JPH03207884A - Direct or indirect deposition of high corrosion resisting industrial hard chrome layer - Google Patents

Direct or indirect deposition of high corrosion resisting industrial hard chrome layer

Info

Publication number
JPH03207884A
JPH03207884A JP2270685A JP27068590A JPH03207884A JP H03207884 A JPH03207884 A JP H03207884A JP 2270685 A JP2270685 A JP 2270685A JP 27068590 A JP27068590 A JP 27068590A JP H03207884 A JPH03207884 A JP H03207884A
Authority
JP
Japan
Prior art keywords
pulse frequency
current density
shiny
current
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2270685A
Other languages
Japanese (ja)
Inventor
Martin Kohl
マルティン、ケール
Wolfgang Clauberg
ヴォルフガング、クラウベルク
G Pietzak Elisabeth Bieling
エリーザベト、ビーリング、ゲボーレン、ピーツァック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LPW CHEM GmbH
LPW-Chemie GmbH
Original Assignee
LPW CHEM GmbH
LPW-Chemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LPW CHEM GmbH, LPW-Chemie GmbH filed Critical LPW CHEM GmbH
Publication of JPH03207884A publication Critical patent/JPH03207884A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/10Electroplating: Baths therefor from solutions of chromium characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current

Abstract

PURPOSE: To obtain a chromium layer having high corrosion resistance with high current efficiency by executing an electrolysis with prescribed pulsed DC by using a chromate and sulfate ions-contg. soln. mixed with prescribed satd. aliphat. sulfonic acid and/or its salt, etc.
CONSTITUTION: The soln. optimized in current efficiency is prepd. by adding the prescribed satd. aliphat. sulfonic acid and/or its salt or halide deriv. to the soln. contg. the chromate and sulfate ions. The chromium layer having a thickness; ≥2μm and hardness; ≥900HV0.1 (in accordance with DIN ISO 4516) is deposited from this soln. At this time, the work is carried out by the pulsed DC between pulse frequencies Fu and Fo. The deposition having gloss free from cracks is executed and the industrial hard chromium layer having the high corrosion resistance is obtd.
COPYRIGHT: (C)1991,JPO

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、公属からなる−[作物の表而に、電流効率が
最大2個の炭素原子及び最大6個のスルホン酸基をイj
する飽和脂肪族スルホン酸及び/又はその塩又はハロゲ
ン誘導体を添加することにより最適化されたクロム酸及
び硫酸イオンを含有する作業溶液から、厚さ少なくとも
2μl及びDIN 130 45161.1m基づく最
低硬度9 0 0 HVO.lを有する耐食性の工業用
クロム層を直接的又は間接的に析出させる方法Zこ関す
る。該スルホン酸は、電解液中で適当な出発物質の化学
的又は電気化学的反応により形成されてもよい。工作物
としては、鋼、アルミニウム又は銅からなるものが該当
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is based on the invention, which consists of the following:
from a working solution containing chromic acid and sulfate ions, optimized by adding saturated aliphatic sulfonic acids and/or their salts or halogen derivatives, with a thickness of at least 2 μl and a minimum hardness of 90 according to DIN 130 45161.1 m. 0 HVO. A method for directly or indirectly depositing a corrosion-resistant industrial chromium layer having a chromium content of 1. The sulfonic acid may be formed by chemical or electrochemical reaction of suitable starting materials in an electrolyte. The workpiece may be made of steel, aluminum or copper.

【従来の技術1 前記添加物による電流効率の最適化に関しては、ドイツ
連邦共和国特許第3402554号明細声が参陥される
。電流効率は陰極での理論的金属析出のに対する実際の
金属析出の比を表す。該電流効率は前記原理的構成の方
法においては添加物の量により最適化される。作業電解
液は外の点では安な−・たク【1ム化及び適合された操
作条件の手段により、詳細にはまた付加的フッ素イオン
又はフルオル錯体で構成することにより変化させること
ができると理解されるべきである。しかしながら、常に
電流効率の記載の最適化が実施可能であるべきである、
該最適化は実際にフッ素化合物を使用する場合にはフッ
素化合物なしの電解液の場合におけるよりも強度に表ケ
ことはできない。有利には、本発明によればフッ素化合
物なしの作業電解液で作業する。工業用硬質クロム層は
、金属、特に鋼又はアルミニウム合金からなる工作物の
工業用機能性のクロム化に役立つ。該クロムはたいてい
は素材に直接的に施される。しかし、該素材は前以て銅
、銅合金、ニッケル、亜鉛、亜鉛合金からなる下層又は
無電流で析出したニッケル/燐又はニッケル/ホウ素合
金が施されていてもよい。通常の層厚さに関しても、工
業用硬質クロム層は、専ら0 2〜2μRの層範囲内で
適用される装飾用の光沢クロムとは異なる。硬質クロム
層はより厚い。実際には、工業用クロム化は2μlで始
まる。しばしば、5〜100μ1の範囲にある。このよ
うな層は摩耗及び腐食保護として役立つ。特定の場合に
は、その厚さがミリメータ範囲に達する工業用硬質クロ
ム層も施される。従って、種々の工作物を硬質クロム層
により同様に加工することができる。
[Prior Art 1] Regarding the optimization of current efficiency by the use of additives, reference is made to German Patent No. 3402554. Current efficiency represents the ratio of actual to theoretical metal deposition at the cathode. The current efficiency is optimized by the amount of additive in the method of the above-mentioned principle structure. The working electrolyte can be modified by means of an otherwise cheap fluoride compound and adapted operating conditions, in particular also by constitution with additional fluorine ions or fluorine complexes. should be understood. However, it should always be possible to optimize the current efficiency description.
In practice, the optimization cannot be expressed as strongly when using fluorine compounds than in the case of electrolytes without fluorine compounds. According to the invention, it is advantageous to work with a working electrolyte without fluorine compounds. Technical hard chromium layers serve for the chromification of industrial functionality of workpieces made of metal, in particular steel or aluminum alloys. The chromium is often applied directly to the material. However, the material can also be previously provided with an underlayer of copper, copper alloys, nickel, zinc, zinc alloys or galvanically deposited nickel/phosphorus or nickel/boron alloys. Also with regard to the usual layer thicknesses, technical hard chrome layers differ from decorative bright chrome, which is applied exclusively within the layer range of 0.2 to 2 μR. The hard chrome layer is thicker. In practice, industrial chromation begins with 2 μl. Often in the range 5-100μ1. Such a layer serves as wear and corrosion protection. In certain cases, technical hard chromium layers whose thickness reaches the millimeter range are also applied. Therefore, different workpieces can be processed in the same way with a hard chromium layer.

本発明が出発点とした公知手段(ドイツ連邦共和国特許
第3402554号明細書の範囲内では、析出の際には
直流で操作される。直流では、冒頭に記載した基本的構
成もしくは前記のような変更構成の作業電解液から光沢
のある硬質クロム被覆を析出させることができる。この
場合には、しばしば、直流が5%未満の残留リブルを有
するように留意される、それというのも高すぎる残留リ
ブルの場合には程度の差こそあれ無光沢析出物が生じる
ことがあり、その硬度は不利に減少するからである。公
知の手段の範囲内で生じた硬質クロム層は、大きな亀裂
密度で微細な亀裂を示し、該亀裂は従ってマイクロ亀裂
である。その耐食性は満足さr−るが、しかし改良の余
地がある。
The known means from which the present invention is based (in the scope of DE 34 02 554) is that during the precipitation it is operated with a direct current. Shiny hard chrome coatings can be deposited from working electrolytes of modified composition. In this case care is often taken that the DC has a residual ripple of less than 5%, even if the residual is too high. In the case of ribbles, matte precipitates may form to a greater or lesser extent, the hardness of which is disadvantageously reduced.Hard chromium layers produced within the range of known methods are finely divided with a large crack density. The cracks are therefore microcracks.The corrosion resistance is satisfactory, but there is room for improvement.

[発明が解決しようとする課題] 本発明の課題は、冒頭に記載した方法を、硬質クロム層
が更に改良され、しかも相変わらず可能な限り高い電流
効率が達成されるように構成することであった。
OBJECT OF THE INVENTION The object of the invention was to develop the method described in the introduction in such a way that the hard chromium layer is further improved and still achieves the highest possible current efficiency. .

1課題を解決するための手段] 前記課題は、本発明により、析出の際に選択した陰極電
流密度に依存する下方の臨界パルス周波数Fuと、同じ
電流密度で最適化された電流効率に依存する上方の臨界
パルス周波数Paとの間の範囲内のパルス周波数のパル
ス化した直流で作業し、この際作業電解液のために下方
の臨界パルス周波数Fuは、パルス周波数/電流密度曲
線を測定技術的に取ることにより決定し、該ljh線の
−ドでは最低硬度よりも小さい硬度を有する析出が、か
つ該曲線の1二では最低硬度よりも大きい光沢のある亀
裂のない析出が行われ、作業電解液のための上方臨界パ
ルス周波数点Foは、最適化した電流効率のための同じ
電流密度で電流効率/バルス周波数曲線を測定技術的に
、バ祷ス周波数を増大すると光沢のある亀裂のない析出
がますまず亀裂のある析出に移行するE方の臨界パルス
周波数点Foまで取ることにより決定し、かつ下方臨界
パルス周波数Fuと、上方臨界パルス周波数点Foとの
間の範囲内で、光沢のある、実際に亀裂のない析出が行
われように選択することにより解決される。パルス周波
数/電流密度曲線の下では、硬質クロム化目的のために
低すぎる硬度に基づき殆ど使用不能の析出が行われる。
1 Means for Solving the Problem] According to the invention, the problem depends on the lower critical pulse frequency Fu depending on the cathode current density selected during deposition and on the current efficiency optimized at the same current density. Working with a pulsed direct current with a pulse frequency in the range between the upper critical pulse frequency Pa and the lower critical pulse frequency Fu for the working electrolyte, the pulse frequency/current density curve is measured technically. Determined by taking the curve 1, a precipitation with a hardness less than the minimum hardness occurs at the -d of the ljh line, and a shiny crack-free deposition greater than the minimum hardness occurs at the 12 of the curve, and the working electrolytic Technically, the upper critical pulse frequency point Fo for the liquid is measured in the current efficiency/pulse frequency curve at the same current density for optimized current efficiency, and increasing the pulse frequency produces a shiny crack-free deposit. is determined by taking up to a critical pulse frequency point Fo on the E side where the precipitation first transitions to cracked precipitation, and within the range between the lower critical pulse frequency Fu and the upper critical pulse frequency point Fo, the shiny , is solved by choosing such that a practically crack-free precipitation takes place. Under the pulse frequency/current density curve, a deposition that is almost unusable for hard chroming purposes occurs due to the too low hardness.

該析出は一般に無光沢でありかつ光沢のある析出よりも
粗い。
The deposit is generally matte and coarser than the shiny deposit.

該析出はしばしばまた亀裂がありかつマイクロ亀裂を有
する。衝撃係数は電解液内の工作物の全処理時間に対す
るパルス時間の和である。これはバーセントで示される
。実際に亀裂のないとは、亀裂の数が公知の光沢のある
硬質クロム析出にお+−Jる亀裂の数に比較して苦しく
小さく、かつ塾裂か析出の現象を腐食技術的に実際にし
はや影菅しムいことを表す。本発明の有利な実施態様に
よれば、前記の基礎的技術思想の範囲内で、直流で作業
する公知手段の範囲内におけると同様にIO〜I 2 
0 O A/da’の陰極電流範囲内で作業するが、但
し本発明によればパルス化した直流の電流の算術平均を
意味する。本発明の範囲内では、陰極電流効率はたいて
い10〜25%の範囲内にある。本発明によれば、硬質
クロム析出は多層で、詳細に言及すれば、まず亀裂のな
い硬質クロム層、その上に、中断なく、同じ作業電解液
から光沢のある亀裂のある硬質クロム層を析出させるこ
とができる。この第2の微細亀裂〜マイクロ亀裂の層を
生じるために、単にパラメータを、前記の基本思想及び
それから生じる範囲が下方臨界パルス周波数P uと上
方臨界パルス周波数点Foとの間から外れるように選択
するだけでよい。この選択を行うため、及び更に所定の
作業電解液のためのパルス周波数/電流密度曲線を取る
ために、本発明では、電流密度、パルス周波数及び衝撃
係数か変史呵能である電源で作業することを推奨する。
The deposits are often also cracked and have microcracks. The impact coefficient is the sum of the pulse times over the total processing time of the workpiece in the electrolyte. This is expressed in percent. Actually crack-free means that the number of cracks is extremely small compared to the number of cracks in known shiny hard chromium deposits, and that the phenomenon of cracking or precipitation is not actually observed in corrosion technology. It means that there is no shadow. According to an advantageous embodiment of the invention, within the scope of the basic technical idea mentioned above, it is provided that IO to I 2
We work within a cathode current range of 0 O A/da', which according to the invention means the arithmetic mean of the pulsed direct current. Within the scope of the present invention, the cathode current efficiency is usually in the range of 10-25%. According to the invention, the hard chromium deposition is multi-layered, in particular, first a crack-free hard chromium layer, on top of which a shiny cracked hard chromium layer is deposited from the same working electrolyte without interruption. can be done. To create this second layer of microcracks, simply select the parameters such that the basic idea and the range resulting therefrom deviate from between the lower critical pulse frequency P u and the upper critical pulse frequency point Fo. Just do it. In order to make this selection, and also to take the pulse frequency/current density curve for a given working electrolyte, in the present invention the current density, pulse frequency and impulse coefficient are variable. We recommend that you do so.

勿論、本発明の範囲内で種々のパルス形で操作すること
ができる。
Of course, various pulse shapes can be operated within the scope of the invention.

原問的には、硬質クロム析出においてパルス化した直流
で作業することは公知である(T.Pearson, 
J.D. Dennis ”Effect of pu
lsedcurrant on the electr
odeposiLed chromium ,パリで1
988年10月4〜7日に行われた第12回表面仕上げ
の世界会議の講演参照)。この場合にも、程度の差こそ
あれ光沢のある、実際に亀裂のない析出層が得られた。
In principle, it is known to work with pulsed direct current in hard chromium deposition (T. Pearson,
J. D. Dennis “Effect of pu
lsed current on the electr
odeposiLed chromium, 1 in Paris
(See lecture at the 12th World Conference on Surface Finishing held October 4-7, 1988). In this case too, deposited layers were obtained which were more or less glossy and virtually crack-free.

しかしながら、公知手段の範囲内では程度の差こそあれ
光沢のある、実際に亀裂のない析出層を得るためには1
6〜5 0 0 11zの範囲内の極めて低いパルス周
波数をで作業され、再現性は保証されない。本発明の技
術思想に基づき作業すると、パルス周波数はたいてい5
00〜5000Hzの範囲内にある。
However, within the range of known means, in order to obtain a deposited layer that is more or less glossy and virtually crack-free,
Working at very low pulse frequencies in the range of 6 to 500 11z, reproducibility is not guaranteed. Working according to the technical idea of the present invention, the pulse frequency is usually 5
It is within the range of 00 to 5000Hz.

術撃係数はたいてい30〜70%の範囲内にある。The attack coefficient is usually in the range of 30-70%.

1′発明の効果コ 達成される利点は、通常の硬質クロム層で光沢がありか
つ実際に亀裂がなく、かつ同時に比較的に高い陰極電流
効率で析出される、冒頭に定義した硬質クロム層を本発
明に基づき再現可能に製造することができることにある
。特別の利点は、付加的に微細亀裂〜マイクロ亀裂の被
覆クロム化でありかつしばしば良好な平滑特性の理由か
ら所望される硬質クロム層を施すことができるという事
実にある。この場合、亀裂網状組織はオイルポケットと
同様に作用する。
1' Effects of the invention The advantages achieved are that the hard chromium layer defined at the beginning is shiny and practically crack-free, and at the same time is deposited with a relatively high cathodic current efficiency. The object of the present invention is that it can be manufactured reproducibly. A particular advantage lies in the fact that it is possible to additionally cover the microcracks with a hard chromium layer, which is often desired on account of its good smoothing properties. In this case, the crack network acts similarly to oil pockets.

パルス化した直流を集積した陽極作用するパルス電流成
分を変性しても、そのパルス周波数が極めて小さくかつ
その電流密度が大きすぎない限り、結果は全く変化しな
い。
Modifying the anodic pulsed current component of the integrated pulsed direct current does not change the result at all unless the pulse frequency is very low and the current density is not too high.

本発明は、冒頭に定義した基本的構成の作業電解液から
光沢のある、実際に亀裂のない、高耐食性の硬質クロム
層を析出させるために冒頭に定義した基本的構成の作業
電解液から3つの前提条件: g ) I<ルス周波数は、クロム化工程のために選択
した陰極電流密度が大きい程に、晶くあるべきである。
The present invention provides three methods for depositing a shiny, practically crack-free, highly corrosion-resistant hard chromium layer from a working electrolyte of the basic composition defined at the beginning. Two prerequisites: g) I<Russ frequency should be crystalline the higher the cathodic current density chosen for the chromation step.

b)Lかしながら、パルス周波数は最適化された電流効
率に関して高すぎるべきでなL)。
b) However, the pulse frequency should not be too high for optimized current efficiency.

C)衝撃係数は直流作動から十分に離れて選択すべきで
ある。
C) The shock coefficient should be chosen sufficiently far from DC operation.

を満足すべきである。should be satisfied.

本発明はa)〜b)に対して明らかな基準を提供する。The invention provides clear criteria for a) to b).

C)に基づく相応する衝撃係数は困難無く実験により確
かめることができる。
The corresponding impact coefficients based on C) can be ascertained by experiment without difficulty.

I実施例その1] 以−ドに図面に示したグラフ及び実施例につき本発明を
詳細に説明する。
I Example 1] The present invention will now be described in detail with reference to the graphs and examples shown in the drawings.

第1図には、特殊な本発明に基づい構成された作業電解
液のためにパルス周波数電流密度曲線が定量的に示され
ている。縦座標軸には、ノくルス周波数を取り、横座標
軸には算術的平均として玉流密度を取った。電流密度と
共に七昇する図示の曲線の下で、最低硬度よりも小さし
1硬度を(iずる無光沢の、亀裂のある又は亀裂のない
形の硬質クロム析出層か得られる。該曲線の上では、最
低硬度よりも大きい硬度を有する亀裂のない、光沢のあ
る硬質クロム析出層が得られる。従って、該曲線は電流
密度に依存して下方の臨界パルス周波数Fuを示す。パ
ラメータとして、該曲線に衝撃係数Eが現れる。別の衝
撃係数は、第1図に点線で示された曲線群を生じる。1
+で理想的長方形の電流パルスの継続期間及び1,で電
流パルスの継続期間を表す場合には、パルス周波数に関
してHzでF=1/(1++11)が当てはまる。衝撃
係数は、バーセントでE=100・t +/ ( t 
,4− t ?)で定義される。勿論、パルス周波数/
電流密度曲線は、電流密度に対する臨界パルス周波数の
明らかな依存性か生じるまでプロットする。
FIG. 1 quantitatively shows the pulse frequency current density curve for a special working electrolyte constructed according to the invention. On the ordinate axis, the Norculus frequency was taken, and on the abscissa axis, the ball flow density was taken as the arithmetic mean. Under the curve shown, which increases with the current density, a hard chromium deposit of matte, cracked or non-cracked form is obtained with a hardness of 1 less than the minimum hardness. , a crack-free, shiny hard chromium deposit layer with a hardness greater than the minimum hardness is obtained.The curve therefore shows a lower critical pulse frequency Fu depending on the current density.As a parameter, the curve An impact coefficient E appears at .Other impact coefficients result in a family of curves shown in dotted lines in Figure 1.1
If + represents the duration of an ideal rectangular current pulse and 1 represents the duration of the current pulse, F = 1/(1++11) in Hz applies for the pulse frequency. The impact coefficient is expressed as percent E=100・t +/(t
,4-t? ) is defined. Of course, the pulse frequency/
The current density curve is plotted until a clear dependence of critical pulse frequency on current density occurs.

第2図には、特殊な析出課題のために、間じ電解液、選
択された電流密度I,並びに第1図で採用した図示の曲
線の同じ衝撃係数Eに関して電流密度/バルス周波数曲
線を定量的に示した、この場合電流密度は、図示されて
いるように,K一大・9個のLr考原子及び最大6個の
スルホン酸基を有する少なくとも1種の飽和脂肪族スル
ホン酸の添加及び/又はその塩又は7%ロゲン誘導体の
添加により最適化した。縦座標軸は電流密度を゛示し、
横座標軸にはパルス周波数を取った。最適化した電流密
度の曲線で−ヒ方の臨界パルス周波数点Foが認識され
る。この点Foの後方では、曲線は、この点の向こう側
では益々亀裂のある析出層が得られることを示すために
、I点鎖線で延びている。別の選択した電流密度及び別
の衡撃係数は、別の曲線を生じる。
Figure 2 shows the determination of the current density/pulse frequency curves for a specific deposition task for the same electrolyte, selected current density I, and the same impulse coefficient E of the illustrated curve taken in Figure 1. In this case, the current density, expressed as / or its salt or by addition of 7% rogene derivative. The ordinate axis shows the current density,
The abscissa axis shows the pulse frequency. In the optimized current density curve, a critical pulse frequency point Fo is recognized. Behind this point Fo, the curve runs in dash-dot I to show that beyond this point an increasingly cracked precipitate layer is obtained. Different selected current densities and different equilibrium coefficients will result in different curves.

そのように、第2図に鎖線で図示されているように、曲
線群が生じる。
As such, a family of curves results, as illustrated by the dashed lines in FIG.

常にFuとFOの範囲内で衝撃係数は、最低硬度よりも
大きな硬度を有する通常の厚さの光沢のある、実際に亀
裂のない硬質クロム層が生じるように選択することがで
きる。経験から、FuとFOの範囲は、硬質クロム被覆
を出来る限り小さく保持すれば、拡大することができる
判明した。換tすれば、亀裂のない析出の可能性は常に
、大きすぎない層厚さで作業すれば特に良好になる。極
めて低い陰極電流密度、例えばlO〜2 0 A/d1
で作業すれば、しかも高光沢の亀裂のないクロム被覆が
達成され、該被覆は装飾用光沢クロムとしても極めて好
適である[実施例その2j 鯛からなる工作物の表面1こ硬質クロム層を析出させる
ための電解液は、以下のように構成した: CrOaとしてのクロム酸 300g/Q硫酸    
     l3ぢ(Crys含量に対して) フルオロオクタンスルホン酸アンモニウム10xg/(
1(架橋剤とし て) 陽極         PbSns又は白金化したチタ
ンもしくは白金化したPb合金化したチタン 白金化した陽極を使用する場合には、電解液に付加的に
炭酸鉛1 g/(2を添加した。該電解液はこの組成で
析出の直流操作で16%の陰極電流効率を示した。該陰
極電流効率は、1個の炭素原子及び1個のスルホン酸基
を有する飽和脂肪族スルホン酸3 . 2 gIQを添
加することにより27%に最適化することができた。両
者の場合には、陰極電流密度は5 0 A/da”であ
りかつ電解液温度は55℃であった。
The impact coefficient, always within the range of Fu and FO, can be selected such that a shiny, practically crack-free hard chromium layer of normal thickness with a hardness greater than the minimum hardness results. Experience has shown that the range of Fu and FO can be increased if the hard chromium coating is kept as small as possible. In other words, the possibility of crack-free deposition is always particularly good if working with layer thicknesses that are not too large. Very low cathode current density, e.g. lO~20 A/d1
A high-gloss, crack-free chromium coating is achieved, which is also highly suitable as a decorative bright chrome [Example 2j A hard chromium layer is deposited on one surface of a workpiece made of sea bream. The electrolyte for this purpose was composed as follows: Chromic acid as CrOa 300g/Q sulfuric acid
13㎢ (based on Crys content) Ammonium fluorooctane sulfonate 10xg/(
1 (as crosslinking agent) Anode When using PbSns or platinized titanium or platinized Pb alloyed titanium platinized anodes, 1 g/(2) of lead carbonate was additionally added to the electrolyte. With this composition, the electrolyte exhibited a cathodic current efficiency of 16% in the direct current operation of the deposition.The cathodic current efficiency was 3.2% for a saturated aliphatic sulfonic acid having one carbon atom and one sulfonic acid group. By adding gIQ it was possible to optimize it to 27%. In both cases the cathode current density was 50 A/da'' and the electrolyte temperature was 55°C.

その後、パルス化した直流電流での析出に切り換え、か
つ種々の衝撃係数のために一定のなお後で説明するパル
ス周波数/電流密度曲線をプロットした。詳細には、以
下のように実施した。
Thereafter, a switch was made to the deposition with pulsed direct current, and constant pulse frequency/current density curves, described further below, were plotted for various impact coefficients. In detail, it was carried out as follows.

材料C 45 Kからなる直径71Nのピストン棒(表
面粗さRz<1.5μlに微細研磨及びブラッシング処
理した)に、予め通常の電気技術的規則に基づき浄化し
かつ脱脂した後に、硬質クロムを析出させた。その際、
パルスの所定の衝撃係数Eでその都度設定調節した平均
化した陰極電流密度に依存して、析出が9 0 0HV
 O.1よりも小さい硬度を有する無光沢外見から90
01YO.Iよりも大きい硬度を有する光沢のある外見
に移行する、電流密度に依存する臨界パルス周波数Fu
を測定した。全ての実験で、電解液温度は55℃でに保
持した。硬質クロム被覆の析出した層厚さはそれぞれ約
25μlであった。
A piston rod with a diameter of 71 N made of material C 45 K (micropolished and brushed to a surface roughness Rz < 1.5 μl) was deposited with hard chromium, after having been previously cleaned and degreased according to the usual electrotechnical rules. I let it happen. that time,
Depending on the averaged cathode current density adjusted in each case at a given impulse factor E of the pulse, the deposition can be as low as 900 HV.
O. Matte appearance with hardness less than 190
01YO. Critical pulse frequency Fu, dependent on current density, leading to a shiny appearance with hardness greater than I
was measured. In all experiments, the electrolyte temperature was maintained at 55°C. The deposited layer thickness of the hard chromium coating was approximately 25 μl in each case.

この場合、無光沢から光沢のある外見への移行範囲は流
動的であり、まして実際の局所的陰極電流密度は工作物
の形状い基づき不可避的に変度すると理解されるべきで
ある。従って、決定すべき臨界パルス周波数Fuは、こ
の移行範囲内の平均値である。この場合、硬質クロム析
出の本発明に基づく光沢のある領域のためには同時に光
学顕微鏡で亀裂状態(亀裂あり又は亀裂なし)を検査し
た。
In this case, it should be understood that the transition range from matte to glossy appearance is fluid, and even more so that the actual local cathodic current density inevitably varies depending on the geometry of the workpiece. The critical pulse frequency Fu to be determined is therefore the average value within this transition range. In this case, the inventive shiny areas of hard chromium deposits were simultaneously examined for cracking status (with or without cracks) using an optical microscope.

第1図は、そのようにして記録したパルス周波数/電流
密度曲線を概略的に示す。
FIG. 1 schematically shows the pulse frequency/current density curve recorded in this way.

特別に実施すべき硬質クロム化ためには、工作表面に相
応して算期的平均陰極電流密度50^/da”を選択し
た。更に、第1図から50%の衝撃係数のためには下方
臨界周波数F’ u = I 000であることが明ら
かである。
For the specially implemented hard chroming, a periodic average cathode current density of 50^/da was selected depending on the workpiece surface.Furthermore, from Fig. 1, for an impact coefficient of 50%, a lower It is clear that the critical frequency F' u = I 000.

この選択した陰極電流密度のためには、電流効率/バル
ス周波数曲線は、少なくとも硬質クロム化が実際に更に
光沢をもって9 0 0HV O.1の硬度で析出する
が、但し再び亀裂を有するようになる上方臨界パルス周
波数点Foまで記録した。電流効率及び/又は衝撃係数
を変更することにより、その都度上方の臨界パルス周波
数点を有する曲線群が得られる。
For this chosen cathode current density, the current efficiency/pulse frequency curve shows that at least the hard chroming is actually brighter at 900 HV O. Precipitation occurs with a hardness of 1, but the data were recorded up to the upper critical pulse frequency point Fo at which cracks appeared again. By varying the current efficiency and/or the impulse coefficient, a family of curves with an upper critical pulse frequency point is obtained in each case.

この電流効率/バルス周波数曲線群は、第2図に概略的
に示されている。詳細には、この曲線群を調査するため
に以下にように実施した:析出はピストン棒に第1図に
おけると同様に約25μlの層厚さで行った。この場合
、陰極での理論的金属析出に対する実際の金属析出の比
として%での陰極電流効率の調査は、析出したクロム量
の計輌及びそのために使用したアンベアー分を測定ぐる
ことにより行った。ファラデーに基づく析出等単に関す
る計算は、当業者にとっては周知事項である。
This current efficiency/pulse frequency curve family is shown schematically in FIG. In detail, to investigate this family of curves, the following procedure was carried out: Deposition was carried out on the piston rod as in FIG. 1 with a layer thickness of approximately 25 μl. In this case, the investigation of the cathode current efficiency in % as a ratio of the actual metal deposition to the theoretical metal deposition at the cathode was carried out by measuring the amount of chromium deposited and the ampere fraction used for this purpose. Faraday-based precipitation equation calculations are well known to those skilled in the art.

上方のパルス周波数点FOで開始する亀裂状態の光学顕
微鏡的確認は困難をもたらすことがある。確実な証ごは
塩噴霧試験での耐食性凋査( DIN50021−SS
,^STM B 117−73又はIs0 3768−
1976)によって得られた。即ち、当業者にとっては
、直流で析出させた厚さ約25μlの硬質クロl・被覆
は、該被覆が光沢がありかつ亀裂を有するが又はマイク
ロ亀裂を有する場合には、塩噴霧試験では]OOh未満
の安定性が達成されるにすぎないということは周知であ
る。ところでパルス条件下では噴霧試験において明らか
に高い耐用時間が生じる、例えばこのことはこのような
被覆の実際的亀裂不在性のための証明である。
Optical microscopic confirmation of crack conditions starting at the upper pulse frequency point FO can pose difficulties. A surefire proof is the corrosion resistance evaluation in the salt spray test (DIN50021-SS).
, ^STM B 117-73 or Is0 3768-
(1976). Thus, for those skilled in the art, it is clear that a hard chlorine coating approximately 25 μl thick, deposited with direct current, is shiny and cracked, but with micro-cracks, in the salt spray test. It is well known that stability of only less than However, under pulsed conditions a clearly higher service life occurs in the spray test, which is proof, for example, of the practically crack-free nature of such coatings.

表1は、衝撃係数50%及び電解液温度55℃で平均陰
極温度50^/da’を有する上記実施例に関する。こ
れは光沢のある、実際に亀裂のない、ひいては高耐食性
の硬質クロム化を表すものである。
Table 1 relates to the above example with an impact coefficient of 50% and an average cathode temperature of 50^/da' at an electrolyte temperature of 55°C. This represents a hard chromation that is shiny, virtually crack-free and therefore highly corrosion resistant.

表1は、下方臨界パルス周波数Fo=I00OHzと上
方臨界パルス周波数Fo=4.000Hzとの範囲内の
あらゆるパルス周波数の関しては、記載のパルス範囲内
の記載の電流密度では衝撃係数は、所望の硬度の光沢の
ある、実際に亀裂のないかつ高腐食性硬質クロム析出が
生じるように低く選択することができるという規則が当
てはまることを示す。
Table 1 shows that for any pulse frequency within the range of the lower critical pulse frequency Fo = I00 Hz and the upper critical pulse frequency Fo = 4.000 Hz, at the stated current density within the stated pulse range, the impulse coefficient is the desired This shows that the rule holds that the hardness can be selected so low that a shiny, virtually crack-free and highly corrosive hard chromium deposit results.

それに対して、表2は、それにもかかわらず記載のパル
ス周波数範囲内で衝撃係数をあまりにも大きく選択すれ
ば、遥かに劣った耐食性を有する亀裂のある硬質クロム
層が生じることを示す。更に、表1から、亀裂のある被
覆は、記載のパルス周波数範囲外にあるパルス周波数で
作業する際にも得られることが明らかである。
On the other hand, Table 2 shows that if the impact coefficient is selected too high within the stated pulse frequency range, a cracked hard chromium layer with much poorer corrosion resistance results. Furthermore, it is clear from Table 1 that cracked coatings are also obtained when working with pulse frequencies that lie outside the stated pulse frequency range.

該実験を、例えば40^/da’又は6 0 A/da
”のような別の電流畜度で繰り返した。前記規81が確
認された。前記法朋は、別の組成の電解液で実験した隙
も確認された。既に述へたように、光沢のある、しかし
亀裂のある析出を生じる、高すぎる衝撃係数及び/又は
I☆Jずぎるパルス周波数の設定調整は、光沢のあるか
つ実際に亀裂のない下地層の上に光沢のある、亀裂のあ
るカバー層を可能な限り電流の中断を行うことなく析出
させるために利用することができる。従って、このよう
にして改良された平滑特性を有する二重硬質クロム層を
製造することができる。
The experiment may be carried out at 40 A/da' or 60 A/da, for example.
” was repeated with a different current density. Said rule 81 was confirmed. In the said method, gaps were also confirmed when experimenting with an electrolyte of a different composition. As already mentioned, the brightness A too high impact coefficient and/or a pulse frequency setting adjustment that is too high will result in a shiny, cracked deposit on a shiny and virtually crack-free base layer. The cover layer can be deposited as little as possible without interruption of the current flow, so that double hard chromium layers with improved smoothness properties can thus be produced.

衝撃係数E= 1 0 0%が生じる場合、このことは
カバー層の析出が直流で行われることを意味する。
If an impact coefficient E=100% occurs, this means that the deposition of the cover layer takes place with direct current.

陰極電流効率を最適化するために配合されるアルキルス
ルホン酸の添加は、パルス化した直流での析出の際に、
作業条件が下方の臨界パルス周波数Fuの上の作業条件
を維持する限り、更に高い程度で光沢改良作用する。こ
の添加が不足すると、低すぎる陰極電流効率とは別に、
また硬質クロム被覆の低下した光沢により認めることが
できる。
The addition of alkyl sulfonic acids, formulated to optimize cathode current efficiency, during pulsed direct current deposition,
As long as the working conditions remain above the lower critical pulse frequency Fu, the gloss improving effect will be to an even higher extent. Apart from too low cathode current efficiency, the lack of this addition results in
It can also be noticed by the reduced gloss of the hard chrome coating.

記述の二重層の製造において、電流及び時間に依/t4
′る、層厚さのアナログ的、自由プログラムriJ能な
測定を介して、パルス化した直流のパルス周波数及び/
又は衝撃係数を自由に選択bJ能な制御速度で自動化し
て、後続の析出過程で亀裂のない析出の代わりに亀裂の
ある析出が生じるような高さの5000Hz又はそれ以
上までのパルス周波数及び/又は100%の高い衝撃係
数に移行させることも本発明の範囲内に包含される。こ
の場合、クロム化の終了後に、パルス周波数及び/又は
衝撃係数に関する初期値は自動的に次のクロム化サイク
ルの調整のために再び自動的に制御される。
In the production of the bilayer described, depending on the current and time /t4
The pulse frequency and/or
or automated at controlled speeds with freely selectable impact coefficients, pulse frequencies up to 5000 Hz or higher and/or such that a cracked deposit instead of a crack-free deposit occurs in the subsequent deposition process. Alternatively, it is also within the scope of the present invention to shift to a higher impact coefficient of 100%. In this case, after the end of chroming, the initial values for pulse frequency and/or impact coefficient are automatically controlled again for adjustment of the next chroming cycle.

4

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電流密度に依存する臨界パルス周波数の曲線を
示す図及び第2図はパルス周波数に依存する最適化され
た電流効率の曲線を示す図である。
FIG. 1 shows a curve of critical pulse frequency as a function of current density, and FIG. 2 shows a curve of optimized current efficiency as a function of pulse frequency.

Claims (1)

【特許請求の範囲】 1、金属からなる工作物の表面に、電流効率が最大2個
の炭素原子及び最大6個のスルホン酸基を有する飽和脂
肪族スルホン酸及び/又はその塩又はハロゲン誘導体を
添加することにより最適化されたクロム酸及び硫酸イオ
ンを含有する作業溶液から、厚さ少なくとも2μm及び
DINISO4516に基づく最低硬度900HV0.
1を有する耐食性の工業用クロム層を直接的又は間接的
に析出させる方法において、析出の際に 選択した陰極電流密度に依存する下方の臨界パルス周波
数Fuと、 同じ電流密度で最適化された電流効率に依存する上方の
臨界パルス周波数点Foとの間の範囲内のパルス周波数
のパルス化した直流で作業し、この際作業電解液のため
に下方の臨界パルス周波数Fuは、パルス周波数/電流
密度曲線を測定技術的に取ることにより決定し、該曲線
の下では最低硬度よりも小さい硬度を有する析出が、か
つ該曲線の上では最低硬度よりも大きい光沢のある亀裂
のない析出が行われ、作業電解液のための上方臨界パル
ス周波数点Foは、最適化した電流効率のための同じ電
流密度で電流効率/パルス周波数曲線を測定技術的に、
パルス周波数を増大すると光沢のある亀裂のない析出が
ますます亀裂のある析出に移行する上方の臨界パルス周
波数点Foまで取ることにより決定し、かつ下方臨界パ
ルス周波数Fuと、上方臨界パルス周波数点Foとの間
の範囲内で、光沢のある、実際に亀裂のない析出が行わ
れように選択することを特徴とする、高耐食性の工業用
硬質クロム層を直接的又は間接的に析出させる方法。 2、10〜1200A/dm^2の陰極電流密度範囲内
で作業する請求項1記載の方法。3、10〜25%の陰
極電流効率範囲内で作業する請求項1又は2記載の方法
。 4、500〜5000Hzの範囲内のパルス周波数で作
業する請求項1から4までのいずれか1項記載の方法。 5、30〜70%のパルス化した直流電流の衝撃係数で
作業する請求項1から4までのいずれか1項記載の方法
。 6、まず亀裂のない、光沢のある硬質クロム層を、次い
で特に中断せずに、同じ電解液中で光沢のある、亀裂の
ある硬質クロム層を析出させる請求項1から5までのい
ずれか1項記載の方法。 7、電流密度、パルス周波数及び衡撃係数が変更可能で
ある電流密度で作業する請求項1から6までのいずれか
1項記載の方法。
[Claims] 1. A saturated aliphatic sulfonic acid and/or its salt or halogen derivative having a current efficiency of up to 2 carbon atoms and up to 6 sulfonic acid groups is applied to the surface of a workpiece made of metal. From a working solution containing chromic acid and sulphate ions optimized by adding a thickness of at least 2 μm and a minimum hardness of 900 HV0.0 according to DINISO 4516.
1, with a lower critical pulse frequency Fu depending on the cathodic current density chosen during the deposition and an optimized current at the same current density. Working with a pulsed direct current with a pulse frequency in the range between the efficiency-dependent upper critical pulse frequency point Fo, where the lower critical pulse frequency Fu for the working electrolyte is pulse frequency/current density determined by measuring a curve, below which a precipitation has a hardness less than the minimum hardness, and above which a shiny, crack-free precipitation takes place, which is greater than the minimum hardness; The upper critical pulse frequency point Fo for the working electrolyte is technically determined by measuring the current efficiency/pulse frequency curve at the same current density for optimized current efficiency.
Determined by taking up to the upper critical pulse frequency point Fo, where increasing the pulse frequency leads to a transition from a shiny crack-free deposit to an increasingly cracked deposit, and by taking the lower critical pulse frequency Fu and the upper critical pulse frequency point Fo A method for directly or indirectly depositing industrial hard chromium layers of high corrosion resistance, characterized in that the method is chosen such that a shiny, virtually crack-free deposition takes place within the range between . 2. The method as claimed in claim 1, wherein the method operates within a cathodic current density range of 10 to 1200 A/dm^2. 3. The method according to claim 1 or 2, wherein the method operates within a cathodic current efficiency range of 10-25%. 5. The method as claimed in claim 1, wherein the method operates at a pulse frequency in the range from 500 to 5000 Hz. 5. The method as claimed in claim 1, wherein the pulsed direct current has an impulse coefficient of between 30 and 70%. 6. Depositing first a crack-free, shiny, hard chromium layer and then, without particular interruption, a shiny, cracked, hard chromium layer in the same electrolyte. The method described in section. 7. The method as claimed in claim 1, characterized in that the current density, pulse frequency and equilibrium coefficient are variable.
JP2270685A 1989-10-11 1990-10-11 Direct or indirect deposition of high corrosion resisting industrial hard chrome layer Pending JPH03207884A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3933896.7 1989-10-11
DE3933896A DE3933896C1 (en) 1989-10-11 1989-10-11

Publications (1)

Publication Number Publication Date
JPH03207884A true JPH03207884A (en) 1991-09-11

Family

ID=6391241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2270685A Pending JPH03207884A (en) 1989-10-11 1990-10-11 Direct or indirect deposition of high corrosion resisting industrial hard chrome layer

Country Status (5)

Country Link
JP (1) JPH03207884A (en)
DE (1) DE3933896C1 (en)
ES (1) ES2023577A6 (en)
FR (1) FR2652825B1 (en)
GB (1) GB2236763B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161904A (en) * 1991-12-12 1993-06-29 Mishima Kosan Co Ltd Roll for cold rolling
US6329071B1 (en) 1998-11-06 2001-12-11 Tokico Ltd. Chrome plated parts and chrome plating method
US6641710B2 (en) 2000-08-29 2003-11-04 Soqi, Inc. Metal plating method
JP2007533852A (en) * 2004-04-21 2007-11-22 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング Fabrication of structured hard chrome layer and coating
USRE40386E1 (en) 1998-11-06 2008-06-17 Hitachi Ltd. Chrome plated parts and chrome plating method
US8173004B2 (en) 2003-09-30 2012-05-08 Hitachi, Ltd. Method of manufacturing chromium plated article and chromium plating apparatus
KR20180005180A (en) 2015-05-12 2018-01-15 히다치 오토모티브 시스템즈 가부시키가이샤 METHOD OF MANUFACTURING CHROME PLATED PARTS AND CHROME PLATING DEVICE
KR20220043575A (en) 2020-09-29 2022-04-05 주식회사 원탑플레이팅 A method for producing a chromium plated part and achromium plating apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4011201C1 (en) * 1990-04-06 1991-08-22 Lpw-Chemie Gmbh, 4040 Neuss, De Coating workpiece with chromium for improved corrosion resistance - comprises using aq. electrolyte soln. contg. chromic acid sulphate ions, and fluoro:complexes to increase deposition
US5670265A (en) * 1990-10-20 1997-09-23 Ina Walzlager Schaeffler Kg Steel component with an electroplated anti-corrosive coating and process for producing same
DE4125585A1 (en) * 1990-10-20 1992-04-30 Schaeffler Waelzlager Kg STEEL COMPONENT WITH GALVANICALLY APPLIED CORROSION PROTECTIVE LAYER
USRE35860F1 (en) * 1991-06-05 2001-01-02 Timken Co Corrosion-resistant zinc-nickel plated bearing races
US5352266A (en) * 1992-11-30 1994-10-04 Queen'university At Kingston Nanocrystalline metals and process of producing the same
IT1267394B1 (en) * 1994-02-18 1997-02-05 Ind S R L PROCEDURE FOR THE PRODUCTION OF HARD CHROME COMPOSITE GALVANIC FINISHINGS WITH A DISPERSED PHASE AND ANTI-WEAR FINISHING MADE WITH
DE4430923C2 (en) * 1994-08-31 1997-10-09 Schaeffler Waelzlager Kg Galvanic chrome bath, process for the electrodeposition of chromium and use of the bath
DE10006151A1 (en) * 2000-02-11 2001-09-06 Heinz Busch System used for a wheel rim of a rail vehicle comprises a substrate as carrier with a coating having a specified hardness

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518789A (en) * 1978-07-27 1980-02-09 Mitsubishi Electric Corp Temperature controller
JPS6332874A (en) * 1986-07-24 1988-02-12 Matsushita Electric Works Ltd Temperature sensor fitting structure for storage battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3232854A (en) * 1959-06-05 1966-02-01 Diamond Alkali Co Chromium plating
US4092226A (en) * 1974-12-11 1978-05-30 Nikolaus Laing Process for the treatment of metal surfaces by electro-deposition of metal coatings at high current densities
DE2604628A1 (en) * 1976-02-06 1977-08-11 Rosenloecher Claus Direct electrodeposition of chromium onto nickel - from a chromium electrolyte using a direct current with superimposed pulses
DE3402554A1 (en) * 1984-01-26 1985-08-08 LPW-Chemie GmbH, 4040 Neuss DEPOSITION OF HARD CHROME ON A METAL ALLOY FROM AN AQUEOUS ELECTROLYTE CONTAINING CHROME ACID AND SULFURIC ACID
US4789437A (en) * 1986-07-11 1988-12-06 University Of Hong Kong Pulse electroplating process
IT1216808B (en) * 1987-05-13 1990-03-14 Sviluppo Materiali Spa CONTINUOUS ELECTRODEPOSITION PROCESS OF METALLIC CHROME AND CHROMIUM OXIDE ON METAL SURFACES
IT1215985B (en) * 1988-03-04 1990-02-22 Elca Srl ELECTROCHEMICAL PROCEDURE FOR THE CONSTRUCTION OF CHROME AND METAL COATINGS SIMILAR BY PERIODIC REVERSAL POLARITY BUTTON CURRENT

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518789A (en) * 1978-07-27 1980-02-09 Mitsubishi Electric Corp Temperature controller
JPS6332874A (en) * 1986-07-24 1988-02-12 Matsushita Electric Works Ltd Temperature sensor fitting structure for storage battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161904A (en) * 1991-12-12 1993-06-29 Mishima Kosan Co Ltd Roll for cold rolling
US6329071B1 (en) 1998-11-06 2001-12-11 Tokico Ltd. Chrome plated parts and chrome plating method
USRE40386E1 (en) 1998-11-06 2008-06-17 Hitachi Ltd. Chrome plated parts and chrome plating method
US6641710B2 (en) 2000-08-29 2003-11-04 Soqi, Inc. Metal plating method
US8173004B2 (en) 2003-09-30 2012-05-08 Hitachi, Ltd. Method of manufacturing chromium plated article and chromium plating apparatus
JP2007533852A (en) * 2004-04-21 2007-11-22 フェデラル−モーグル ブルシャイト ゲゼルシャフト ミット ベシュレンクテル ハフツング Fabrication of structured hard chrome layer and coating
KR20180005180A (en) 2015-05-12 2018-01-15 히다치 오토모티브 시스템즈 가부시키가이샤 METHOD OF MANUFACTURING CHROME PLATED PARTS AND CHROME PLATING DEVICE
JPWO2016181955A1 (en) * 2015-05-12 2018-03-01 日立オートモティブシステムズ株式会社 Chromium plating part manufacturing method and chromium plating apparatus
US10851464B1 (en) 2015-05-12 2020-12-01 Hitachi Automotive Systems, Ltd. Method for producing chromium plated parts, and chromium plating apparatus
KR20220043575A (en) 2020-09-29 2022-04-05 주식회사 원탑플레이팅 A method for producing a chromium plated part and achromium plating apparatus

Also Published As

Publication number Publication date
GB2236763A (en) 1991-04-17
GB2236763B (en) 1993-11-17
DE3933896C1 (en) 1990-10-11
GB9021528D0 (en) 1990-11-14
FR2652825A1 (en) 1991-04-12
FR2652825B1 (en) 1993-12-24
ES2023577A6 (en) 1992-01-16

Similar Documents

Publication Publication Date Title
JPH03207884A (en) Direct or indirect deposition of high corrosion resisting industrial hard chrome layer
US5011744A (en) Black surface treated steel sheet
US4541903A (en) Process for preparing Zn-Fe base alloy electroplated steel strips
US4804587A (en) Chromate-treated zinc-plated steel strip and method for making
JPS60181293A (en) Method for electroplating zinc-iron alloy in alkaline bath
US3461048A (en) Method of electrodepositing duplex microcrack chromium
US3816082A (en) Method of improving the corrosion resistance of zinc coated ferrous metal substrates and the corrosion resistant substrates thus produced
US2952590A (en) Process for chromium plating
Dietzel et al. Porosity and corrosion properties of electrolyte plasma coatings on magnesium alloys
JP2004360056A (en) BLACKENED HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL SHEET, AND ITS PRODUCTION METHOD
US3838024A (en) Method of improving the corrosion resistance of substrates
JPS6021235B2 (en) Cobalt-zinc alloy electroplating bath composition and plating method
DE69909411T2 (en) Articles with protective and decorative multi-layer coating
US2916424A (en) Process for chromium plating
US4268364A (en) Nickel-zinc alloy deposition from a sulfamate bath
US2221562A (en) Electroplating
JP2001049483A (en) Electrogalvanized steel sheet excellent in color tone and its production
US3428441A (en) Article coated with a composite particulate,microporous chromium coating and method of producing said article
JP7350965B1 (en) Chrome plated parts and their manufacturing method
CA2162230C (en) Passivate for tungsten alloy electroplating
Samai METALLIC COATINGS
JPS61130498A (en) Composite plated steel sheet having superior corrosion resistance before and after coating with paint
JPS6154880B2 (en)
KR100256328B1 (en) Method for electroplating of the zn-cr-fe alloy with high corrosion resistance after coating and metal sheet used therefor
Long et al. Chromate conversion coating treatments for electrodeposited zinc-iron alloy coatings from an acidic sulphate bath