JP2004360056A - BLACKENED HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL SHEET, AND ITS PRODUCTION METHOD - Google Patents

BLACKENED HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL SHEET, AND ITS PRODUCTION METHOD Download PDF

Info

Publication number
JP2004360056A
JP2004360056A JP2003163450A JP2003163450A JP2004360056A JP 2004360056 A JP2004360056 A JP 2004360056A JP 2003163450 A JP2003163450 A JP 2003163450A JP 2003163450 A JP2003163450 A JP 2003163450A JP 2004360056 A JP2004360056 A JP 2004360056A
Authority
JP
Japan
Prior art keywords
steel sheet
plated steel
dip
hot
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003163450A
Other languages
Japanese (ja)
Inventor
Koichi Watanabe
幸一 渡辺
Takeshi Shimizu
剛 清水
Atsushi Ando
敦司 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2003163450A priority Critical patent/JP2004360056A/en
Publication of JP2004360056A publication Critical patent/JP2004360056A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blackened hot dip plated steel sheet in which a blackened surface having a color tone with a more profound feeling can be produced in a short time by surface treatment with a phosphate treatment liquid. <P>SOLUTION: A hot dip Zn-Al-Mg based alloy plated steel sheet in which the ratio of the phase of (the three-component eutectic structure of Al/Zn/Zn<SB>2</SB>Mg) occupied in the outermost surface of a plated layer is ≥60% by area rate is brought into contact with a phosphate treatment liquid comprising 5 to 10 g/L Zn ions, 3 to 15 g/L nitric acid ions, and 3 to 15 g/L Ni ions and/or Co ions, so that a film consisting of an Ni and/or Co-precipitated layer with the Ni and/or Co coating weight of ≥20 mg/m<SP>2</SP>and zinc phosphate crystals with the zinc phosphate coating weight of ≥2 g/m<SP>2</SP>is formed on the plated layer. When the surface of the film is further stacked with a chemical conversion treatment film and a clear coating film, its corrosion resistance and durability increase. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、溶融Zn−Al−Mg系合金めっき鋼板にリン酸塩処理を施して黒色の色調を発現させた黒色化溶融Zn−Al−Mg系合金めっき鋼板に関する。
【0002】
【従来の技術】
溶融Zn系めっき鋼板にリン酸塩処理を施して黒色化すると、塗装鋼板では出せない独特な色調を発現するため、例えば、特開平3−226583号公報、特開平5−237450号公報にみられるように、建築物の屋根材や外装材として広く使用されている。家電製品部材にも使用されようとしている。
また、その量産方法として、連続ラインでZn系めっき鋼板を短時間でリン酸塩処理する技術が特開平8−218181号公報や特開2000−309881号公報で紹介されている。連続ラインでの操業では、リン酸塩処理に要する時間は短いほど作業の効率は上がり、有利になる。特開平8−218181号公報では、処理時間が3秒ほどでL値45〜60の黒色化外観が得られると記載されている。
【0003】
また、Zn系めっき材料の黒色化に関して、特開平7−62554号公報や特開平8−218158号公報には、Znめっき表面でNiあるいはCoが微細粒状に置換析出して光の散乱効果を生み出し、黒色の外観(L値で10〜20(L値18〜30に相当)、60°光沢度9〜15)を呈するようになると記載されている。
色調に関して、目視による評価と機器分析による明度や光沢度との関係を調査すると、明度指数L値が低く(すなわち黒色度が高く)、かつ60°光沢度(60°の入射角の光の正反射成分)が低いほど、重厚感が増すことがわかった。
【0004】
黒色化したZn系めっき鋼板についてL値と60°光沢度を支配する要因を調べたところ、L値はリン酸塩処理液との接触時にめっき表面に置換析出するNiあるいはCoの析出量に、60°光沢度はリン酸塩結晶の析出量にそれぞれ関係することがわかった。Ni,Coの置換析出量が多いほどL値は低く、リン酸塩結晶の析出量が多いほど低光沢度を示すことになる。
しかしながら、溶融Zn系めっき鋼板をリン酸塩処理液を用いて黒色化処理を施そうとするとき、黒色化を強くするためにNiイオンあるいはCoイオン濃度の高い処理液を使用すると、NiあるいはCoの置換析出量は多くなるがリン酸塩結晶の析出量が少なくなって60°光沢度が高くなる。したがって、L値40以下及び60°光沢度5以下になるような黒色化溶融Zn系めっき鋼は非常に得難い。
【0005】
【発明が解決しようとする課題】
本発明は、このような問題を解消すべく案出されたものであり、リン酸塩処理液による表面処理で、より重厚感のある色調、具体的にはL値が40以下で、かつ60°光沢度が5以下を満足し、しかもそのような黒色化表面が短時間の処理で生成可能な溶融めっき鋼板及びその鋼板を用いて黒色化溶融めっき鋼板を提供するものである。
【0006】
【課題を解決するための手段】
本発明の黒色化処理用溶融Zn−Al−Mg系合金めっき鋼板は、その目的を達成するため、リン酸塩処理により黒色化される溶融Zn−Al−Mg系合金めっき鋼板であって、めっき層最表面で〔Al/Zn/ZnMgの三元共晶組織〕の相が占める割合が面積率で60%以上であることを特徴とする。
また、本発明の黒色化溶融Zn−Al−Mg系合金めっき鋼板は、めっき層最表面で〔Al/Zn/ZnMgの三元共晶組織〕の相が占める割合が面積率で60%以上になるように調整された溶融Zn−Al−Mg系合金めっき鋼板の合金めっき層上に、Ni及び/又はCo付着量20mg/m以上のNi及び/又はCo析出層とリン酸亜鉛付着量2g/m以上のリン酸亜鉛結晶からなる皮膜が形成されていることを特徴とする。
Ni及び/又はCo析出層とリン酸亜鉛結晶からなる皮膜の上に、更にクロメート処理皮膜或いはノンクロム系処理皮膜と5〜20μmのクリア塗膜が積層されていることが好ましい。
このような黒色化溶融Zn−Al−Mg系合金めっき鋼板は、めっき層最表面で〔Al/Zn/ZnMgの三元共晶組織〕の相が占める割合を面積率で60%以上になるように調整した溶融Zn−Al−Mg系合金めっき鋼板を、Znイオンを5〜10g/L,硝酸イオンを3〜15g/L,Niイオン及び/又はCoイオンを3〜15g/Lを含むリン酸塩処理液と接触させることにより製造される。
【0007】
【作用】
本発明者等は、まず、溶融Zn系めっき鋼板をリン酸塩処理液を用いて黒色化処理を施したとき、低明度化と低光沢度化が両立し難い原因について検討した。
その一環として、溶融Znめっき鋼板をベースに、リン酸塩溶液中のNiイオン濃度を変えてより重厚感のある色調を出せるリン酸塩処理条件を調べた。
なお、NiとCoはほとんど同じ挙動を示すので、以下の説明ではNiを例示して説明している。したがって「Ni」の記載は、「Ni及び/又はCo」を意味するものである。
図1に、溶融Znめっき鋼板をベースに処理液中のZnイオン濃度7g/L,処理時間を5秒,処理液温度を65℃としてスプレー処理によりリン酸塩処理を行ったときの、L値と60°光沢度の変化を示す。また図2には、処理液中のNiイオン濃度とZnめっき表面のNi置換析出量並びにリン酸塩結晶の析出量の関係を示す。さらに図3には、Niイオン濃度が2.5,5.2,10.0g/Lであるときのリン酸塩処理後の外観を示す。ここで、Ni置換析出量とリン酸塩結晶の析出量は次の手順で求めた。
【0008】
〔リン酸塩結晶の析出量〕
リン酸塩処理後の鋼板を1dmの大きさに切り出して重量を測定した後、二クロム酸をアンモニウム水に(アンモニア:蒸留水=1:1)に溶解した水溶液(常温)に15分間浸漬し、その浸漬の前後の重量差からリン酸塩結晶の析出量を算出した。
〔Ni置換析出量〕
上記リン酸塩結晶溶解後の試験片を用い、常温,10%HCl中でめっき層を溶解し、その溶解液をICPで分析することによりNi置換析出量を算出した。
なお、本明細書中における明度指数L値は、スガ試験機(株)製のSMカラーコンピューターSM−7で測定した値で、JIS Z8730に規定されたハンターの色差式に基づく数値であり、同じく光沢度は、JIS Z8741の「鏡面光沢度測定方法」の規定に準拠して測定された数値である。
【0009】
図1,2からわかるように、処理液中のNiイオン濃度を上げるとNi置換析出量は増大し、L値は低下する。しかし、リン酸塩結晶の析出量は処理液中のNiイオン濃度が5g/Lを超えると急激に低下し、それにともない光沢度の増大が認められる。このことから、処理液中のNiイオン濃度を増やすことは、Ni置換析出量を上げてL値を低下させる反面、ある濃度以上になるとリン酸塩結晶の析出を阻害していることになる。図3にも見られるように、処理液中のNiイオン濃度が2.5,5.2g/Lのときはめっき表面にリン酸塩結晶が緻密に発生しているのに対して、Niイオン濃度が10.0g/Lになるとリン酸塩結晶はまばらにしか析出していない。
【0010】
このような結果から、処理液中のNiイオン濃度の増加がリン酸塩結晶の析出量の低下につながる理由として次のようなことが考えられる。
すなわち、Znめっき表面ではリン酸塩処理液と接触すると始めにNiの置換析出が起こる。このとき処理液中のNiイオン濃度の増加に応じてZnめっき表面でNi置換析出層の占める面積は高まる。一端、Ni置換析出層が形成された部位ではZnめっき層の溶解が起こり難く、Ni置換析出層が占める面積が大きくなるにしたがってその後のリン酸塩結晶の析出反応が妨げられるものと考えられる。
【0011】
そこで、本発明者等は、リン酸塩処理液と接触させてNiの置換析出を起こさせる際に、Ni置換析出層が占める面積率を小さくする手段について探索した。その結果、溶融めっき合金として、Zn−Al−Mg系のめっき合金を採用し、めっき層最表層の組織を、〔Al/Zn/ZnMgの三元共晶〕が占める割合を多くすることで、上記目的が達成できることに到達した。
すなわち、鋼板表面にZn−Al−Mg系の合金を溶融めっきすると、本発明者等が特開2002−226958号公報で報告しているように、めっき鋼板のめっき層は〔Al/Zn/ZnMgの三元共晶組織〕の素地中に〔初晶Al相〕,更には〔Zn単相〕が混在した金属組織が形成される。
【0012】
例えば図4は、溶融Znめっき鋼板と溶融Zn−Al−Mg合金めっき鋼板をNi含有リン酸塩処理液でスプレー処理したときの反応表面を、模式的に比較して示したものである。めっき層がほぼ単一組織である溶融Znめっき鋼板に比べて、溶融Zn−Al−Mg合金めっき鋼板では、めっき層の大部分は〔Al/Zn/ZnMgの三元共晶〕の微細組織からなっている。
めっき層最表面の組織が〔Al/Zn/ZnMgの三元共晶組織〕になっているため、Ni含有リン酸塩処理液と接触しても、三元共晶組織の中で表面電位が最も低いとみられるZnMg相で優先的にNiの置換析出反応が起こり、溶融Znめっきのようにほぼ全面がNi置換析出層で覆われることはないとみられる。その後、溶融Znめっき鋼板においてはNi置換層の未析出部近傍でリン酸塩結晶が析出するだけであるのに対して、溶融Zn−Al−Mg合金めっき鋼板では、図4に示すように、全面にリン酸塩結晶が析出すると考えられる。
【0013】
上記のような反応機構により、リン酸塩処理の反応性を高めて処理時間の短縮化が可能になるとともに、Niイオン含有量の多いリン酸塩処理液を接触させた場合にあっても、L値が低くかつ低光沢感の表面を安定して製造できることを可能にしていると考えられる。
したがって、リン酸塩処理液と接触させる溶融Zn−Al−Mg合金めっき鋼板のめっき層最表面には、〔Al/Zn/ZnMgの三元共晶組織〕の相がより多く存在することが重要となる。
【0014】
本発明では、後述するように、各種試験を繰り返すことにより、めっき層最表面で〔Al/Zn/ZnMgの三元共晶組織〕の相が占める割合が面積率で60%以上であると、リン酸塩処理の反応性を高めて処理時間の短縮化が可能になることを確認した。面積率が60%に満たないと、リン酸塩処理の反応性が低下し、処理時間の短縮化が図れない。またNiイオン濃度の高いリン酸塩処理液を用いたとき、リン酸塩結晶の析出量が少なくなって低光沢感の表面が得られなくなる。より好ましくは80%以上である。
【0015】
めっき層最表面で〔Al/Zn/ZnMgの三元共晶組織〕の相の面積率が80%以上である溶融Zn−Al−Mg合金めっき鋼板をベースに、Zn金属イオンが8g/L,硝酸イオンが6g/Lで、処理温度を65℃にしてスプレー処理を3秒間実施したときの処理液中のNiイオン濃度とめっき表面のNi置換析出量並びにリン酸塩結晶の析出量の関係を図5に示す。また、そのときのL値と60°光沢度を図6に示す。
溶融Znめっき鋼板をベースとしたときとは異なり、3秒という短時間処理にもかかわらず、処理液中のNiイオン濃度を14.8g/Lまで上げてもリン酸塩結晶の析出量の大幅な低下はみられず、L値が35以下の範囲でも安定して低光沢感が維持されている。上記考え方が裏付けられている。
【0016】
なお、本明細書中では、めっき層最表面での〔Al/Zn/ZnMg三元共晶組織〕の面積率は次のようにして求めている。
図7に、溶融Zn−Al−Mg合金めっき鋼板のめっき層断面の顕微鏡写真の一例を示す。溶融Zn−Al−Mg合金めっき鋼板のめっき層は、〔Al/Zn/ZnMg三元共晶組織〕の素地中に〔初晶Al相〕又は〔初晶Al相〕と〔Zn単相〕、あるいは〔初晶Al相〕と〔Zn単相〕及び一部の〔ZnMg相〕が混在した金属組織を有している。リン酸塩処理に供する溶融Zn−Al−Mg合金めっき鋼板の任意の場所から5つのサンプルを切り出し、1つのサンプルにつき断面から2000倍の視野でめっき層の観察を3ヶ所行い、めっき層最表面での〔Al/Zn/ZnMg三元共晶組織〕が占める割合を求め、その平均値を取ったものが、本発明におけるめっき層最表面での〔Al/Zn/ZnMg三元共晶組織〕の面積率である。めっき層最表面での〔Al/Zn/ZnMg三元共晶組織〕が占める割合とは、図7中、A,Bで示した長さを次式で計算した値である。
ちなみに、図7のめっき層最表面での〔Al/Zn/ZnMg三元共晶組織〕が占める割合は66%である。
(B+B+B)×100/A
ただし、A;観察した部分の長さ
,B,B;めっき層最表面に露出している〔Al/Zn/ZnMg三元共晶組織〕の長さ
【0017】
【実施の形態】
次に本発明の好ましい実施形態について説明する。
ベースとなる溶融Zn−Al−Mg合金めっき鋼板は、本発明者等が先に提案した特開2002−226958号公報に記載の方法で調製できる。
めっきする鋼板の成分組成は、特に限定されない。普通鋼冷延鋼板やステンレス鋼冷延鋼板が使用できる。ただし、めっき原板にステンレス鋼板を使用する際には、溶融Zn−Al−Mg合金めっき層との密着性を高めるために、めっき前にFe−B系のプレめっきを施しておくことが好ましい。
【0018】
溶融めっきは、Zn浴中にAl:2.5〜15質量%,Mg:2.0〜4.0質量%を含有し、さらに必要に応じてTi:0.001〜0.1質量%,B:0.001〜0.045質量%,Si:0.005〜0.5質量%を含有させた溶融Zn−Al−Mgめっき浴にめっき原板鋼帯を連続的に浸漬して引き上げたあと,めっき層表面をエアーにて冷却して溶融Zn−Al−Mg合金めっき層を形成すればよい。
【0019】
この際、めっき浴中のAl濃度は、2.5〜15質量%の範囲とする。Al含有量が15質量%を超えると、めっき後のめっき層最表面での〔初晶Al相〕の占める割合が増えて〔Al/Zn/ZnMg三元共晶組織〕の占める面積率が60%未満になる。一方、Alが2.5質量%に満たないとめっき層中の〔Zn単相〕が増えて、同様に表面での〔Al/Zn/ZnMg三元共晶組織〕の占める面積率が60%未満になる。
〔Al/Zn/ZnMg三元共晶組織〕の占める面積率を80%以上にするためには、Al含有量は4〜8質量%の範囲にすることが好ましい。
【0020】
めっき浴中のMg濃度は、2.0〜4.0質量%の範囲とする。Mg含有量が4.0質量%を超えると、めっき層内に〔ZnMg単相〕の出現が目立ち始め、めっき層表面での〔Al/Zn/ZnMg三元共晶組織〕の占める面積率が60%未満になる。一方、Mgが2.0質量%に満たないと〔初晶Al相〕と〔Zn単相〕が増えて、同様にめっき表面での〔Al/Zn/ZnMg三元共晶組織〕の占める面積率が60%未満になる。
〔Al/Zn/ZnMg三元共晶組織〕の占める面積率を80%以上にするためには、Mg含有量は2.5〜3.5質量%の範囲にすることが好ましい。
【0021】
TiとBについては,めっき層の金属組織を〔Al/Zn/ZnMg三元共晶組織〕の金属組織とする場合に、外観および耐食性に悪い影響を与えるZn11Mg相の生成・成長を抑制する作用を供するのでその添加が有益である。この効果を得るために,Ti,BまたはTi−B合金もしくは化合物をめっき浴に添加する場合、浴中の含有量がTi:0.001〜0.1質量%,B:0.001〜0.045質量%となるように添加することが好ましい。これより多く含有させると、めっき層中に析出物が成長し、めっき層に凹凸が生じて外観を損ねることがある。
Siについては、めっき層と素地鋼との界面でのAl−Fe系合金層の成長を抑制するために、0.005〜0.5質量%の範囲で添加しておくことが好ましい。
【0022】
めっき後の冷却速度もめっき層に出現する相組織に影響を及ぼすので、調整することが好ましい。耐食性を低下させるZn11Mg相を出現させないように、7℃/秒以上の速度で冷却することが好ましい。エアー量,エアー圧の変更により調整すればよい。
溶融Zn−Al−Mg合金めっきされた鋼板は、リン酸塩処理液をスプレーする方法,あるいはリン酸塩処理液に浸漬する方法等により、黒色化処理される。
この際の処理液組成も黒色化に大きな影響を及ぼす。
【0023】
黒色化用リン酸塩処理液は、基本的にはリン酸溶液に酸化亜鉛及びニッケルを溶解したリン酸酸性溶液であり、亜鉛はリン酸水素亜鉛[Zn(HPO]の状態で溶解し、一定の平衡状態を保っている。
このリン酸亜鉛処理液を、母材の溶融Zn−Al−Mg合金めっき鋼板のめっき面に接触させると、液中のNiイオンはめっき層の亜鉛(遊離リン酸により液中に溶出)と置換し、めっき層表面にNi置換析出層が形成される。また亜鉛の溶解に伴う処理液のpH上昇によりリン酸亜鉛[Zn(PO]が生成し、水化物[Zn(PO・4HO]として析出することによりリン酸亜鉛結晶層が形成される。
【0024】
リン酸塩処理液中のZnイオン濃度は5〜10g/Lの範囲にする。Znイオン濃度が5g/Lに満たないと、短時間処理でリン酸塩結晶が十分に析出せず、低光沢感が得られない。10g/Lを超えるとリン酸塩処理液の安定性が劣り、スラッジが発生しやすくなる。
また、リン酸塩処理液中のリン酸イオン濃度は25〜45g/Lの範囲にすることが好ましい。リン酸イオン濃度が25g/Lに満たないと、短時間処理でリン酸塩結晶が十分に析出せず、低光沢感が得られない。45g/Lを超えるとリン酸塩処理液の安定性が劣り、スラッジが発生しやすくなる。
【0025】
リン酸塩処理液中のNiイオン,Coイオン濃度は合わせて3〜15g/Lの範囲にする。NiあるいはCo又はNiとCoを併せたイオンの濃度が3g/Lに満たないと、L値40以下の色調が得られない。一方、15g/Lを超えて増加させても黒色度を増す効果は飽和する。
さらに、リン酸塩処理液中の硝酸イオンも3〜15g/Lの範囲にする。硝酸イオンは反応促進剤として含有させる必要があり、3g/Lに満たないと反応促進効果が不十分である。逆に15g/Lを超えると硝酸イオンの酸化作用によりめき表面が不活性になり、NiあるいはCoの置換析出反応が低下し、十分な黒色度が得られなくなる。
【0026】
リン酸塩処理は液温50〜80℃の範囲で行うことが好ましい。50℃に満たないと、反応性が低下して短時間処理が困難になる。80℃を超える温度にすると処理液の安定性が低下し、スラッジの発生が多くなるとともに、水分の蒸発も多くなって連続操業での濃度管理が難しくなる。
リン酸塩処理は、処理液の温度が50〜80℃の範囲では、スプレー処理であれば2〜5秒程度、浸漬処理であれば3〜8秒程度必要であり、それ以上しても問題はないが色調の変化はほとんどみられず効果は飽和する。
【0027】
ところで、当該リン酸塩処理を、溶融めっき工程に連続したライン等で連続的に行おうとする場合、めっき層より溶出したAlがリン酸塩反応を阻害する。そこで、処理液中のフリーフッ素イオン濃度が常に30ppm以上になるように保ち、溶出してきたAlをリン酸塩処理反応に対して無害化するようにすることが好ましい。具体的には、一定量のフッ化物を連続的に添加することにより、連続的な操業が可能となる。使用するフッ化物としては、フッ化ナトリウム,フッ化カリウム,フッ化水素ナトリウム等が挙げられる。
【0028】
リン酸塩処理による黒色化後、耐食性を向上させるためにクロム酸シーリング処理あるいは酸化ジルコニウムと酸化バナジウムを含むクロムフリーのシーリング処理を施してもよい。
溶融めっき工程に連続したラインで連続的に本発明リン酸塩処理を実施する場合には、リン酸塩処理の後工程に上記シーリング処理を行うためのスプレー装置あるいはロールコータ装置を附設すればよい。
さらに、リン酸塩処理による黒色化後、加工時のリン酸塩処理面の保護及び耐食性を向上させるために、必要に応じてクリア塗装を施してもよい。クリア塗装は、公知の塗料、例えばポリエステル系,エポキシ系,塩化ビニル系,アクリル系,フッ素系等を使用し、常法にしたがって行えばよい。塗膜厚は乾燥後5〜20μmもあれば十分である。
【0029】
【実施例】
実施例1:
下記に示す条件1にてめっき浴成分を種々変えて溶融Zn−Al−Mg合金めっき鋼板を作製し、脱脂→水洗→表面調整を行った後、下記条件2にしたがいラボ処理したリン酸塩処理板の各種特性値を測定した。
また、比較として板厚が0.5mmの溶融亜鉛めっき鋼板,溶融Zn−5%Al合金めっき鋼板も評価した。
なお、明度指数L値及び光沢度は、前記したように、JIS Z8730及びJIS Z8741の規定に準拠して測定したものである。
めっき層最表層の三元共晶組織の面積率と各種特性値の関係を整理した結果を併せて表1に示す。
【0030】
(条件1)
処理設備:ラボバッチ式溶融めっき装置
処理めっき原板:板厚0.5mmの低炭素冷延鋼板
還元炉最高到達温度:720℃,露点:−30℃
めっき浴組成: A1=3〜12質量%,Mg=1〜5質量%,残部=Zn
めつき浴温:450〜510℃
浸漬時間:3秒
めっき後の冷却速度:強制空冷方式で20℃/秒
(冷却速度はめっき浴温からめっき層凝固温度までの平均値)
めっき付着量:約200g/m(片面)
【0031】

Figure 2004360056
【0032】
Figure 2004360056
【0033】
上記結果からもわかるように、めっき層最表面での[Al/Zn/ZnMg三元共晶組織]の面積率が60%以上の本発明例では、L値及び60°光沢度のいずれも満足できる値となっている。
しかしながら、めっき層最表面での[Al/Zn/ZnMg三元共晶組織]の面積率が60%に満たない比較例では、L値で満足できるものはあっても、60°光沢度の点では不十分であった。三元共晶組織の面積率が低かったために、リン酸塩結晶が十分に析出できなかったことに原因があると思われる。
【0034】
実施例2:
下記に示す条件3にて作製した溶融Zn−Al−Mg合金めっき鋼板を、脱脂→水洗→表面調整を行った後、下記条件4にしたがいラボ処理したリン酸塩処理板の各種特性値を測定した。その結果を表2に示す。
また、比較として板厚が0.5mmの溶融亜鉛めっき鋼板,溶融Zn−5%Al合金めっき鋼板を評価した結果を表3,4にそれぞれ示す。
なお、リン酸塩結晶析出量,Ni及び/又はCo置換析出量は前記の方法で測定したものであり、L値及び60°光沢度は実施例1と同様JISに準拠して測定したものである。
【0035】
(条件3)
処理設備:連続式溶融めっきライン
処理めっき原板:板厚0.5mmの低炭素冷延鋼板
還元炉最高到達温度:720℃,露点:−30℃
めっき浴組成: A1=6.1質量%,Mg=3.1質量%,残部=Zn
めつき浴温:450℃
浸漬時間:3秒
めっき後の冷却速度:強制空冷方式で25℃/秒
(冷却速度はめっき浴温からめっき層凝固温度までの平均値)
めっき付着量:約150g/m(片面)
めっき最表面での〔Al/Zn/ZnMg三元共晶組織〕の面積率:87%
【0036】
Figure 2004360056
【0037】
Figure 2004360056
【0038】
Figure 2004360056
【0039】
Figure 2004360056
【0040】
表2,3,4に示す結果からもわかるように、Ni及び/又はCoの置換析出量が20mg/m以上で,リン酸塩結晶の析出量が2g/m以上の本発明例は、L値及び60°光沢度のいずれも満足できる値となっている。
これに対して、Ni及び/又はCoの置換析出量が20mg/mに満たない比較例では、L値が目標の数値に達していない。また、リン酸塩結晶の析出量が2g/mに満たない比較例では、60°光沢度が目標の数値に達していない。
【0041】
実施例3:
実施例2と同じ条件で作製した幅1000mmの溶融Zn―Al−Mg合金めっき鋼帯をカラー塗装ラインにて、脱脂→水洗→表面調整実施後、下記条件5にてリン酸塩処理を施した。さらに連続して下記条件6にて後処理ならびにクリア塗装を施した。
ただし、後処理は2種類の処理液を用いて後処理の異なる鋼帯を製造した。
得られた鋼帯のL値は幅方向、長手方向で30±1の範囲で変動し、60°光沢度も3以下と安定しており、均一処理性が良好であった。鋼帯より切出した端板を用いて、ロールフォーミングによる波板成形を実施したが、クリア塗膜,リン酸塩処理皮膜とも剥離や脱落は見られず、良好な加工性を有していた。
【0042】
Figure 2004360056
【0043】
(条件6)
・クロムシーリング後処理
処理法:スプレー+リンガーロール
付着量:Cr換算で約8mg/m(片面)
・クロムフリーシーリング後処理(酸化ジルコニウム,酸化バナジウム含有処理)
処理法:スプレー+リンガーロール
付着量:Zr+V換算で約10mg/m(片面)
・クリア塗装
塗装法:ロールコーター
塗布膜厚:8μm
塗料種類:シリカ含有ポリエステル系樹脂
【0044】
【発明の効果】
以上に説明したように、本発明によれば、溶融Zn−Al−Mg系合金めっき鋼板にリン酸塩処理液による表面処理を施すことにより、明度及び光沢が制御され、より重厚感のある色調を付与することができる。
光沢が抑制され、深い黒灰色をもつ外観を得ることも容易であり、建材や家電製品、その他の各種分野における個々の具体的用途・使用態様に応じて要望される種々の色調を有し、意匠性の優れた黒色溶融Zn−Al−Mg系合金めっき鋼板を得ることができる。
黒色化を施すめっき鋼板が、耐食性に極めて優れた溶融Zn−Al−Mg系合金めっきが施されたものであるために、黒色化されためっき鋼板は耐食性にも優れており、上記建材や家電製品、その他の各種分野に幅広く使用されることが期待される。
【図面の簡単な説明】
【図1】溶融Znめっき鋼板にリン酸塩処理を施したときの、処理液中のNiイオン濃度とZnめっき表面のL値と60°光沢度の変化を示す図
【図2】溶融Znめっき鋼板にリン酸塩処理を施したときの、処理液中のNiイオン濃度とZnめっき表面のNi置換析出量並びにリン酸塩結晶の析出量の関係を示す図
【図3】溶融Znめっき鋼板にリン酸塩処理を施したときの、Niイオン濃度に応じた表面外観の違いも模式的に示す図
【図4】溶融Znめっき鋼板と溶融Zn−Al−Mg合金めっき鋼板をNi含有リン酸塩処理液でスプレー処理したときの反応表面を、模式的に比較して示した図
【図5】めっき層最表面で〔Al/Zn/ZnMgの三元共晶組織〕の相の面積率が90%以上である溶融Zn−Al−Mg合金めっき鋼板に、Zn金属イオンが8g/L,硝酸イオンが6g/Lで、処理温度を65℃にしてスプレー処理を3秒間実施したときの処理液中のNiイオン濃度とめっき表面のNi置換析出量並びにリン酸塩結晶の析出量の関係を示す図
【図6】めっき層最表面で〔Al/Zn/ZnMgの三元共晶組織〕の相の面積率が90%以上である溶融Zn−Al−Mg合金めっき鋼板に、Zn金属イオンが8g/L,硝酸イオンが6g/Lで、処理温度を65℃にしてスプレー処理を3秒間実施したときの処理液中のNiイオン濃度とめっき表面のL値並びに60°光沢度の関係を示す図
【図7】溶融Zn−Al−Mg合金めっき鋼板のめっき層断面を顕微鏡観察したときの観察表面を模式的に表示した図及びそれを簡略的に表示した図[0001]
[Industrial applications]
The present invention relates to a blackened hot-dip Zn-Al-Mg-based alloy-plated steel sheet obtained by subjecting a hot-dip Zn-Al-Mg-based alloy-plated steel sheet to a phosphate treatment to develop a black color tone.
[0002]
[Prior art]
When a hot-dip Zn-coated steel sheet is subjected to a phosphate treatment to be blackened, a unique color tone that cannot be obtained with a coated steel sheet is developed. For example, it is found in JP-A-3-226584 and JP-A-5-237450. Thus, it is widely used as a roofing material and exterior material for buildings. It is about to be used for home appliance parts.
As a method for mass production, a technique of treating a Zn-based plated steel sheet with phosphate in a short time in a continuous line is introduced in Japanese Patent Application Laid-Open Nos. 8-218181 and 2000-309881. In a continuous line operation, the shorter the time required for phosphating, the higher the work efficiency and the more advantageous. JP-A-8-218181 describes that a blackened appearance having an L value of 45 to 60 can be obtained in a processing time of about 3 seconds.
[0003]
Regarding the blackening of Zn-based plating materials, JP-A-7-62554 and JP-A-8-218158 disclose that Ni or Co is substituted and precipitated into fine particles on the Zn plating surface to produce a light scattering effect. , Black appearance (L*It is described that it will exhibit a value of 10 to 20 (corresponding to an L value of 18 to 30) and a 60 ° glossiness of 9 to 15).
Investigating the relationship between color evaluation and visual evaluation and lightness and glossiness by instrumental analysis reveals that the lightness index L value is low (that is, blackness is high) and 60 ° glossiness (positive light at an incident angle of 60 °). It was found that the lower the (reflection component), the greater the profound feeling.
[0004]
The L value and the factor governing the 60 ° glossiness of the blackened Zn-based plated steel sheet were examined, and the L value was determined by the amount of Ni or Co deposited and substituted on the plating surface at the time of contact with the phosphating solution. It was found that the 60 ° glossiness was related to the precipitation amount of phosphate crystals. The larger the substitution amount of Ni and Co, the lower the L value, and the larger the precipitation amount of phosphate crystals, the lower the glossiness.
However, when a blackening treatment is to be performed on a hot-dip Zn-based plated steel sheet using a phosphate treatment solution, if a treatment solution having a high concentration of Ni ions or Co ions is used in order to strengthen the blackening, Ni or Co Is increased, but the amount of precipitated phosphate crystals is reduced, and the 60 ° glossiness is increased. Therefore, it is very difficult to obtain a blackened hot-dip Zn-based plated steel having an L value of 40 or less and a 60 ° glossiness of 5 or less.
[0005]
[Problems to be solved by the invention]
The present invention has been devised to solve such a problem, and a surface treatment with a phosphating solution provides a more profound color tone, specifically, an L value of 40 or less and 60 The present invention is to provide a hot-dip coated steel sheet which satisfies a glossiness of 5 or less and which can produce such a blackened surface in a short time, and a blackened hot-dip coated steel sheet using the steel sheet.
[0006]
[Means for Solving the Problems]
The hot-dip Zn-Al-Mg-based alloy-plated steel sheet for blackening treatment of the present invention is a hot-dip Zn-Al-Mg-based alloy-plated steel sheet that is blackened by a phosphate treatment in order to achieve its object. [Al / Zn / Zn2Ternary eutectic structure of Mg] is 60% or more in area ratio.
In addition, the blackened hot-dip Zn-Al-Mg-based alloy-plated steel sheet of the present invention has [Al / Zn / Zn2Mg ternary eutectic structure] Ni and / or Co adhered on the alloy plating layer of the hot-dip Zn-Al-Mg-based alloy-plated steel sheet adjusted so that the area occupied by the phase is 60% or more in area ratio. 20mg / m2The Ni and / or Co deposited layer and zinc phosphate adhesion amount of 2 g / m2It is characterized in that a film composed of the above zinc phosphate crystals is formed.
It is preferable that a chromate coating or a non-chromium coating and a clear coating of 5 to 20 μm are further laminated on the coating composed of the Ni and / or Co deposition layer and the zinc phosphate crystal.
Such a blackened hot-dip Zn-Al-Mg-based alloy-plated steel sheet has [Al / Zn / Zn2[Ternary eutectic structure of Mg]], a molten Zn-Al-Mg-based alloy-plated steel sheet in which the proportion of the phase occupied by the alloy is 60% or more in terms of area ratio, Zn ions of 5 to 10 g / L, nitrate ions of It is manufactured by contacting a phosphating solution containing 3 to 15 g / L, Ni ions and / or Co ions with 3 to 15 g / L.
[0007]
[Action]
The present inventors first studied the cause of the difficulty in achieving low brightness and low gloss when a hot-dip Zn-coated steel sheet was subjected to a blackening treatment using a phosphate treatment solution.
As part of this, based on the hot-dip galvanized steel sheet, the phosphate treatment conditions were examined in which the Ni ion concentration in the phosphate solution was changed to produce a more profound color tone.
Since Ni and Co exhibit almost the same behavior, in the following description, Ni is exemplified and described. Therefore, description of “Ni” means “Ni and / or Co”.
FIG. 1 shows the L value when the phosphate treatment was carried out by spraying at a Zn ion concentration of 7 g / L in the treatment solution, a treatment time of 5 seconds and a treatment solution temperature of 65 ° C. based on the hot-dip Zn-coated steel sheet. And the change in 60 ° gloss. FIG. 2 shows the relationship between the concentration of Ni ions in the treatment solution and the amount of Ni-substituted precipitates on the Zn plating surface and the amount of phosphate crystal precipitated. FIG. 3 shows the appearance after the phosphate treatment when the Ni ion concentration is 2.5, 5.2, 10.0 g / L. Here, the Ni-substituted precipitation amount and the phosphate crystal precipitation amount were determined by the following procedure.
[0008]
(Precipitation amount of phosphate crystals)
1dm steel plate after phosphate treatment2After slicing into a size and weighing it, it was immersed in an aqueous solution (normal temperature) in which dichromic acid was dissolved in ammonium water (ammonia: distilled water = 1: 1) for 15 minutes. From the weight difference before and after the immersion, The amount of precipitated phosphate crystals was calculated.
[Ni substitution precipitation amount]
Using the test piece after dissolving the phosphate crystals, the plating layer was dissolved in 10% HCl at room temperature, and the solution was analyzed by ICP to calculate the Ni-substituted precipitation amount.
The lightness index L value in the present specification is a value measured by an SM color computer SM-7 manufactured by Suga Test Instruments Co., Ltd., and is a numerical value based on a hunter color difference formula defined in JIS Z8730. The gloss is a numerical value measured in accordance with JIS Z8741 “Method for measuring specular gloss”.
[0009]
As can be seen from FIGS. 1 and 2, when the concentration of Ni ions in the treatment liquid is increased, the amount of Ni-substituted precipitates increases, and the L value decreases. However, the amount of precipitated phosphate crystals sharply decreases when the Ni ion concentration in the treatment liquid exceeds 5 g / L, and an increase in glossiness is observed. This indicates that increasing the Ni ion concentration in the processing solution increases the amount of Ni-substituted precipitates and lowers the L value, but inhibits the precipitation of phosphate crystals at a certain concentration or more. As can be seen from FIG. 3, when the concentration of Ni ions in the processing solution is 2.5, 5.2 g / L, phosphate crystals are densely generated on the plating surface, whereas At a concentration of 10.0 g / L, phosphate crystals are sparsely precipitated.
[0010]
From these results, the following can be considered as a reason why an increase in the concentration of Ni ions in the treatment liquid leads to a decrease in the amount of precipitated phosphate crystals.
That is, when the surface of the Zn plating is brought into contact with the phosphating solution, substitutional precipitation of Ni occurs first. At this time, the area occupied by the Ni-substituted precipitation layer on the Zn plating surface increases as the Ni ion concentration in the processing solution increases. At one end, the dissolution of the Zn plating layer hardly occurs at the portion where the Ni-substituted precipitation layer is formed, and it is considered that as the area occupied by the Ni-substitution precipitation layer increases, the subsequent precipitation reaction of phosphate crystals is hindered.
[0011]
Therefore, the present inventors searched for means for reducing the area ratio occupied by the Ni-substituted precipitation layer when causing the Ni-substituted precipitation by contact with the phosphating solution. As a result, a Zn-Al-Mg-based plating alloy was adopted as the hot-dip plating alloy, and the structure of the outermost layer of the plating layer was changed to [Al / Zn / Zn.2The above object can be achieved by increasing the proportion of Mg ternary eutectic].
That is, when a Zn—Al—Mg-based alloy is hot-dip coated on the surface of a steel sheet, as reported by the present inventors in JP-A-2002-226958, the plating layer of the plated steel sheet is [Al / Zn / Zn].2A metal structure in which [primary crystal Al phase] and further [Zn single phase] are mixed in the matrix having the ternary eutectic structure of Mg is formed.
[0012]
For example, FIG. 4 schematically shows reaction surfaces when a hot-dip galvanized steel sheet and a hot-dip Zn-Al-Mg alloy-plated steel sheet are spray-treated with a Ni-containing phosphating solution. Compared to a hot-dip Zn-plated steel sheet in which the plating layer has a substantially single structure, in the hot-dip Zn-Al-Mg alloy-plated steel sheet, most of the plated layer is [Al / Zn / Zn2Mg ternary eutectic].
The structure of the outermost surface of the plating layer is [Al / Zn / Zn2Mg ternary eutectic structure], so even if it comes into contact with a Ni-containing phosphating solution, Zn, which is considered to have the lowest surface potential in the ternary eutectic structure2It is presumed that Ni substitution precipitation reaction occurs preferentially in the Mg phase, and almost the entire surface is not covered with the Ni substitution precipitation layer unlike hot-dip Zn plating. Thereafter, in the hot-dip Zn-plated steel sheet, phosphate crystals only precipitate near the undeposited portion of the Ni-substituted layer, whereas in the hot-dip Zn-Al-Mg alloy-plated steel sheet, as shown in FIG. It is considered that phosphate crystals precipitate on the entire surface.
[0013]
By the reaction mechanism as described above, it is possible to increase the reactivity of the phosphating treatment to shorten the treatment time, and even when the phosphating treatment solution having a high Ni ion content is brought into contact with the phosphating treatment solution, It is considered that it is possible to stably produce a surface having a low L value and low glossiness.
Therefore, [Al / Zn / Zn / Zn is placed on the outermost surface of the plating layer of the hot-dip Zn-Al-Mg alloy-plated steel sheet brought into contact with the phosphating solution.2It is important that there be more phases of [ternary eutectic structure of Mg].
[0014]
In the present invention, as will be described later, by repeating various tests, [Al / Zn / Zn2It has been confirmed that when the ratio of the phase of the [ternary eutectic structure of Mg] is 60% or more in terms of the area ratio, the reactivity of the phosphate treatment can be increased and the treatment time can be shortened. If the area ratio is less than 60%, the reactivity of the phosphate treatment decreases, and the treatment time cannot be reduced. Further, when a phosphating solution having a high Ni ion concentration is used, the amount of precipitated phosphate crystals is reduced, and a low gloss surface cannot be obtained. It is more preferably at least 80%.
[0015]
[Al / Zn / Zn]2Mg ternary eutectic structure] is based on a hot-dip Zn-Al-Mg alloy-plated steel sheet having a phase area ratio of 80% or more, with Zn metal ions at 8 g / L and nitrate ions at 6 g / L at a processing temperature of FIG. 5 shows the relationship between the Ni ion concentration in the processing solution, the amount of Ni-substituted precipitates on the plating surface, and the amount of phosphate crystals precipitated when spray treatment was performed for 3 seconds at a temperature of 65 ° C. FIG. 6 shows the L value and the 60 ° gloss at that time.
Unlike when using hot-dip galvanized steel sheet as a base, despite the short treatment time of 3 seconds, even when the Ni ion concentration in the processing solution is increased to 14.8 g / L, the precipitation amount of phosphate crystals is large. No significant decrease was observed, and the low glossiness was stably maintained even when the L value was in the range of 35 or less. The above idea is supported.
[0016]
In this specification, [Al / Zn / Zn]2Mg ternary eutectic structure] is determined as follows.
FIG. 7 shows an example of a micrograph of a section of a plating layer of a hot-dip Zn-Al-Mg alloy-plated steel sheet. The plating layer of the hot-dip Zn-Al-Mg alloy plated steel sheet is [Al / Zn / Zn2[Primary Al phase] or [Primary Al phase] and [Zn single phase], or [Primary Al phase] and [Zn single phase] and a part of [Zn2Mg phase]. Five samples are cut out from an arbitrary place of the hot-dip Zn-Al-Mg alloy plated steel sheet to be subjected to the phosphate treatment, and the plating layer is observed at three places in a cross-section of 2000 times from each sample, and the outermost surface of the plating layer is obtained. [Al / Zn / Zn2Mg ternary eutectic structure] was determined, and the average value thereof was taken to be [Al / Zn / Zn] at the outermost surface of the plating layer in the present invention.2Mg ternary eutectic structure]. [Al / Zn / Zn at the outermost surface of the plating layer2The ratio occupied by the Mg ternary eutectic structure] is a value obtained by calculating the length indicated by A and B in FIG.
Incidentally, [Al / Zn / Zn] on the outermost surface of the plating layer in FIG.2Mg ternary eutectic structure] accounts for 66%.
(B1+ B2+ B3) × 100 / A
Where A is the length of the observed part
B1, B2, B3; Exposed on the outermost surface of the plating layer [Al / Zn / Zn2Mg ternary eutectic structure]
[0017]
Embodiment
Next, a preferred embodiment of the present invention will be described.
A hot-dip Zn-Al-Mg alloy-plated steel sheet serving as a base can be prepared by the method described in JP-A-2002-226958 previously proposed by the present inventors.
The component composition of the steel sheet to be plated is not particularly limited. Normal steel cold-rolled steel sheets and stainless steel cold-rolled steel sheets can be used. However, when a stainless steel plate is used as the plating base plate, it is preferable to perform Fe-B pre-plating before plating in order to increase the adhesion with the molten Zn-Al-Mg alloy plating layer.
[0018]
The hot-dip plating contains 2.5 to 15% by mass of Al and 2.0 to 4.0% by mass of Mg in a Zn bath, and further contains 0.001 to 0.1% by mass of Ti as necessary. B: After immersing the original steel strip continuously in a hot-dip Zn-Al-Mg plating bath containing 0.001 to 0.045 mass% and Si: 0.005 to 0.5 mass%, and pulling it up. Then, the surface of the plating layer may be cooled by air to form a molten Zn—Al—Mg alloy plating layer.
[0019]
At this time, the Al concentration in the plating bath is in the range of 2.5 to 15% by mass. If the Al content exceeds 15% by mass, the proportion of the [primary Al phase] on the outermost surface of the plated layer after plating increases, and [Al / Zn / Zn]2Mg ternary eutectic structure] is less than 60%. On the other hand, if the Al content is less than 2.5% by mass, the [Zn single phase] in the plating layer increases, and the [Al / Zn / Zn]2Mg ternary eutectic structure] is less than 60%.
[Al / Zn / Zn2In order to make the area ratio occupied by the Mg ternary eutectic structure] 80% or more, the Al content is preferably in the range of 4 to 8% by mass.
[0020]
The Mg concentration in the plating bath is in the range of 2.0 to 4.0% by mass. If the Mg content exceeds 4.0% by mass, [Zn]2Mg single phase] began to be noticeable, and [Al / Zn / Zn]2Mg ternary eutectic structure] is less than 60%. On the other hand, if the Mg content is less than 2.0% by mass, the [primary Al phase] and the [Zn single phase] increase, and the [Al / Zn / Zn]2Mg ternary eutectic structure] is less than 60%.
[Al / Zn / Zn2In order to make the area ratio occupied by the Mg ternary eutectic structure] 80% or more, the Mg content is preferably in the range of 2.5 to 3.5% by mass.
[0021]
For Ti and B, the metallographic structure of the plating layer was changed to [Al / Zn / Zn2Mg ternary eutectic structure] has a bad influence on the appearance and corrosion resistance.11Mg2The addition is beneficial because it provides a function of suppressing the formation and growth of the phase. When Ti, B or Ti-B alloy or compound is added to the plating bath to obtain this effect, the content of the bath is 0.001 to 0.1% by mass of Ti, and 0.001 to 0% of B. It is preferable to add so that it may become 0.045 mass%. When the content is more than this, a precipitate grows in the plating layer, and the plating layer may have irregularities to impair the appearance.
Si is preferably added in the range of 0.005 to 0.5% by mass in order to suppress the growth of the Al—Fe alloy layer at the interface between the plating layer and the base steel.
[0022]
Since the cooling rate after plating also affects the phase structure appearing in the plating layer, it is preferable to adjust the cooling rate. Zn that reduces corrosion resistance11Mg2It is preferable to cool at a rate of 7 ° C./second or more so that no phase appears. It may be adjusted by changing the air amount and air pressure.
The steel sheet plated with the molten Zn—Al—Mg alloy is blackened by a method of spraying a phosphating solution or a method of dipping in a phosphating solution.
The composition of the processing solution at this time also has a large effect on blackening.
[0023]
The phosphating solution for blackening is basically a phosphoric acid solution in which zinc oxide and nickel are dissolved in a phosphoric acid solution, and zinc is zinc hydrogen phosphate [Zn (H2PO4)2] To maintain a certain equilibrium state.
When this zinc phosphate treatment liquid is brought into contact with the plating surface of a base material of a molten Zn—Al—Mg alloy plated steel sheet, Ni ions in the liquid are replaced with zinc (eluted into the liquid by free phosphoric acid) in the plating layer. Thus, a Ni-substituted precipitation layer is formed on the plating layer surface. In addition, zinc phosphate [Zn]3(PO4)2Is produced and the hydrate [Zn3(PO4)2・ 4H2O], a zinc phosphate crystal layer is formed.
[0024]
The Zn ion concentration in the phosphating solution is in the range of 5 to 10 g / L. If the Zn ion concentration is less than 5 g / L, phosphate crystals are not sufficiently precipitated in a short time treatment, and a low gloss feeling cannot be obtained. If it exceeds 10 g / L, the stability of the phosphating solution will be poor, and sludge will easily be generated.
The phosphate ion concentration in the phosphating solution is preferably in the range of 25 to 45 g / L. When the phosphate ion concentration is less than 25 g / L, phosphate crystals are not sufficiently precipitated in a short time treatment, and a low gloss feeling cannot be obtained. If it exceeds 45 g / L, the stability of the phosphating solution will be poor, and sludge will easily be generated.
[0025]
The total concentration of Ni ions and Co ions in the phosphating solution is in the range of 3 to 15 g / L. If the concentration of Ni or Co or the combined ion of Ni and Co is less than 3 g / L, a color tone having an L value of 40 or less cannot be obtained. On the other hand, the effect of increasing blackness saturates even if it is increased beyond 15 g / L.
Further, the nitrate ion in the phosphating solution is also in the range of 3 to 15 g / L. Nitrate ions must be contained as a reaction accelerator, and if less than 3 g / L, the effect of promoting the reaction is insufficient. Conversely, if it exceeds 15 g / L, the surface of the metal becomes inactive due to the oxidizing effect of nitrate ions, the substitution precipitation reaction of Ni or Co is reduced, and sufficient blackness cannot be obtained.
[0026]
The phosphating treatment is preferably performed at a liquid temperature of 50 to 80 ° C. If the temperature is lower than 50 ° C., the reactivity is lowered, and the treatment in a short time becomes difficult. When the temperature is higher than 80 ° C., the stability of the processing liquid is lowered, sludge is generated more, and the evaporation of water is increased, making it difficult to control the concentration in continuous operation.
When the temperature of the treatment liquid is in the range of 50 to 80 ° C., the phosphate treatment requires about 2 to 5 seconds for the spray treatment and about 3 to 8 seconds for the immersion treatment. There is no color change, but the effect is saturated.
[0027]
By the way, in the case where the phosphate treatment is to be continuously performed in a line or the like continuous to the hot-dip plating step, Al eluted from the plating layer inhibits the phosphate reaction. Therefore, it is preferable that the concentration of free fluorine ions in the treatment liquid is always maintained at 30 ppm or more so that the eluted Al is rendered harmless to the phosphate treatment reaction. Specifically, continuous operation becomes possible by continuously adding a certain amount of fluoride. Examples of the fluoride to be used include sodium fluoride, potassium fluoride, sodium hydrogen fluoride and the like.
[0028]
After the blackening by the phosphate treatment, a chromate sealing treatment or a chromium-free sealing treatment containing zirconium oxide and vanadium oxide may be performed to improve corrosion resistance.
In the case where the phosphating treatment of the present invention is continuously performed in a line continuous to the hot-dip plating process, a spray device or a roll coater device for performing the sealing treatment may be attached to the post-treatment of the phosphating treatment. .
Further, after blackening by the phosphate treatment, a clear coating may be applied as necessary to protect the phosphate treated surface during processing and to improve corrosion resistance. The clear coating may be performed according to a conventional method using a known coating material, for example, a polyester type, an epoxy type, a vinyl chloride type, an acrylic type, a fluorine type or the like. It is sufficient that the thickness of the coating is 5 to 20 μm after drying.
[0029]
【Example】
Example 1
Prepare a hot-dip Zn-Al-Mg alloy plated steel sheet with various plating bath components under the conditions 1 shown below, and perform degreasing → water washing → surface conditioning, then phosphate treatment according to condition 2 below Various characteristic values of the plate were measured.
For comparison, a hot-dip galvanized steel sheet and a hot-dip Zn-5% Al alloy-plated steel sheet having a thickness of 0.5 mm were also evaluated.
In addition, the lightness index L value and the glossiness are measured according to JIS Z8730 and JIS Z8741 as described above.
Table 1 also shows the results of arranging the relationship between the area ratio of the ternary eutectic structure of the outermost layer of the plating layer and various characteristic values.
[0030]
(Condition 1)
Processing equipment: Lab batch type hot-dip plating equipment
Raw plating: Low-carbon cold-rolled steel sheet with a thickness of 0.5 mm
Maximum reduction furnace temperature: 720 ° C, dew point: -30 ° C
Plating bath composition: A1 = 3-12% by mass, Mg = 1-5% by mass, balance = Zn
Megumi bath temperature: 450-510 ° C
Immersion time: 3 seconds
Cooling rate after plating: 20 ° C / sec by forced air cooling
(The cooling rate is the average value from the plating bath temperature to the plating layer solidification temperature.)
Plating weight: about 200 g / m2(One side)
[0031]
Figure 2004360056
[0032]
Figure 2004360056
[0033]
As can be seen from the above results, [Al / Zn / Zn]2Mg ternary eutectic structure] of the present invention in which the area ratio is 60% or more, both the L value and the 60 ° gloss are satisfactory values.
However, [Al / Zn / Zn on the outermost surface of the plating layer2Mg ternary eutectic structure] in Comparative Examples having an area ratio of less than 60%, the L value was satisfactory, but the gloss at 60 ° was insufficient. This is probably because phosphate crystals could not be sufficiently precipitated because the area ratio of the ternary eutectic structure was low.
[0034]
Example 2:
After performing degreasing → water washing → surface conditioning on the hot-dip Zn-Al-Mg alloy-plated steel sheet prepared under the following condition 3, various characteristic values of the phosphate-treated plate subjected to the lab treatment according to the following condition 4 were measured. did. Table 2 shows the results.
Tables 3 and 4 show the results of evaluation of a hot-dip galvanized steel sheet and a hot-dip Zn-5% Al alloy-plated steel sheet having a thickness of 0.5 mm for comparison.
Incidentally, the phosphate crystal precipitation amount and the Ni and / or Co substitution precipitation amount were measured by the above-mentioned method, and the L value and the 60 ° glossiness were measured in accordance with JIS as in Example 1. is there.
[0035]
(Condition 3)
Processing equipment: continuous hot-dip plating line
Raw plating: Low-carbon cold-rolled steel sheet with a thickness of 0.5 mm
Maximum reduction furnace temperature: 720 ° C, dew point: -30 ° C
Plating bath composition: A1 = 6.1% by mass, Mg = 3.1% by mass, balance = Zn
Melting bath temperature: 450 ° C
Immersion time: 3 seconds
Cooling rate after plating: 25 ° C / sec by forced air cooling
(The cooling rate is the average value from the plating bath temperature to the plating layer solidification temperature.)
Plating weight: about 150 g / m2(One side)
[Al / Zn / Zn on the outermost surface of plating2Mg ternary eutectic structure]: 87%
[0036]
Figure 2004360056
[0037]
Figure 2004360056
[0038]
Figure 2004360056
[0039]
Figure 2004360056
[0040]
As can be seen from the results shown in Tables 2, 3 and 4, the substitution precipitation amount of Ni and / or Co was 20 mg / m 2.2As described above, the precipitation amount of phosphate crystals was 2 g / m2In the above examples of the present invention, both the L value and the 60 ° gloss are satisfactory values.
On the other hand, the substitution precipitation amount of Ni and / or Co is 20 mg / m2In the comparative examples less than the above, the L value has not reached the target numerical value. Further, the precipitation amount of phosphate crystals is 2 g / m 2.2In Comparative Examples less than, the 60 ° glossiness did not reach the target value.
[0041]
Example 3
A hot-dip Zn—Al—Mg alloy-plated steel strip having a width of 1000 mm produced under the same conditions as in Example 2 was degreased, washed with water, and surface-adjusted in a color coating line, and then subjected to phosphate treatment under the following condition 5. . Further, a post-treatment and a clear coating were continuously performed under the following condition 6.
However, in the post-treatment, steel strips having different post-treatments were produced using two types of treatment liquids.
The L value of the obtained steel strip fluctuated in the width direction and the longitudinal direction within a range of 30 ± 1, the glossiness at 60 ° was stable at 3 or less, and the uniform processability was good. Using the end plate cut out from the steel strip, the corrugated sheet was formed by roll forming. However, neither the clear coating film nor the phosphate treatment film was peeled off or dropped off, and had good workability.
[0042]
Figure 2004360056
[0043]
(Condition 6)
・ Chrome sealing post-treatment
Treatment method: spray + ringer roll
Attached amount: about 8 mg / m in terms of Cr2(One side)
・ Chromium-free sealing post-treatment (treatment containing zirconium oxide and vanadium oxide)
Treatment method: spray + ringer roll
Attached amount: about 10 mg / m in terms of Zr + V2(One side)
・ Clear painting
Painting method: roll coater
Coating thickness: 8 μm
Paint type: Silica-containing polyester resin
[0044]
【The invention's effect】
As described above, according to the present invention, by subjecting a hot-dip Zn-Al-Mg-based alloy-plated steel sheet to a surface treatment with a phosphating solution, the brightness and gloss are controlled, and a more profound color tone is obtained. Can be given.
The gloss is suppressed, it is easy to obtain an appearance with a deep black gray, and it has various color tones depending on individual specific applications and usage modes in building materials, home appliances, and various other fields, A black hot-dip Zn-Al-Mg-based alloy plated steel sheet having excellent design properties can be obtained.
Since the plated steel sheet to be blackened is coated with a hot-dip Zn-Al-Mg-based alloy that is extremely excellent in corrosion resistance, the blackened plated steel sheet is also excellent in corrosion resistance. It is expected to be widely used in products and other various fields.
[Brief description of the drawings]
FIG. 1 is a graph showing changes in the Ni ion concentration in the treatment solution, the L value of the Zn plating surface, and the 60 ° gloss when a phosphate treatment is applied to a hot-dip Zn-coated steel sheet.
FIG. 2 is a graph showing the relationship between the concentration of Ni ions in a treatment solution, the amount of Ni-substituted precipitates on the Zn-plated surface, and the amount of phosphate crystals precipitated when a hot-dip Zn-coated steel sheet is subjected to phosphate treatment.
FIG. 3 is a diagram schematically showing a difference in surface appearance according to a Ni ion concentration when a phosphate treatment is performed on a hot-dip galvanized steel sheet.
FIG. 4 is a diagram schematically showing reaction surfaces when a hot-dip Zn-plated steel sheet and a hot-dip Zn-Al-Mg alloy-plated steel sheet are spray-treated with a Ni-containing phosphating solution;
FIG. 5: [Al / Zn / Zn]2Mg ternary eutectic structure] was applied to a hot-dip Zn-Al-Mg alloy-plated steel sheet having a phase area ratio of 90% or more, with Zn metal ions of 8 g / L and nitrate ions of 6 g / L, and a treatment temperature of 65 g / L. FIG. 6 is a graph showing the relationship between the Ni ion concentration in the processing solution, the amount of Ni-substituted precipitates on the plating surface, and the amount of phosphate crystals deposited when spraying was performed at 3 ° C. for 3 seconds.
FIG. 6: [Al / Zn / Zn]2Mg ternary eutectic structure] was applied to a hot-dip Zn-Al-Mg alloy-plated steel sheet having a phase area ratio of 90% or more, with Zn metal ions of 8 g / L and nitrate ions of 6 g / L, and a treatment temperature of 65 g / L. FIG. 6 is a diagram showing the relationship between the Ni ion concentration in the treatment solution, the L value of the plating surface, and the 60 ° gloss when the spray treatment was performed at 3 ° C. for 3 seconds.
FIG. 7 is a diagram schematically showing an observation surface when a section of a plating layer of a hot-dip Zn—Al—Mg alloy plated steel plate is observed by a microscope, and a diagram schematically showing the observation surface.

Claims (4)

リン酸塩処理により黒色化される溶融Zn−Al−Mg系合金めっき鋼板であって、めっき層最表面で〔Al/Zn/ZnMgの三元共晶組織〕の相が占める割合が面積率で60%以上であることを特徴とする黒色化処理用溶融Zn−Al−Mg系合金めっき鋼板。This is a hot-dip Zn-Al-Mg-based alloy-plated steel sheet that is blackened by phosphate treatment, and the ratio of the [Al / Zn / Zn 2 Mg ternary eutectic structure] phase to the outermost surface of the plating layer is the area. A hot-dip Zn-Al-Mg-based alloy-plated steel sheet for blackening treatment, wherein the rate is 60% or more. 溶融Zn−Al−Mg系合金めっき鋼板のめっき層最表面で〔Al/Zn/ZnMgの三元共晶組織〕の相が占める割合が面積率で60%以上になるように調整された溶融Zn−Al−Mg系合金めっき鋼板の合金めっき層上に、Ni及び/又はCo付着量20mg/m以上のNi及び/又はCo析出層とリン酸亜鉛付着量2g/m以上のリン酸亜鉛結晶からなる皮膜が形成されていることを特徴とする黒色化溶融Zn−Al−Mg系合金めっき鋼板。The ratio of the [Al / Zn / Zn 2 Mg ternary eutectic structure] phase at the outermost surface of the plating layer of the hot-dip Zn-Al-Mg-based alloy-plated steel sheet was adjusted so that the area ratio was 60% or more. A Ni and / or Co deposition layer having a Ni and / or Co adhesion of 20 mg / m 2 or more and a phosphorus having a zinc phosphate adhesion of 2 g / m 2 or more on an alloy plating layer of a hot-dip Zn—Al—Mg alloy plated steel sheet. A blackened hot-dip Zn-Al-Mg-based alloy-plated steel sheet having a coating made of zinc oxide crystals formed thereon. Ni及び/又はCo付着量20mg/m以上のNi及び/又はCo析出層とリン酸亜鉛付着量2g/m以上のリン酸亜鉛結晶からなる皮膜の上に、更にクロメート処理皮膜或いはノンクロム系処理皮膜と5〜20μmのクリア塗膜が積層されている請求項2に記載の黒色化溶融Zn−Al−Mg系合金めっき鋼板。A chromate-treated coating or a non-chromium-based coating on a coating consisting of a Ni and / or Co deposition layer with a Ni and / or Co adhesion amount of 20 mg / m 2 or more and a zinc phosphate crystal with a zinc phosphate adhesion amount of 2 g / m 2 or more The blackened hot-dip Zn-Al-Mg-based alloy-plated steel sheet according to claim 2, wherein the treated film and a clear coating of 5 to 20 μm are laminated. めっき層最表面で〔Al/Zn/ZnMgの三元共晶組織〕の相が占める割合が面積率で60%以上になるように調整された溶融Zn−Al−Mg系合金めっき鋼板を、Znイオンを5〜10g/L,硝酸イオンを3〜15g/L,Niイオン及び/又はCoイオンを3〜15g/Lを含むリン酸塩処理液と接触させることを特徴とする黒色化溶融Zn−Al−Mg系合金めっき鋼板の製造方法。A hot-dip Zn-Al-Mg-based alloy-plated steel sheet adjusted so that the ratio of the phase of [Al / Zn / Zn 2 Mg ternary eutectic] on the outermost surface of the plating layer is 60% or more in area ratio. A blackening melt characterized by contacting with a phosphating solution containing 5 to 10 g / L of Zn ions, 3 to 15 g / L of nitrate ions, and 3 to 15 g / L of Ni ions and / or Co ions. A method for producing a Zn-Al-Mg alloy plated steel sheet.
JP2003163450A 2003-06-09 2003-06-09 BLACKENED HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL SHEET, AND ITS PRODUCTION METHOD Pending JP2004360056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163450A JP2004360056A (en) 2003-06-09 2003-06-09 BLACKENED HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL SHEET, AND ITS PRODUCTION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163450A JP2004360056A (en) 2003-06-09 2003-06-09 BLACKENED HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL SHEET, AND ITS PRODUCTION METHOD

Publications (1)

Publication Number Publication Date
JP2004360056A true JP2004360056A (en) 2004-12-24

Family

ID=34055263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163450A Pending JP2004360056A (en) 2003-06-09 2003-06-09 BLACKENED HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL SHEET, AND ITS PRODUCTION METHOD

Country Status (1)

Country Link
JP (1) JP2004360056A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111189A (en) * 2006-10-03 2008-05-15 Nisshin Steel Co Ltd Hot-work method of hot dip plated steel sheet and hot-work formed article
JP2012082511A (en) * 2010-09-15 2012-04-26 Nisshin Steel Co Ltd Hot-dip zinc-coated steel sheet showing black color
JP2014501334A (en) * 2010-12-28 2014-01-20 ポスコ High corrosion resistant hot dip galvanized steel sheet and method for producing the same
JP2016514202A (en) * 2013-02-06 2016-05-19 アルセロールミタル ZnAlMg coated metal sheet with specific microstructure and corresponding production method
KR101767788B1 (en) * 2015-12-24 2017-08-14 주식회사 포스코 Plating steel material having excellent friction resistance and white rust resistance and method for manufacturing same
JP2018507321A (en) * 2014-12-24 2018-03-15 ポスコPosco Zinc alloy plated steel sheet excellent in phosphatability and spot weldability and method for producing the same
JP2020152986A (en) * 2019-03-22 2020-09-24 日鉄日新製鋼株式会社 Coated steel panel and method of manufacturing coated steel panel
WO2023055073A1 (en) * 2021-09-30 2023-04-06 주식회사 포스코 Plated steel sheet having excellent corrosion resistance and whiteness and method for manufacturing same
WO2023055065A1 (en) * 2021-09-30 2023-04-06 주식회사 포스코 Plated steel sheet having excellent corrosion resistance and surface appearance and method for manufacturing same
TWI821086B (en) * 2022-08-31 2023-11-01 日商日本製鐵股份有限公司 Coated steel material and method of producing coated steel material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107244A (en) * 1976-03-06 1977-09-08 Nippon Paint Co Ltd Chemical treatment of zinc phosphate coating
JPS6277482A (en) * 1985-09-30 1987-04-09 Nippon Steel Corp Manufacture of corrosion resistant black zinc alloy plated steel sheet
JPH05237450A (en) * 1992-02-28 1993-09-17 Nisshin Steel Co Ltd Material for roof/exterior
JPH07316834A (en) * 1994-05-26 1995-12-05 Nisshin Steel Co Ltd Blackened zn-al alloy-plated steel sheet
JPH08218181A (en) * 1995-02-13 1996-08-27 Nisshin Steel Co Ltd Production of black color galvanized steel sheet
JPH08218158A (en) * 1995-02-14 1996-08-27 Nippon Steel Corp Posttreatment of hot dip galvanized or hot dip galvannealed steel plate
JPH10226865A (en) * 1996-12-13 1998-08-25 Nisshin Steel Co Ltd Hot dip zinc-aluminum-magnesium plated steel sheet good in corrosion resistance and surface appearance and its production
JPH10265926A (en) * 1997-03-25 1998-10-06 Nisshin Steel Co Ltd Production of hot dip zn-al-mg coated steel strip excellent in corrosion resistance and appearance
JP2000219950A (en) * 1998-11-27 2000-08-08 Nippon Steel Corp HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AFTER COATING

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107244A (en) * 1976-03-06 1977-09-08 Nippon Paint Co Ltd Chemical treatment of zinc phosphate coating
JPS6277482A (en) * 1985-09-30 1987-04-09 Nippon Steel Corp Manufacture of corrosion resistant black zinc alloy plated steel sheet
JPH05237450A (en) * 1992-02-28 1993-09-17 Nisshin Steel Co Ltd Material for roof/exterior
JPH07316834A (en) * 1994-05-26 1995-12-05 Nisshin Steel Co Ltd Blackened zn-al alloy-plated steel sheet
JPH08218181A (en) * 1995-02-13 1996-08-27 Nisshin Steel Co Ltd Production of black color galvanized steel sheet
JPH08218158A (en) * 1995-02-14 1996-08-27 Nippon Steel Corp Posttreatment of hot dip galvanized or hot dip galvannealed steel plate
JPH10226865A (en) * 1996-12-13 1998-08-25 Nisshin Steel Co Ltd Hot dip zinc-aluminum-magnesium plated steel sheet good in corrosion resistance and surface appearance and its production
JPH10265926A (en) * 1997-03-25 1998-10-06 Nisshin Steel Co Ltd Production of hot dip zn-al-mg coated steel strip excellent in corrosion resistance and appearance
JP2000219950A (en) * 1998-11-27 2000-08-08 Nippon Steel Corp HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AFTER COATING

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111189A (en) * 2006-10-03 2008-05-15 Nisshin Steel Co Ltd Hot-work method of hot dip plated steel sheet and hot-work formed article
JP2012082511A (en) * 2010-09-15 2012-04-26 Nisshin Steel Co Ltd Hot-dip zinc-coated steel sheet showing black color
EP3954800A3 (en) * 2010-12-28 2022-03-02 Posco High corrosion resistant hot dip zn alloy plated steel sheet and method of manufacturing the same
JP2014501334A (en) * 2010-12-28 2014-01-20 ポスコ High corrosion resistant hot dip galvanized steel sheet and method for producing the same
US9302449B2 (en) 2010-12-28 2016-04-05 Posco High corrosion resistant hot dip Zn alloy plated steel sheet
EP2659017A4 (en) * 2010-12-28 2017-04-05 Posco High corrosion resistant hot dip zn alloy plated steel sheet and method of manufacturing the same
JP2016514202A (en) * 2013-02-06 2016-05-19 アルセロールミタル ZnAlMg coated metal sheet with specific microstructure and corresponding production method
JP2018507321A (en) * 2014-12-24 2018-03-15 ポスコPosco Zinc alloy plated steel sheet excellent in phosphatability and spot weldability and method for producing the same
US10544497B2 (en) 2014-12-24 2020-01-28 Posco Zn alloy plated steel sheet having excellent phosphatability and spot weldability and method for manufacturing same
KR101767788B1 (en) * 2015-12-24 2017-08-14 주식회사 포스코 Plating steel material having excellent friction resistance and white rust resistance and method for manufacturing same
JP2020152986A (en) * 2019-03-22 2020-09-24 日鉄日新製鋼株式会社 Coated steel panel and method of manufacturing coated steel panel
JP7339492B2 (en) 2019-03-22 2023-09-06 日本製鉄株式会社 Coated steel sheet and method for producing coated steel sheet
WO2023055073A1 (en) * 2021-09-30 2023-04-06 주식회사 포스코 Plated steel sheet having excellent corrosion resistance and whiteness and method for manufacturing same
WO2023055065A1 (en) * 2021-09-30 2023-04-06 주식회사 포스코 Plated steel sheet having excellent corrosion resistance and surface appearance and method for manufacturing same
TWI821086B (en) * 2022-08-31 2023-11-01 日商日本製鐵股份有限公司 Coated steel material and method of producing coated steel material

Similar Documents

Publication Publication Date Title
JP4373778B2 (en) Metal surface treatment liquid and surface treatment method
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
JP2006124824A (en) HIGHLY CORROSION RESISTANT Zn ALLOY PLATED STEEL MATERIAL HAVING HAIRLINE APPEARANCE
CA2600996C (en) Surface treated metal material
JP2004360056A (en) BLACKENED HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL SHEET, AND ITS PRODUCTION METHOD
JPH06306632A (en) Bright bluing method for hot dip-aluminum alloy plated steel sheet
JP2007023309A (en) Hot-dip zinc alloy plated steel sheet having excellent corrosion resistance
JP4088069B2 (en) Phosphate-treated galvanized steel sheet excellent in workability and method for producing the same
JP2005105321A (en) Method for manufacturing surface treated steel sheet of excellent appearance, surface treated steel sheet, film-covered surface-treated steel sheet
JP5661699B2 (en) Manufacturing method of resin-coated steel sheet
JP2002285346A (en) Zinc phosphate treated galvanized steel sheet having excellent corrosion resistance and color tone
JP5101250B2 (en) Resin coated steel sheet
JP2003183800A (en) Hot-dip zinc-base coated steel sheet superior in blackening resistance and corrosion resistance, and manufacturing method therefor
JPH04325664A (en) Production of zinc surface treated steel sheet excellent in spot weldability
JPH0723542B2 (en) Phosphate chemical conversion treatment solution for steel and zinc-based plated steel sheet
JP2003105587A (en) Surface treated steel sheet for electronic part, and production method therefor
JP4630326B2 (en) Method for producing phosphate-treated zinc-plated steel sheet with excellent workability
JP2808649B2 (en) Post-processing method of zinc or zinc alloy coated steel sheet with excellent corrosion resistance, fingerprint resistance and paintability
JPS60152662A (en) Steel sheet plated with ternary iron-chromium-zinc alloy and its manufacture
JPH0456798A (en) Production of chromated galvanized steel sheet excellent in resistance to corrosion and fingerprinting, coating suitability and surface color tone
JP2569993B2 (en) Method for producing chromate-treated galvanized steel sheet with excellent corrosion resistance, fingerprint resistance and paintability
JPH03249180A (en) Galvanized steel sheet having excellent press formability and chemical convertibility
JPH07310160A (en) Hot-dip zn-al plated steel with thick coating weight excellent in corrosion resistance, pitting corrosion resistance and plating adhesion
JP3111886B2 (en) Manufacturing method of high lubrication alloyed hot-dip galvanized steel sheet
JP2002097559A (en) Black steel sheet and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108