JPH03207864A - Production of cubic boron nitride - Google Patents

Production of cubic boron nitride

Info

Publication number
JPH03207864A
JPH03207864A JP22769686A JP22769686A JPH03207864A JP H03207864 A JPH03207864 A JP H03207864A JP 22769686 A JP22769686 A JP 22769686A JP 22769686 A JP22769686 A JP 22769686A JP H03207864 A JPH03207864 A JP H03207864A
Authority
JP
Japan
Prior art keywords
reaction
heating
plasma
intermediate product
glow plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22769686A
Other languages
Japanese (ja)
Inventor
Tetsuo Kawai
哲郎 川井
Yukio Ichinose
一ノ瀬 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP22769686A priority Critical patent/JPH03207864A/en
Publication of JPH03207864A publication Critical patent/JPH03207864A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce c-BN by a CVD method by heating after glow plasma on an after glow plasma CVD system and also carrying out thermal activation by providing a thermion generator in the after glow plasma. CONSTITUTION:B2H6 and NH3 are introduced as reactant gases into a reaction cylinder 2 and a plasma produced from a high frequency coil 3 is allowed to act to produce an active intermediate product. An after glow plasma containing this intermediate product is heated by means of a heating furnace 4 to accelerate reaction. Further, in order to decompose the intermediate product, heating is performed by means of a W filament 5 to carry out thermal activation. By this method, c-BN can be produced by a CVD method capable of forming a film on a large area by means of a reaction with minimized residual stress.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、減圧中で気相法により立方晶窒化硼素(c−
BN)を製造する方法に関する.「従来の技術」 c−BNはダイヤモンドに並ぶ超硬質であるので,最近
減圧中、気相法でc−BNを合成する研究が盛んに行な
われている.例えば大工試の佐藤氏はイオン照射と真空
蒸着併用によりc−BNの合威に成功したと報告してい
る(第33回応用物理学関係連合講演会予稿集1986
年春期).シかしこの方法は高電圧により加速されたイ
オンが必要であり、工業化には適していないと考えられ
る.また前記予稿集中で伊藤氏らは、HCD−ARE法
でc−BNが合成できたと報告しているが,残留応力が
大きく、5000 ;,以上の厚さの膜は基板から剥離
してしまうという欠点があり、工業化には適していない
. 一般にCVD法は上記のようなPVD法に比べて、成膜
の残留応力が小さいという特徴を有している.しかし、
CVD法では六方晶BN(h−BN)が合威され、c−
BNは合威されていない.「発明が解決しようとする問
題点」 従来のCVD法で六方晶BN(h−BN)を成膜する場
合、小さい残留応力でかつ大面積に虞膜可能という工業
上有利な特徴を有している.しかし,そのCVD法を使
用してもc−BNの合成は達威されないというのが一般
的であった.CVD法によるBN膜合威法としては、反
応ガスにB2 HsとNH3とを用い、プラズマを付加
することが一般に行なわれているが、その場合,h−B
Nが合成されるだけである.h−BNが合成される原因
は、化学反応過程の中間体として存在するBNボリマー
がそのまま基板に堆積するためと考えられた. 従ってc−BNを合成するためには、BNボリマーを分
解し、単独のBN分子にエネルギーを与える必要がある
と本発明者らは考えた.「問題点を解決するための手段
」 本発明は、アフターグロープラズマCVD方式でアフタ
ーグローを加熱すると共に、アフターグロー中に熱電子
発生装置を設けて熱活性することを特徴とするc−BN
の製造方法である.未発明に使用する装置の一例を第1
図により説明する. 反応ガスとしてはB2 H.とNH3とを使用しその反
応ガスは導入管lを介して反応筒2内に導入するように
なっている.反応筒2は石英ガラスで形成され、高温に
耐えられるようになっている.反応筒2の上部外周に高
周波コイル3が設けられ、それにより反応筒z内に誘導
結合プラズマを発生させて反応ガスを励起させ、活性な
中間体を形成するようになっている.反応1v12の下
部外周に加熱炉4が設けられ,それにより前記活性な中
間体を含んだアフターグローブラズマを加熱して反応を
促進させるようになっている.反応筒2の下部内周に熱
電子発生装置としてのWフィラメント5が設けられ、そ
れに電極6を介して電圧を印加することより熱電子を発
生させ中間体であるボリマーをさらに分解できるように
なっている.また反応筒2内の下部に試料ホルダー7を
設け,その上に基板を載置させるようになっている. 「作用」 上記手段に記した装置を使用して、反応筒2内に反応ガ
スを導入し、高周波コイル3で反応ガスを励起して活性
な中間体を生じさせ、かつ加熱炉4で加熱することによ
り反応を促進させた.ざらにWフィラメント5で中間体
を含んだアフターグロープラズマを加熱して熱活性させ
た.以上の工程により基板表面上にc−BNが得られた
.なお、Wフィラメントに通電せず,熱活性させないと
きはh−BNが得られたことから、本発明者らの考えが
妥当であることが確認できた.「実施例」 第1図に示した装置を使用し、反応筒z内に反応ガスを
導入し、高周波コイル3から発生するプラズマを反応ガ
スに作用させて活性な中間体を生じさせ、この中間体を
含んだアフターグローブラズマを加熱炉4で加熱して反
応を促進させた(CVD法). さらに中間体を分解するため、Wフィラメント5で加熱
すること(熱活性)により基板上にc −BNを成膜さ
せた.なお比較のため、Wフィラメント5による熱活性
を行なわないで基板上に戚膜させることもした. 上記威膜工程の条件は以下の通りである.反応ガスとし
てI%B2H6(H2希釈)及び1%NHff (H2
希釈)を使用し,反応圧力ITorrで90分間成膜し
た.反応筒z内に設けた試料ホルダー7に載置してその
表面に成膜させる基板は, Si ( 10G)を使用
した.誘導結合プラズマを発生させる高周波コイル3へ
の入力電力は IOOWにし,加熱炉4でアフターグロ
ーを加熱する温度は800℃に固定した.Wフィラメン
ト5の加熱温度は800℃から200℃おきに2000
”Cまで変化させ、それぞれの温度設定で基板上に成膜
させた.基板に成膜したBN膜の構造の同定は電子線回
折及び赤外吸収スペクトルで行ない、同定結果を第1表
に示した. 熱活性を行なった膜の電子線回折の例は第2図(^)に
示した通りであり,その格子定数はa,=3.B2Aで
あり.c−BNと同定できた.熱活性を行なわない膜の
電子線回折の例は第2図(B)に示した通りであり、そ
の格子定数はa,=2.50λ、c0=6.66λであ
り.h−BNと同定できた.また熱活性を行なった膜、
および熱活性を行なわない膜の赤外吸収スペクトルは第
3図に示す通りである.第3図において、熱活性を行な
うと1380cm−’付近と800cm−’付近のh−
BNによる吸収がなくなり、1100cm−’付近のc
−BNの吸収があることからも、熱活性を行なうことに
より、C −BNが得られることがわかる. 第1表からc−BNの成膜はWフィラメントの温度が1
400℃〜2000℃の場合であり、その温度範囲で熱
活性の効果があったことがわかる.なお本実施例ではW
フィラメントで加熱することにより熱活性させたが、そ
の代りに他の熱電子発生装置を使用することも可能であ
る. 「発明の効果」 本発明によれば従来不可能であったCVD法でc−BN
を製造することが可能となり、その成膜の残留応力を小
さくできるので工業化に際し大層効果がある.
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention is directed to the production of cubic boron nitride (c-
BN). ``Prior Art'' Because c-BN is as hard as diamond, there has recently been much research into synthesizing c-BN using a gas phase method under reduced pressure. For example, Mr. Sato, a carpenter's examiner, reported that he succeeded in producing c-BN using a combination of ion irradiation and vacuum evaporation (Proceedings of the 33rd Applied Physics Association Conference 1986).
spring). However, this method requires ions accelerated by high voltage, and is considered unsuitable for industrialization. In addition, Ito et al. reported that c-BN could be synthesized by the HCD-ARE method in the above-mentioned manuscript, but the residual stress was large and films with a thickness of 5000 μm or more would peel off from the substrate. It has drawbacks and is not suitable for industrialization. In general, the CVD method is characterized by lower residual stress during film formation than the PVD method described above. but,
In the CVD method, hexagonal BN (h-BN) is synthesized and c-
BN has not been approved. "Problems to be Solved by the Invention" When forming a film of hexagonal BN (h-BN) using the conventional CVD method, it has the industrially advantageous feature of being able to form a film over a large area with low residual stress. There is. However, it has generally been the case that the synthesis of c-BN has not been achieved using the CVD method. As a BN film formation method using the CVD method, it is generally done to use B2Hs and NH3 as reaction gases and add plasma.
Only N is synthesized. The reason why h-BN is synthesized is thought to be that the BN polymer, which exists as an intermediate in the chemical reaction process, is deposited as is on the substrate. Therefore, the present inventors thought that in order to synthesize c-BN, it is necessary to decompose the BN polymer and give energy to a single BN molecule. "Means for Solving the Problems" The present invention is characterized in that the afterglow is heated by an afterglow plasma CVD method, and a thermionic generation device is provided during the afterglow to thermally activate the c-BN.
This is the manufacturing method. An example of a device used for uninvented invention is shown in the first example.
This will be explained using a diagram. The reaction gas is B2H. and NH3 are used, and the reaction gases are introduced into the reaction column 2 through an inlet pipe 1. The reaction tube 2 is made of quartz glass and can withstand high temperatures. A high-frequency coil 3 is provided on the outer periphery of the upper part of the reaction tube 2, thereby generating an inductively coupled plasma in the reaction tube z to excite the reaction gas and form an active intermediate. A heating furnace 4 is provided at the lower outer periphery of the reaction 1v12, thereby heating the afterglobe plasma containing the active intermediate to promote the reaction. A W filament 5 as a thermionic generator is provided on the inner periphery of the lower part of the reaction tube 2, and by applying a voltage to it through an electrode 6, thermionic electrons are generated and the intermediate polymer can be further decomposed. ing. In addition, a sample holder 7 is provided at the bottom of the reaction tube 2, on which a substrate is placed. "Operation" Using the device described in the above means, a reaction gas is introduced into the reaction tube 2, excited by the high frequency coil 3 to produce an active intermediate, and heated in the heating furnace 4. This accelerated the reaction. The afterglow plasma containing the intermediate was heated with a rough W filament 5 to thermally activate it. Through the above steps, c-BN was obtained on the substrate surface. Furthermore, since h-BN was obtained when the W filament was not energized or thermally activated, it was confirmed that the inventors' idea was valid. "Example" Using the apparatus shown in Fig. 1, a reaction gas is introduced into the reaction tube z, and the plasma generated from the high frequency coil 3 is applied to the reaction gas to generate an active intermediate. The afterglobe plasma containing the body was heated in a heating furnace 4 to accelerate the reaction (CVD method). In order to further decompose the intermediate, a film of c-BN was formed on the substrate by heating with a W filament 5 (thermal activation). For comparison, a film was also formed on the substrate without thermal activation using the W filament 5. The conditions for the above membrane process are as follows. I%B2H6 (H2 dilution) and 1%NHff (H2
(diluted), and the film was formed for 90 minutes at a reaction pressure of ITorr. Si (10G) was used as the substrate that was placed on the sample holder 7 provided in the reaction tube z to form a film on its surface. The input power to the high-frequency coil 3 that generates inductively coupled plasma was set to IOOW, and the temperature at which the afterglow was heated in the heating furnace 4 was fixed at 800°C. The heating temperature of the W filament 5 is 2000℃ every 200℃ from 800℃.
The structure of the BN film formed on the substrate was identified using electron diffraction and infrared absorption spectroscopy, and the identification results are shown in Table 1. An example of electron beam diffraction of the thermally activated film is shown in Figure 2 (^), and its lattice constant was a, = 3.B2A, and it was identified as c-BN. An example of electron diffraction of a film that does not undergo any activation is shown in Figure 2 (B), and its lattice constants are a, = 2.50λ, c0 = 6.66λ, and it can be identified as h-BN. In addition, the membrane was thermally activated.
The infrared absorption spectra of the films without thermal activation are shown in Figure 3. In Figure 3, when thermal activation is performed, h- around 1380 cm-' and around 800 cm-'
Absorption by BN disappears, and c around 1100 cm-'
The fact that -BN is absorbed indicates that C -BN can be obtained by thermal activation. From Table 1, the temperature of the W filament is 1 for c-BN film formation.
This is a case of 400°C to 2000°C, and it can be seen that there was a thermal activation effect in that temperature range. Note that in this example, W
Although thermal activation was achieved by heating with a filament, it is also possible to use other thermionic generators instead. "Effects of the Invention" According to the present invention, c-BN can be produced using the CVD method, which was previously impossible.
This makes it possible to manufacture films, and the residual stress during film formation can be reduced, which has a great effect on industrialization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用する装置の概略図、第2図は同装
置で成膜したものを電子線回折した回折線図、第3図は
同じく成膜したものの赤外吸収スペクトル線図である.
Figure 1 is a schematic diagram of the apparatus used in the present invention, Figure 2 is a diffraction diagram obtained by electron beam diffraction of a film formed using the same apparatus, and Figure 3 is an infrared absorption spectrum diagram of a film formed in the same manner. be.

Claims (2)

【特許請求の範囲】[Claims] (1) 反応筒内に反応ガスとしてB_2H_6とNH
_3とを導入し、その反応ガスにプラズマを印加して、
活性な中間体を形成し、この中間体を含んだアフターグ
ロープラズマを加熱して反応を促進し、さらに熱電子発
生装置で加熱することを特徴とする立方晶窒化硼素の製
造方法。
(1) B_2H_6 and NH as reaction gases in the reaction column
_3 and apply plasma to the reaction gas,
A method for producing cubic boron nitride, which comprises forming an active intermediate, heating an afterglow plasma containing this intermediate to promote the reaction, and further heating with a thermionic generator.
(2) 中間体を熱電子発生装置で加熱する温度は、1
400〜2000℃とした特許請求の範囲第1項に記載
の立方晶窒化硼素の製造方法。
(2) The temperature at which the intermediate is heated by the thermionic generator is 1
The method for manufacturing cubic boron nitride according to claim 1, wherein the temperature is 400 to 2000°C.
JP22769686A 1986-09-26 1986-09-26 Production of cubic boron nitride Pending JPH03207864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22769686A JPH03207864A (en) 1986-09-26 1986-09-26 Production of cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22769686A JPH03207864A (en) 1986-09-26 1986-09-26 Production of cubic boron nitride

Publications (1)

Publication Number Publication Date
JPH03207864A true JPH03207864A (en) 1991-09-11

Family

ID=16864914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22769686A Pending JPH03207864A (en) 1986-09-26 1986-09-26 Production of cubic boron nitride

Country Status (1)

Country Link
JP (1) JPH03207864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100378245C (en) * 2003-07-16 2008-04-02 松下电器产业株式会社 Sputtering apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100378245C (en) * 2003-07-16 2008-04-02 松下电器产业株式会社 Sputtering apparatus

Similar Documents

Publication Publication Date Title
US5462776A (en) Conversion of fullerenes to diamonds
Ichinose et al. Synthesis of cubic BN from the gas phase by a new plasma chemical vapour deposition method using rf waves and a tungsten filament
JPH03207864A (en) Production of cubic boron nitride
JP2920203B2 (en) Method for producing sp3-bonded boron nitride
JPS6184379A (en) Production of high-hardness boron nitride film
JPH0420984B2 (en)
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPH0420985B2 (en)
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPS6265997A (en) Method and apparatus for synthesizing diamond
JPS60112698A (en) Manufacture of diamond
JPH0361371A (en) Thin film forming device
JPH051381A (en) Method for synthesizing cubic boron nitride
JPS63107899A (en) Formation of thin film
JPS63215597A (en) Production of diamond film or diamond like film
KR100977171B1 (en) Method for growing a thin film diamond with carbon atomic beams
JPH04154970A (en) Method for synthesizing cubic boron nitride
JPS63282200A (en) Method of chemical vapor growth for diamond
JPH07300677A (en) Film formation and apparatus therefor by photo-cvd
JPS6034013A (en) Manufacture of solid thin film
JPS6369973A (en) Production of cubic boron nitride film
JPH01100093A (en) Production of diamond thin film
JPH02232372A (en) Thin-film forming device
JPH04341567A (en) Method for synthesizing cubic boron nitride