JPH03207852A - Formation of thin silicon film - Google Patents

Formation of thin silicon film

Info

Publication number
JPH03207852A
JPH03207852A JP139290A JP139290A JPH03207852A JP H03207852 A JPH03207852 A JP H03207852A JP 139290 A JP139290 A JP 139290A JP 139290 A JP139290 A JP 139290A JP H03207852 A JPH03207852 A JP H03207852A
Authority
JP
Japan
Prior art keywords
film
electron beam
alloy containing
evaporation material
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP139290A
Other languages
Japanese (ja)
Inventor
Tadahiko Mishima
三島 忠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP139290A priority Critical patent/JPH03207852A/en
Publication of JPH03207852A publication Critical patent/JPH03207852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To stably form a thin Si film by using an Si alloy in which specific amounts of refractory metal, such as Nb and W, are added as an evaporation material at the time of forming a film by a vacuum vapor deposition method or an ion plating method by means of electron beam heating. CONSTITUTION:An evaporation material selected from the group consisting of an Si-Nb alloy containing >=70%, by weight, of Nb, an Si-W alloy containing >=55% W, an Si-Mo alloy containing >=68% Mo, and an Si-Ta alloy containing >=61% Ta is heated and evaporated by means of an electron beam, by which a thin Si film is formed on a substrate. By this method, the boiling phenomenon of the evaporation material at the time of electron beam melting can be inhibited, and the formation of the Si film can be stably carried out. The reason why the additive elements are limited to those mentioned above is that the contamination of Si by the above additive elements can be reduced to minimum because the vapor pressures of these additive elements are sufficiently lower than the vapor pressure of Si. Further, the boiling phenomenon is brought about when the additive quantities of these elements are below the above quantities.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子ビーム加熱による真空蒸着およびイオンブ
レーティング法で、Si薄膜を成膜する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a Si thin film by vacuum evaporation using electron beam heating and ion blating.

[従来技術] 一般にSi薄膜は、太陽電池や電子写真感光体,半導体
デバイス等の用途がある。また、Si,N4やSiO2
,SiC等のSi化合物薄膜も絶縁膜,耐摩耗皮膜等の
用途に広くつかわれている。
[Prior Art] Generally, Si thin films are used in solar cells, electrophotographic photoreceptors, semiconductor devices, and the like. Also, Si, N4 and SiO2
, SiC, and other Si compound thin films are also widely used for applications such as insulating films and wear-resistant coatings.

従来、これらの81薄膜は、主にCVD法によって作成
されてきた。例えば特開昭61−56281号に見られ
る様なマイクロ波プラズマCVD法,特開昭61−61
51号に見られる光CVD法,特開昭61−47226
号に見られるグロー放電CVD法等が挙げられる。
Conventionally, these 81 thin films have been mainly created by the CVD method. For example, the microwave plasma CVD method as seen in JP-A-61-56281, JP-A-61-61
Optical CVD method seen in No. 51, JP-A-61-47226
Examples include the glow discharge CVD method seen in No.

一方、PVD法よるSi薄膜の作成法には、特開昭61
−48564号に見られる様に、マグネトロンスバッタ
ー法による成膜も成されている。
On the other hand, there is a method for creating Si thin films using the PVD method, published in Japanese Unexamined Patent Publication No. 61
As seen in No. 48564, film formation has also been carried out by the magnetron batter method.

[発明が解決しようとするall] しかしながら、CvD法によれば、成膜速度が数〜数1
0λ/secと遅く、限界があると思われる。
[All to be solved by the invention] However, according to the CvD method, the film formation rate is several to several 1
It is slow at 0λ/sec and seems to have a limit.

また、Si..等の有毒ガスを原料としているため、そ
の取扱いが面倒であり、工業化する上でも安全の確保が
問題となる。
Also, Si. .. Because the raw materials are toxic gases such as

PVD法によれば、有毒ガスを使用することがないので
安全上の問題点は解消されるが、スパッタリング法では
成膜速度が遅いという問題が依然として残る。電子ビー
ム加熱による真空蒸着法イオンブレーティング法ではあ
る程度の高速成膜が可能である。しかし、蒸発材として
Siを用いた場合、電子ビームの出力を高くしていくと
、るつぼ内のSiが沸騰を起こしてしまうため、Si皮
膜の安定な成膜ができなくなってしまう。
According to the PVD method, safety problems are solved because no toxic gas is used, but the problem with the sputtering method is that the film formation rate is slow. A certain degree of high-speed film formation is possible with the vacuum evaporation method and ion blating method using electron beam heating. However, when Si is used as the evaporator, increasing the output of the electron beam causes the Si in the crucible to boil, making it impossible to form a stable Si film.

本発明は上記のような問題点を解決するためになされた
もので、電子ビーム加熱による真空蒸着法,イオンプレ
ーティング法で、Sl薄膜を安定に成膜することを目的
とする。
The present invention has been made to solve the above-mentioned problems, and its object is to stably form a Sl thin film by vacuum evaporation method using electron beam heating and ion plating method.

[課題を解決するための手段] 本発明では、電子ビーム加熱による真空蒸着法,もしく
はイオンブレーテイング法でSiを安定に成膜するため
に、蒸発材として高融点金属を含むSi系合金を用いる
ことを特徴としている。蒸発材の組成は添加元素がNb
の場合、70vt%以上,Wでは55vL%以上,Mo
では68wL%以上,Taでは61vL%以上とする。
[Means for Solving the Problems] In the present invention, in order to stably form a Si film by a vacuum evaporation method using electron beam heating or an ion blating method, a Si-based alloy containing a high melting point metal is used as an evaporator. It is characterized by The composition of the evaporator is that the additive element is Nb.
70vt% or more for W, 55vL% or more for Mo,
For Ta, it is 68 wL% or more, and for Ta, it is 61 vL% or more.

[作用] 本発明で、Nb,W,Mo,Taの高融点金属を添加し
たSi合金を蒸発材として用いることによって、電子ビ
ーム溶解したときの蒸発材の沸騰現象を押えている。
[Function] In the present invention, by using a Si alloy to which high-melting point metals such as Nb, W, Mo, and Ta are added as the evaporator, the boiling phenomenon of the evaporator during electron beam melting is suppressed.

添加元素がNb,W,MoもしくはTaでなければなら
ないのは、これらの元素の蒸気圧がSiよりも充分に低
いため、S1薄膜中への混入がごくわずかだからである
The reason why the additive element must be Nb, W, Mo, or Ta is because the vapor pressure of these elements is sufficiently lower than that of Si, so that their mixing into the S1 thin film is extremely small.

添加元素がNbの場合、Nbが70vt%より少ないと
沸騰現象が生じてしまう。Nb添加量は70wt%以上
ならば制限はないが、添加量が多すぎるとSiの蒸発の
効率が悪くなる。また、Nb添加量が多くなると蒸発材
の融点が高くなり、電子ビーム照射部しか溶解,蒸発が
起こらなくなる現象(ドリリング現象)が生じて好まし
くない。
When the additive element is Nb, if the Nb content is less than 70vt%, a boiling phenomenon will occur. There is no limit to the amount of Nb added as long as it is 70 wt% or more, but if the amount added is too large, the efficiency of Si evaporation will deteriorate. Furthermore, when the amount of Nb added increases, the melting point of the evaporator increases, and a phenomenon (drilling phenomenon) occurs in which melting and evaporation occur only in the portion irradiated with the electron beam, which is undesirable.

従ってNbの添加量は70vt%以上75vt%以下が
好ましい。
Therefore, the amount of Nb added is preferably 70 vt% or more and 75 vt% or less.

添加元素がWの場合、Wが55vt%より少ないと沸騰
現象が生じる。Nbの場合と同様の理由で、Wの添加量
は50vt%以上55νt%以下が好ましい。
When the added element is W, a boiling phenomenon occurs if W is less than 55vt%. For the same reason as in the case of Nb, the amount of W added is preferably 50vt% or more and 55vt% or less.

添加元素がMo,Taの場合についても、同様の理由で
、Moでは68wt%以上73vt%以・一下,Taで
は61wt%以上66vt%以下が望ましい。
When the additive elements are Mo and Ta, for the same reason, Mo is preferably 68 wt% or more and 73 vt% or less, and Ta is preferably 61 wt% or more and 66 vt% or less.

なお、上記説明では、Siに、Nb,W,Moもしくは
Taを単独で添加した二元系合金の場合について説明し
たが、本発明の蒸発材は、本発明を目的を達成できる範
囲内で、他の金属成分を意図的若しくは不可避的に含有
するものでもよい。
In addition, in the above description, the case of a binary alloy in which Nb, W, Mo or Ta is added alone to Si was explained, but the evaporator of the present invention may include the following: It may also contain other metal components intentionally or unavoidably.

さらに、本発明の蒸発材は、S1にNb,W,Mo及び
Taの群から選択された二種以上を添加した合金でもよ
い。この場合、本発明の目的を達成するために必要とす
る添加合金量を少なくすることができる。
Furthermore, the evaporation material of the present invention may be an alloy in which two or more selected from the group of Nb, W, Mo, and Ta are added to S1. In this case, the amount of added alloy required to achieve the object of the present invention can be reduced.

[発明の実施例] 以下に本発明の実施例を示す。[Embodiments of the invention] Examples of the present invention are shown below.

まず、真空蒸着装置の蒸発るつぼ内に蒸発材を設置した
後、真空室内をI X 1 0−’Torrに排気した
。次に電子ビームの出力を5kv(500mAX10k
v)で蒸発材の加熱を行ない、蒸発るつぼから約40c
m離れた基板上へ威膜を行った。蒸発材の組成と電子ビ
ーム溶解時の蒸発材の沸騰現象およびドリリング現象を
表1に示す。蒸発材の沸騰現象は電子ビーム溶解時に蒸
発るつぼから溶湯のふきこぼれが激しいものをX,そう
でないものをOとした。ドリリング現象については、電
子ビーム溶解時に蒸発るつぼの蒸発面全体が溶解したも
のをO,そうでないものを×とした。
First, an evaporation material was placed in an evaporation crucible of a vacuum evaporation apparatus, and then the vacuum chamber was evacuated to IX10-'Torr. Next, increase the output of the electron beam to 5kv (500mAX10k
Heating the evaporation material with v), about 40c from the evaporation crucible.
The film was placed on a substrate 100 m away. Table 1 shows the composition of the evaporator and the boiling and drilling phenomena of the evaporator during electron beam melting. Regarding the boiling phenomenon of the evaporative material, a case where the molten metal boiled over from the evaporation crucible during electron beam melting was marked as "X", and a case where it was not marked as "O". Regarding the drilling phenomenon, a case in which the entire evaporation surface of the evaporation crucible was melted during electron beam melting was marked as O, and a case in which it was not was marked as ×.

以上の様にして戊膜したSi皮膜の純度はいずれも99
.9wt%以上であった。
The purity of the Si film formed as described above is 99.
.. It was 9wt% or more.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、電子ビーム加熱による
真空蒸着法、もしくはイオンブレーティング法で、Nb
,W,Ta,Mo等の高融点金属を添加したSi合金を
蒸発材として用いることによって、Si薄膜を安定に成
膜することができる効果がある。
As described above, according to the present invention, Nb
, W, Ta, Mo, and other high-melting-point metals are used as the evaporator, which has the effect of stably forming a Si thin film.

Claims (1)

【特許請求の範囲】[Claims]  70重量%以上のNbを含むSi−Nb合金、55重
量%以上のWを含むSi−W合金、68重量%以上のM
oを含むSi−Mo合金、及び61重量%以上のTaを
含むSi−Ta合金の群から選択された蒸発材を、電子
ビームで加熱蒸発せしめて、基板上に成膜するシリコン
薄膜の成膜方法。
Si-Nb alloy containing 70% by weight or more of Nb, Si-W alloy containing 55% by weight or more of W, 68% by weight or more of M
Formation of a silicon thin film on a substrate by heating and evaporating an evaporation material selected from the group of Si-Mo alloy containing o and Si-Ta alloy containing 61% by weight or more of Ta using an electron beam. Method.
JP139290A 1990-01-08 1990-01-08 Formation of thin silicon film Pending JPH03207852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP139290A JPH03207852A (en) 1990-01-08 1990-01-08 Formation of thin silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP139290A JPH03207852A (en) 1990-01-08 1990-01-08 Formation of thin silicon film

Publications (1)

Publication Number Publication Date
JPH03207852A true JPH03207852A (en) 1991-09-11

Family

ID=11500221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP139290A Pending JPH03207852A (en) 1990-01-08 1990-01-08 Formation of thin silicon film

Country Status (1)

Country Link
JP (1) JPH03207852A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969115A1 (en) * 1996-05-17 2000-01-05 United Technologies Corporation Method of vacuum vaporization of metals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969115A1 (en) * 1996-05-17 2000-01-05 United Technologies Corporation Method of vacuum vaporization of metals

Similar Documents

Publication Publication Date Title
Colligon Energetic condensation: Processes, properties, and products
EP0588350B1 (en) Hard film of Ti-Si-N composite material and method for production thereof
CA1324928C (en) Corrosion-resistant and heat-resistant aluminum-based alloy thin film and process for producing the same
JPH08269696A (en) Method for vaporizing mg
US4997673A (en) Method of forming aluminum nitride films by ion-assisted evaporation
US20230265553A1 (en) Vapor deposition method for coating a spectacle lens, physical vapor deposition system and crucible for physical vapor deposition
JPH03207852A (en) Formation of thin silicon film
JPH0310709B2 (en)
US4198449A (en) Method for the preparation of thin films of high-temperature-resistant metals such as tungsten, molybdenum, rhenium or osmium
JPH02285067A (en) Device for forming thin film in vacuum
Fischer et al. A setup for arc-free reactive DC sputter deposition of Al-ON
JPS6326349A (en) Formation of cubic boron nitride film
JPS6316464B2 (en)
JP2513338B2 (en) Method for forming boron nitride thin film coated substrate
JPS5992995A (en) Method for forming silicide film of high-melting metal
JPH05255843A (en) High purity titanium target for sputtering
RU2005103C1 (en) Method of making of films based on chalcogenide glass-like semiconductors
Nedelcu Deposition Methods, Classifications
Hwangbo et al. Ion assisted deposition of TiO2 thin films by Kaufman and gridless ion sources
JPS6220865A (en) Evaporation method
AU625024B2 (en) Corrosion resistant aluminium-based alloy
JPH04314855A (en) Sputtering target made of co-cr-pt alloy and its manufacture
JPH11199377A (en) Formation of crystalline thin membrane
JP2000064033A (en) Sputtering target
JPH04116155A (en) Formation of thin film