JPS5992995A - Method for forming silicide film of high-melting metal - Google Patents

Method for forming silicide film of high-melting metal

Info

Publication number
JPS5992995A
JPS5992995A JP20205682A JP20205682A JPS5992995A JP S5992995 A JPS5992995 A JP S5992995A JP 20205682 A JP20205682 A JP 20205682A JP 20205682 A JP20205682 A JP 20205682A JP S5992995 A JPS5992995 A JP S5992995A
Authority
JP
Japan
Prior art keywords
gas
plasma
silicide film
target
plasma generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20205682A
Other languages
Japanese (ja)
Other versions
JPH0242897B2 (en
Inventor
Hiroyuki Matsumoto
博之 松本
Morio Inoue
井上 森雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP20205682A priority Critical patent/JPS5992995A/en
Publication of JPS5992995A publication Critical patent/JPS5992995A/en
Publication of JPH0242897B2 publication Critical patent/JPH0242897B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/08Epitaxial-layer growth by condensing ionised vapours

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To form a silicide film of high quality, by introducing an etching gas together with a plasma generating gas into a reaction chamber in manufacturing a silicide film of a high-melting metal by the sputtering of the plasma electric discharge method. CONSTITUTION:Substrates 7 mounted on a pallet 6 are placed in a high-vacuum vessel 4, and a high voltage is applied to a cathode part (numeral 9 indicates a shielding plate) consisting of a target 2, e.g. molybdenum silicide plate, a supporting plate 3 and permanent magnets 1. On the other hand, a plasma generating gas, e.g. argon, is introduced from a gas supply port 8 to generate a plasma in a region (b). The silicide of the target 2 formed by the resultant plasma is then applied to the substrate 7 (numeral 5 indicates a gas discharge duct port and numeral 10 indicates a shutter). In the above-mentioned method, the plasma generating gas and an etching gas, e.g. a halogenated hydrocarbon, in an amount of about 0.1-10% based on the plasma generating gas together are introduced from a supply port 11 into the vessel 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高融点金属シリサイド膜の形成技術に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a technology for forming a high melting point metal silicide film.

(従来例の構成とその問題点) 第1図は従来の高融点金属シリサイド膜の形成方法を説
明するためのスパッタ装置の構成の概略を示す縦断面図
である。1は磁石で、ターゲット2に平行に磁界を発生
させるために設けられたもの、3は水冷機構を有するタ
ーゲット支持板であり、これら磁石1、ターゲット2、
ター−ゲット支持板3を一体として陰極部を構成する。
(Structure of a conventional example and its problems) FIG. 1 is a vertical sectional view schematically showing the structure of a sputtering apparatus for explaining a conventional method of forming a high melting point metal silicide film. 1 is a magnet, which is provided to generate a magnetic field parallel to the target 2; 3 is a target support plate having a water cooling mechanism; these magnets 1, the target 2,
The target support plate 3 constitutes a cathode section.

この陰極部は真空容器4内に固定され、真空容器4は真
空系の排気口5によシ高真空に保っことができる。
This cathode portion is fixed in a vacuum container 4, and the vacuum container 4 can be maintained at a high vacuum by an exhaust port 5 of a vacuum system.

一方、ターゲット20面に対面してパレット6が設置さ
れ、パレノ)6にはウェーハ7が固定される。ターゲッ
ト20面とウェルハフの間隔は数10鑞である。
On the other hand, a pallet 6 is installed facing the surface of the target 20, and a wafer 7 is fixed to the pallet 6. The distance between the target 20 surface and the well huff is several tens of meters.

まず、ノくレット6にウェーハ7をセットした後真空容
器4内を1o−7Torrオーダの高真空度に真空引き
し、次いでガス供給口8からアルゴンガスを供給して真
空容器4内を10 ” Torrオーダの真空度に保ち
、真空容器4をアースした状態で陰極部にマイナス50
0ボルト程度の負電圧を印加すると、真空容器4内に放
電が起る。ここで、ターゲット表面近傍の磁界と印加電
圧による電界カニ直交する部分では、放電によって電離
した電子のマグネ、トロン運動により、高密度のプラズ
マを発生し、これがターゲットをヌノ(ツタし、ターゲ
ット分子をウェーノ・7の面に付着させるのである。磁
界と電界の直交する高プラズマ領域では気体分子の衝突
により、二次電子が発生し、これ力;電界に沿って加速
されてウエーノ・に衝突すると、同ウェー・・の温度が
上昇し、同ウェー・・内に造シ込まれている機能素子に
ダメージを発生させる。9はこれを防止するために設置
された2次電子捕5隻用のンールド板で、外容器4と同
じアース電位に接続されている。まだ、スパッタ初期に
ターゲット2の表面の汚染物質が同時にウェー・・7の
表面に付着されるのを防止するため、通常はンヤツター
10によって遮へいしたま壕で予備スノ′8ン・夕をイ
斤なった後、純度の高いターゲット物質をウェー・・7
上に被着する。
First, after setting the wafer 7 in the node 6, the inside of the vacuum container 4 is evacuated to a high degree of vacuum on the order of 10-7 Torr, and then argon gas is supplied from the gas supply port 8 to increase the inside of the vacuum container 4 to 10". Maintaining a vacuum on the order of Torr, and with the vacuum container 4 grounded, apply a voltage of -50 to the cathode.
When a negative voltage of approximately 0 volts is applied, a discharge occurs within the vacuum container 4. Here, in the area where the magnetic field near the target surface and the electric field caused by the applied voltage are perpendicular to each other, a high-density plasma is generated due to the magnetism and tron motion of the electrons ionized by the discharge, which nips the target and destroys the target molecules. It is attached to the surface of Waeno 7. In the high plasma region where the magnetic field and electric field are perpendicular to each other, collisions of gas molecules generate secondary electrons, which are accelerated along the electric field and collide with Waeno 7. The temperature of the way... rises, causing damage to the functional elements embedded in the way. It is connected to the same ground potential as the outer container 4.In order to prevent contaminants on the surface of the target 2 from adhering to the surface of the wafer 7 at the same time in the initial stage of sputtering, the sputterer 10 is After soaking in preliminary snow for 8 nights in a sheltered trench, high-purity target material was exposed to water...7
coated on top.

ところで、この上う在方法によジターゲット物質として
の高融点金属シリサイドをス/くツクした場合の問題点
の一つは、ウェー・へ上に付着した膜の純度が低く、半
導体装置の製造に適用することができないことである。
By the way, one of the problems when using this interstitial method to remove high melting point metal silicide as a ditarget material is that the purity of the film deposited on the wafer is low, making it difficult to manufacture semiconductor devices. It cannot be applied to

その原因は、高融点金属シリサイドターゲット自体に含
捷れる重金属不純物、アルカリ金属不純物等がスノくツ
タされること、及びシールド板、シャッタ一部分が若干
スノくツタされることによって生ずるものである。
The cause of this is that heavy metal impurities, alkali metal impurities, etc. contained in the high-melting point metal silicide target itself are sludged, and a portion of the shield plate and shutter are slightly sludged.

(発明の目的) 本発明は上記のような問題点を解決するためになされた
もので、高純度且つ緻密性の高い高融点ソリサイド膜を
得るだめの改良された形成方法を提供することを目的と
したものである。
(Object of the Invention) The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide an improved formation method for obtaining a high-melting point solicide film with high purity and high density. That is.

(発明の構成) 本発明の方法は、アルゴンガスプラズマ放電によるスパ
ッタによって、ターゲット分子をウェーハに付着させる
際に、真空容器内に、例えば、・・pゲン系ガスのよう
なエツチング性ガスをfnI記フ゛ラズマ用のガスと共
に導入するもので、これによシ、プラズマ領域中のター
ゲット分子がエツチング雰囲気中にさらされ、同時にス
パッタされる重金属類と反応する。エツチング性ガスと
反応した重金属類は、気化して真空系によって1真空容
器外に排出される。この際、シリサイドターゲット分子
もまだエツチング性ガスと反応することになるのである
が、アルゴンガス流量に対するエツチング性ガス流量の
比率を適切にコントρ−ルすることによシ、ウェー・・
上に付着するスパッタ膜形成速度を著しく落すことなく
、シリサイド膜をウェーハ上に形成することが可能であ
る。その結果、ウェーハ上に付着する高融点金属シリサ
イド膜は、純度の高い膜が得られる。
(Structure of the Invention) In the method of the present invention, when attaching target molecules to a wafer by sputtering using argon gas plasma discharge, an etching gas such as p-type gas is introduced into a vacuum chamber using fnI etching gas. The target molecules in the plasma region are thereby exposed to the etching atmosphere and react with the heavy metals being sputtered at the same time. The heavy metals that have reacted with the etching gas are vaporized and discharged out of the vacuum container by the vacuum system. At this time, the silicide target molecules will still react with the etching gas, but by appropriately controlling the ratio of the etching gas flow rate to the argon gas flow rate, the reaction can be...
It is possible to form a silicide film on a wafer without significantly reducing the formation rate of the sputtered film deposited thereon. As a result, the high melting point metal silicide film deposited on the wafer can be a highly pure film.

(実施例の説明) 第2図は本発明の詳細な説明するだめのスパッタ装置の
構成の概略を示す断面図で、真空容器4内にエツチング
性ガスを導入するだめの導入口11を設けた点が第1図
と異なシ、その他の部分1〜10は第1図に示したもの
と同じである。
(Description of Embodiments) FIG. 2 is a cross-sectional view schematically showing the structure of a sputtering apparatus for explaining the present invention in detail. Except for the points shown in FIG. 1, the other parts 1 to 10 are the same as shown in FIG.

磁石1によって生ずる磁界は点線aで示すようにターゲ
ット2の面に平行な方向に生じ、その平均値はBで表わ
せる。丑だ、陰極部と真空容器4の間に印加妬れた電圧
によって生ずる電界Eは、磁界百と直交する方向に生ず
る。
The magnetic field generated by the magnet 1 is generated in a direction parallel to the surface of the target 2, as shown by the dotted line a, and its average value can be expressed as B. Unfortunately, the electric field E generated by the voltage applied between the cathode section and the vacuum vessel 4 is generated in a direction perpendicular to the magnetic field.

従って、アルゴンガスプラズマは、領域すにて最大密度
をとり、この放電によって電離した電子は、v=E/百
の速度でマグネ10ン運動を行ない、これがターゲット
をたたく。この時のアルゴンガス流量は通常80ないし
は11005CC程度である。
Therefore, the argon gas plasma has a maximum density in the entire region, and the electrons ionized by this discharge perform a magnetic movement at a speed of v=E/100, which strikes the target. The argon gas flow rate at this time is usually about 80 to 11005 CC.

ここで本発明においては、例えばハロゲン系のエツチン
グ性ガスを導入口11を通しで供給することに特徴を有
するものである。このエツチング性ガス流量は、アルゴ
ンガス流量に対して0.1%ないし10係の範囲で許さ
れる。このエツチング性ガスは、主として領域すにおい
てスパッタきれた分子と反応し、その反応生成物は真空
系を通して排気され、残りのスパッタされた分子がウェ
ーハ上に付着する。印加されるパワー、真空容器内の圧
力等によってエツチングされる量とスパッタきれる量の
バランスが変シ、エツチング性ガス流量の比率も変える
必要が生ずる。例えば、パワー71<w。
Here, the present invention is characterized in that, for example, a halogen-based etching gas is supplied through the inlet 11. The etching gas flow rate is allowed in a range of 0.1% to 10% of the argon gas flow rate. This etching gas reacts with the sputtered molecules primarily in the region, and the reaction products are evacuated through a vacuum system and the remaining sputtered molecules are deposited on the wafer. The balance between the amount of etching and the amount of sputtering changes depending on the applied power, the pressure inside the vacuum chamber, etc., and it becomes necessary to change the ratio of the etching gas flow rate. For example, power 71<w.

圧力8mTorrでは、アルゴンガス流量100 SC
CMに対して、エツチング性ガス流量は、0.2%ない
し0.3%j最も好ましい結果を得ている。
At a pressure of 8 mTorr, an argon gas flow rate of 100 SC
For CM, the most favorable results were obtained when the etching gas flow rate was 0.2% to 0.3%j.

モリブデンシリサイドターケラトからスパッタにより形
成した膜の不純物を化学分析した一例を示すと、従来方
法では、アルカリ金属類で5ppmないし8ppm1鉄
、ニッケル等の重金属類で100ppbないし1 pp
m程度含有するに対して、本発明による方法で成膜した
場合には、アルカリ類で100 ppb 、重金属類は
10ppb以下であった。
An example of chemical analysis of impurities in a film formed by sputtering from molybdenum silicide tercerate shows that in the conventional method, alkali metals are 5 ppm to 8 ppm, heavy metals such as iron and nickel are 100 ppb to 1 ppm.
However, when the film was formed by the method of the present invention, the alkali content was 100 ppb and the heavy metal content was 10 ppb or less.

(発明の効果) 以上説明したように本発明の方法によれば、高融点金属
シリサイド膜中の不純物を減少させ、安定した膜形成を
可能にする。更に、本発明の方法によって高融点金属シ
リサイド膜を形成した場合、従来方法に比べて膜中に残
留する応力が著しく減少し、且つ、上記ソリサイド粒子
の成長速度コントロールも非常に容易に行なえることも
判った。
(Effects of the Invention) As explained above, according to the method of the present invention, impurities in a high melting point metal silicide film can be reduced and stable film formation can be achieved. Furthermore, when a high melting point metal silicide film is formed by the method of the present invention, the stress remaining in the film is significantly reduced compared to conventional methods, and the growth rate of the silicide particles can be controlled very easily. I also understood.

本発明にかかる方法を半導体装置の製造に適用した場合
、その電気的特性の安定化に著しい効果を示す。
When the method according to the present invention is applied to the manufacture of semiconductor devices, it exhibits a remarkable effect on stabilizing the electrical characteristics thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高融点金属シリサイド膜の形成方法を説
明するためのスパッタ装置の構成の概略を示す縦断面図
、第2図は本発明の詳細な説明するためのスパッタ装置
の構成の概略を示す縦断面図である。 1 ・・・・・・・・磁石、 2 ・・・・・・・ タ
ーゲット、 3 ・・・・・・・・ターゲント支持板、
 4・・・・・・・真空容器、5 ・・・・・・ 真空
系の排気口、 6・・・・四パレット、7 ・・・・・
・・ ウェーハ、 8 ・・・−・山・ガス供給口、9
 ・・・・・・・・・ 2次電子捕獲用のシールド板、
1o・・川・・・・シャッタ、11・m山・エツチング
性ガス供給口。 特許出願人 松下電子工業株式会社
FIG. 1 is a vertical cross-sectional view schematically showing the configuration of a sputtering apparatus for explaining a conventional method for forming a high-melting-point metal silicide film, and FIG. 2 is a schematic diagram of the configuration of a sputtering apparatus for explaining the present invention in detail. FIG. 1......Magnet, 2...Target, 3...Target support plate,
4... Vacuum container, 5... Vacuum system exhaust port, 6... Four pallets, 7...
... Wafer, 8 ...--Mountain/Gas supply port, 9
・・・・・・・・・ Shield plate for capturing secondary electrons,
1o...river...shutter, 11.m mountain/etching gas supply port. Patent applicant Matsushita Electronics Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)  高融点金属シリサイド膜の被着形成中に反応
室内に少なくとも前記シリサイドに対してエツチング性
を有するガスを導入することを特徴とする高融点金属シ
リサイド膜の形成方法。
(1) A method for forming a high melting point metal silicide film, which comprises introducing a gas having an etching property to at least the silicide into a reaction chamber during deposition and formation of the high melting point metal silicide film.
(2)  エツチング性を有するガスを間歇的に導入す
ることを特徴とする特許請求の範囲第(1)項記載の高
融点金属シリサイド膜の形成方法。
(2) A method for forming a high melting point metal silicide film according to claim (1), characterized in that a gas having etching properties is introduced intermittently.
(3)  導入されるエツチング性を有するガス濃度が
全ガス流量に対して0.1%〜10.0%であることを
特徴とする特許請求の範囲第(1)項記載の高融点金属
シリサイド膜の形成、方法。
(3) The high melting point metal silicide according to claim (1), wherein the concentration of the gas having etching properties introduced is 0.1% to 10.0% with respect to the total gas flow rate. Film formation, method.
JP20205682A 1982-11-19 1982-11-19 Method for forming silicide film of high-melting metal Granted JPS5992995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20205682A JPS5992995A (en) 1982-11-19 1982-11-19 Method for forming silicide film of high-melting metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20205682A JPS5992995A (en) 1982-11-19 1982-11-19 Method for forming silicide film of high-melting metal

Publications (2)

Publication Number Publication Date
JPS5992995A true JPS5992995A (en) 1984-05-29
JPH0242897B2 JPH0242897B2 (en) 1990-09-26

Family

ID=16451205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20205682A Granted JPS5992995A (en) 1982-11-19 1982-11-19 Method for forming silicide film of high-melting metal

Country Status (1)

Country Link
JP (1) JPS5992995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303067A (en) * 1987-06-02 1988-12-09 Anelva Corp Bias sputtering device
JPH0294288A (en) * 1988-09-29 1990-04-05 Matsushita Electric Ind Co Ltd High-frequency spattering method and manufacture of thin el element
US5853552A (en) * 1993-09-09 1998-12-29 Nippondenso Co., Ltd. Process for the production of electroluminescence element, electroluminescence element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303067A (en) * 1987-06-02 1988-12-09 Anelva Corp Bias sputtering device
JPH0543788B2 (en) * 1987-06-02 1993-07-02 Anelva Corp
JPH0294288A (en) * 1988-09-29 1990-04-05 Matsushita Electric Ind Co Ltd High-frequency spattering method and manufacture of thin el element
US5853552A (en) * 1993-09-09 1998-12-29 Nippondenso Co., Ltd. Process for the production of electroluminescence element, electroluminescence element
US5936346A (en) * 1993-09-09 1999-08-10 Nippondenso Co., Ltd. Process for the production of electroluminescence element, electroluminescence element

Also Published As

Publication number Publication date
JPH0242897B2 (en) 1990-09-26

Similar Documents

Publication Publication Date Title
EP0115119B1 (en) Shaped field magnetron electrode
US4094764A (en) Device for cathodic sputtering at a high deposition rate
US4492620A (en) Plasma deposition method and apparatus
US4946576A (en) Apparatus for the application of thin layers to a substrate
US6787010B2 (en) Non-thermionic sputter material transport device, methods of use, and materials produced thereby
US3361659A (en) Process of depositing thin films by cathode sputtering using a controlled grid
US6416634B1 (en) Method and apparatus for reducing target arcing during sputter deposition
US4525262A (en) Magnetron reactive bias sputtering method and apparatus
JPS624313A (en) Double ion beam precipitation high density film
US4716340A (en) Pre-ionization aided sputter gun
EP0098935B1 (en) Negative ion beam etching process
CA1204700A (en) Magnetron reactive bias sputtering method and apparatus
JPS5992995A (en) Method for forming silicide film of high-melting metal
JP3685670B2 (en) DC sputtering equipment
US20110233049A1 (en) Sputtering system
JPS5957423A (en) Formation of metal conductor layer
JPH01201467A (en) Ion source
JPS63213664A (en) Ion plating device
JPH03271367A (en) Sputtering apparatus
JPH01123064A (en) Sputtering device
JPH03261697A (en) Silicon sputtering system
JPS63303050A (en) Manufacture of thin zircon nitride film
JPH04314864A (en) Method for plasma-cleaning substrate surface
US20080236499A1 (en) Vent groove modified sputter target assembly and apparatus containing same
JPS6015930A (en) Plasma device