したマスターテ
ープのパンケーキを磁界転写方式のビデオソフト高速プ
リントシステム(たとえばソニーマグネスケール■製の
スプリンタ)を用いて八を測定したのと同じ試料テープ
(未記録)のパンケーキへダビングした後のテープのク
ロマS/Nを上記と同様にして測定し、Bとした。この
ダビングによるクロマS/Nの低下(A−B)が3dB
未満の場合は耐ダビング性:優、3dB以上5dB未満
の場合は良、5dB以上は不良と判定した。優が望まし
いが、良でも実用的には使用可能である。
(16) Using a household VTR on a dubbing-resistant tape, record a 100% chroma signal using a Shibaku TV test waveform generator (TG7/U706), and use the Shibaku color video noise measuring device (925D/U706) from the playback signal. The chroma S/N was measured in 1) and designated as A. In addition, the same sample tape (unrecorded) on which the master tape pancake with the same signal as above was measured using a magnetic field transfer type video software high-speed printing system (for example, Sony Magnescale's Sprinter). The chroma S/N of the tape after dubbing it onto pancakes was measured in the same manner as above, and it was designated as B. The chroma S/N reduction (A-B) due to this dubbing is 3 dB.
Dubbing resistance was determined to be excellent if it was less than 3 dB, good if it was 3 dB or more and less than 5 dB, and poor if it was 5 dB or more. Excellent is desirable, but good is still usable for practical purposes.

[実施例コ 本発明を実施例に基づいて説明する。[Example code] The present invention will be explained based on examples.

実施例1〜4、比較例1〜4 平均粒径の異なる架橋ポリスチレン粒子、コロイダルシ
リカに起因するシリカ粒子を含有するエチレングリコー
ルスラリーを調製し、このエチレングリコールスラリー
を190℃で1.5時間熱処理した後、テレフタル酸ジ
メチルとエステル交換反応後、重縮合し、該粒子を0.
15〜10重量%含有するポリエチレンテレフタレート
(以下PETと略記する)のペレットを作った。この時
、重縮合時間を調節し固有粘度を0.64とした(熱可
塑性樹脂A)。また、常法によって、固有粘度0.62
の実質的に粒子を含有しないPETを製造し、熱可塑性
樹脂Bとした。これらのポリマをそれぞれ180℃で3
時間減圧乾燥(3Torr)した。熱可塑性樹脂Aを押
出機1に供給し288℃で溶融し、さらに、熱可塑性樹
脂Bを押出機2に供給、285°Cで溶融し、これらの
ポリマを合流ブロック(フィードブロック)で合流積層
し、静電印加キャスト法を用いて表面温度30℃のキャ
スティング・ドラムに巻きつけて冷却固化し、2層構造
の未延伸フィルムを作った。この時、口金スリット間隙
/未延伸フィルム厚さの比を10として未延伸フィルム
を作った。また、それぞれの押出機の吐出量を調節し総
厚さ、フィルム層Aの厚さを調節した。この未延伸フィ
ルムを温度80℃にて長手方向に4.0倍延伸した。こ
の延伸は2組ずつのロールの周速差で、4段階で行なっ
た。この−軸延伸フィルムをステンタを用いて延伸速度
2000%/分で100°Cで幅方向に4゜4倍延伸し
、定長下で、200℃にて5秒間熱処理し、総厚さ9μ
m1フイルム層Aの厚さ0. 2〜6μmの二軸配向積
層フィルムを得た。
Examples 1 to 4, Comparative Examples 1 to 4 Ethylene glycol slurry containing crosslinked polystyrene particles and silica particles derived from colloidal silica with different average particle sizes was prepared, and this ethylene glycol slurry was heat-treated at 190°C for 1.5 hours. After that, the particles were subjected to transesterification reaction with dimethyl terephthalate, followed by polycondensation, and the particles were reduced to 0.
Pellets of polyethylene terephthalate (hereinafter abbreviated as PET) containing 15 to 10% by weight were made. At this time, the polycondensation time was adjusted so that the intrinsic viscosity was 0.64 (thermoplastic resin A). In addition, by the usual method, the intrinsic viscosity was 0.62.
A substantially particle-free PET was produced and designated as thermoplastic resin B. These polymers were each heated at 180°C for 3
It was dried under reduced pressure (3 Torr) for an hour. Thermoplastic resin A is supplied to extruder 1 and melted at 288°C, thermoplastic resin B is further supplied to extruder 2 and melted at 285°C, and these polymers are merged and laminated in a merging block (feed block). Then, using an electrostatic casting method, the film was wound around a casting drum with a surface temperature of 30° C., and cooled and solidified to produce an unstretched film with a two-layer structure. At this time, an unstretched film was prepared with a ratio of die slit gap/unstretched film thickness of 10. Further, the total thickness and the thickness of the film layer A were adjusted by adjusting the discharge amount of each extruder. This unstretched film was stretched 4.0 times in the longitudinal direction at a temperature of 80°C. This stretching was carried out in four stages with a difference in peripheral speed between two sets of rolls. This -axially stretched film was stretched 4 times in the width direction at 100°C at a stretching rate of 2000%/min using a stenter, and then heat-treated at 200°C for 5 seconds under a constant length to give a total thickness of 9μ.
Thickness of m1 film layer A is 0. A biaxially oriented laminated film of 2 to 6 μm was obtained.

このフィルムに磁性塗料をグラビヤロールを用いて塗布
した。磁性塗料は次のようにして調製した。
A magnetic paint was applied to this film using a gravure roll. The magnetic paint was prepared as follows.

・Fe             100部平均サイズ
  長さ =0.3μm 針状比:10/1 抗磁力    20000e ・ポリウレタン樹脂         15部・塩化ビ
ニル・酢酸ビニル共重合体   5部ニトロセルロース
樹脂        5部・酸化アルミ粉末     
      3部平均粒径  :0.3μm ・カーボンブラック          1部・レシチ
ン              2部・メチルエチルケ
トン       100部・メチルイソブチルケトン
     100部・トルエン           
  100部・ステアリン酸            
2部上記組成物をボールミルで48時間混合分散した後
、硬化剤6部を添加して得られた混練物をフィルターで
濾過して磁性塗布液を準備し、上記フィルムの熱可塑性
樹脂8面上に塗布、磁場配向させ、110℃で乾燥し、
さらに小型テストカレンダー装置(スチールロール/ナ
イロンロール、5段)で、温度70℃、線圧200kg
/cmでカレンダー処理した後、70℃、48時間でキ
ユアリングし高密度記録用ビデオテープを得た。
・Fe 100 parts Average size Length = 0.3 μm Acicular ratio: 10/1 Coercive force 20000e ・Polyurethane resin 15 parts ・Vinyl chloride/vinyl acetate copolymer 5 parts Nitrocellulose resin 5 parts ・Aluminum oxide powder
3 parts Average particle size: 0.3 μm ・Carbon black 1 part ・Lecithin 2 parts ・Methyl ethyl ketone 100 parts ・Methyl isobutyl ketone 100 parts ・Toluene
100 parts stearic acid
After mixing and dispersing 2 parts of the above composition in a ball mill for 48 hours, 6 parts of a curing agent was added, the resulting kneaded product was filtered through a filter to prepare a magnetic coating solution, and a magnetic coating solution was prepared, which was coated on the 8 sides of the thermoplastic resin of the above film. Coated, oriented in a magnetic field, dried at 110°C,
Furthermore, a small test calender device (steel roll/nylon roll, 5 stages) was used at a temperature of 70℃ and a linear pressure of 200kg.
After calendering at 70° C./cm, curing was performed at 70° C. for 48 hours to obtain a high-density recording videotape.

これらのテープの本発明のパラメータは第1表に示した
とおりであり、本発明のパラメータが範囲内の場合は耐
スクラッチ性、耐ダビング性、摩擦係数は第1表に示し
たとおり優または良であったが、そうでない場合は耐ス
クラッチ性、耐ダビング性、摩擦係数を兼備するフィル
ムは得られなかった。
The parameters of the present invention for these tapes are shown in Table 1, and when the parameters of the present invention are within the range, the scratch resistance, dubbing resistance, and friction coefficient are excellent or good as shown in Table 1. However, in other cases, a film having good scratch resistance, dubbing resistance, and coefficient of friction could not be obtained.

[発明の効果コ 本発明は、製法の工夫により、粒子を含有する熱可塑性
樹脂を用いて、粒子の大きさとフィルム厚さの関係、含
有量、フィルム厚さ及び非磁性面の表面突起の高さ分布
標準偏差と突起数の関係等を特定範囲としたフィルムあ
るいはその積層フィルムとしたので、耐スクラッチ性、
耐ダビング性に優れた、高密度記録にも耐え得るビデオ
テープを実現することができた。
[Effects of the Invention] The present invention utilizes a thermoplastic resin containing particles by devising a manufacturing method to improve the relationship between the particle size and film thickness, the content, the film thickness, and the height of the surface protrusions on the non-magnetic surface. The film or its laminated film has a specific range of the relationship between the standard deviation of the distribution and the number of protrusions, so scratch resistance,
We were able to create a videotape that has excellent dubbing resistance and can withstand high-density recording.

Claims (8)

【特許請求の範囲】[Claims] (1)非磁性面を形成するフィルム層Aを有する二軸配
向熱可塑性樹脂フィルム及び磁性層からなり、該非磁性
面における表面突起の高さ分布標準偏差σ(nm)と高
さ225nmを超える突起数N(個/mm^2)が0≦
(3σ−225)N<5×10^4であるビデオテープ
であって、該フィルム層Aは熱可塑性樹脂Aと粒子とを
主成分とする厚さ0.005〜3μmで、かつ該フィル
ム層A中に含有される粒子の平均粒径がフィルム層Aの
厚さの0.1〜10倍、該粒子の含有量が0.5〜50
重量%である高密度記録用ビデオテープ。
(1) Consisting of a biaxially oriented thermoplastic resin film having a film layer A forming a non-magnetic surface and a magnetic layer, the height distribution standard deviation σ (nm) of surface protrusions on the non-magnetic surface and protrusions exceeding 225 nm in height The number N (pieces/mm^2) is 0≦
(3σ-225)N<5×10^4, the film layer A is mainly composed of thermoplastic resin A and particles and has a thickness of 0.005 to 3 μm; The average particle diameter of the particles contained in A is 0.1 to 10 times the thickness of the film layer A, and the content of the particles is 0.5 to 50
% by weight of high-density recording videotape.
(2)二軸配向熱可塑性樹脂フィルムが、フィルム層A
、及び熱可塑性樹脂Bを主成分とするフィルム層Bから
なる複合フィルムであることを特徴とする請求項1記載
の高密度記録用ビデオテープ。
(2) The biaxially oriented thermoplastic resin film has film layer A
2. The high-density recording videotape according to claim 1, wherein the videotape is a composite film comprising a film layer B containing a thermoplastic resin B as a main component, and a film layer B containing a thermoplastic resin B as a main component.
(3)二軸配向熱可塑性樹脂フィルムが、フィルム層A
、フィルム層B及びフィルム層Aからなる複合フィルム
であって、一方のフィルム層Aは非磁性面を形成し、他
方のフィルム層Aに磁性層を形成せしめたことを特徴と
する請求項1記載の高密度記録用ビデオテープ。
(3) The biaxially oriented thermoplastic resin film has film layer A
2. A composite film comprising a film layer B and a film layer A, wherein one film layer A forms a non-magnetic surface and the other film layer A forms a magnetic layer. High-density recording videotape.
(4)フィルム層Bが、実質的に粒子を含有しないこと
を特徴とする請求項2又は3記載の高密度記録用ビデオ
テープ。
(4) The videotape for high-density recording according to claim 2 or 3, wherein the film layer B contains substantially no particles.
(5)フィルム層Bが、熱可塑性樹脂Bと平均粒径0.
007〜2μmの粒子とを主成分とし、該粒子の含有量
が0.001〜0.5重量%であることを特徴とする請
求項2又は3記載の高密度記録用ビデオテープ。
(5) Film layer B is composed of thermoplastic resin B and an average particle size of 0.
4. The high-density recording videotape according to claim 2, wherein the main component is particles having a diameter of 0.007 to 2 .mu.m, and the content of the particles is 0.001 to 0.5% by weight.
(6)熱可塑性樹脂Aが結晶性ポリエステルであり、か
つ、フィルム層Aの表面の全反射ラマン結晶化指数が2
0cm^−^1以下であることを特徴とする請求項1〜
5のいずれかに記載の高密度記録用ビデオテープ。
(6) Thermoplastic resin A is crystalline polyester, and the total reflection Raman crystallization index of the surface of film layer A is 2.
Claim 1~ characterized in that it is 0 cm^-^1 or less.
5. The high-density recording videotape according to any one of 5.
(7)フィルム層Aに含有される粒子が、粒径比1.0
〜1.3の粒子であることを特徴とする請求項1〜6の
いずれかに記載の高密度記録用ビデオテープ。
(7) The particles contained in film layer A have a particle size ratio of 1.0
7. A high-density recording videotape according to any one of claims 1 to 6, characterized in that the grain size is ~1.3.
(8)フィルム層Aに含有される粒子の相対標準偏差が
0.6以下であることを特徴とする請求項1〜7のいず
れかに記載の高密度記録用ビデオテープ。
(8) The videotape for high-density recording according to any one of claims 1 to 7, wherein the relative standard deviation of the particles contained in the film layer A is 0.6 or less.
JP400090A 1990-01-11 1990-01-11 Video tape for high density recording Expired - Lifetime JP2666500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP400090A JP2666500B2 (en) 1990-01-11 1990-01-11 Video tape for high density recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP400090A JP2666500B2 (en) 1990-01-11 1990-01-11 Video tape for high density recording

Publications (2)

Publication Number Publication Date
JPH03209622A true JPH03209622A (en) 1991-09-12
JP2666500B2 JP2666500B2 (en) 1997-10-22

Family

ID=11572733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP400090A Expired - Lifetime JP2666500B2 (en) 1990-01-11 1990-01-11 Video tape for high density recording

Country Status (1)

Country Link
JP (1) JP2666500B2 (en)

Also Published As

Publication number Publication date
JP2666500B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
JPH0277431A (en) Biaxially oriented thermoplastic resin film
JP2653238B2 (en) Magnetic recording media
JP2817302B2 (en) Biaxially oriented polyester film
JP2692320B2 (en) Biaxially oriented polyester film
JP2706338B2 (en) Biaxially oriented polyester film and its processed product
JPH03209622A (en) Video tape for high-density recording
JP2892273B2 (en) Biaxially oriented thermoplastic resin film
JP2922070B2 (en) Biaxially oriented thermoplastic resin film
JPH03140336A (en) Biaxially oriented thermoplastic resin film
JP2804434B2 (en) Biaxially oriented thermoplastic resin film
JP2812136B2 (en) Biaxially oriented laminated film
JP2803274B2 (en) Oxide coated magnetic recording media
JP2569937B2 (en) Biaxially oriented polyester film
JP2666499B2 (en) Audio tape
JP2581287B2 (en) Biaxially oriented thermoplastic resin film
JPH04259548A (en) Biaxially oriented polyester film
JPH04151245A (en) Biaxially oriented polyester film
JPH06322147A (en) Biaxially oriented film
JP2570444B2 (en) Biaxially oriented thermoplastic resin film
JPH06128393A (en) Biaxially oriented film
JPH03187723A (en) Biaxially oriented thermoplastic resin film
JPH0912745A (en) Biaxially oriented thermoplastic resin film
JPH04105935A (en) Biaxially oriented thermoplastic resin film
JPH03208642A (en) Biaxially oriented thermoplastic resin film
JPH07111777B2 (en) Metal coated magnetic recording medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 13