JPH03207573A - Method and apparatus for producing joined body - Google Patents

Method and apparatus for producing joined body

Info

Publication number
JPH03207573A
JPH03207573A JP203290A JP203290A JPH03207573A JP H03207573 A JPH03207573 A JP H03207573A JP 203290 A JP203290 A JP 203290A JP 203290 A JP203290 A JP 203290A JP H03207573 A JPH03207573 A JP H03207573A
Authority
JP
Japan
Prior art keywords
solder
zone
substrate
vacuum
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP203290A
Other languages
Japanese (ja)
Inventor
Masahiro Taniguchi
昌弘 谷口
Hiromasa Endo
遠藤 博雅
Tomoko Otagaki
太田垣 智子
Shinji Kanayama
金山 真司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP203290A priority Critical patent/JPH03207573A/en
Publication of JPH03207573A publication Critical patent/JPH03207573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PURPOSE:To prevent the crack and rapture of electronic parts and the oxidation of conductive members, such as cream solder, by subjecting a work coated or mounted with a conductive joining material to a vacuum treatment, then to a heating and joining treatment. CONSTITUTION:A substrate 1f mounted with the electronic parts is transported by a substrate transporting section 1d from an inlet side into a heating device. The substrate 1f is first transported into a vacuum chamber 1a and is held for 2 minutes under 2 to 10Torr by a vacuum pump 1k in order to induce sufficient drying and activating of solder cream. The substrate 1f is then heated by the hot wind of about 240 deg.C emitted from a reflow zone panel heater 1b and a flow zone hot wind blow-out nozzle 1c to heat up the substrate to the temp. above 183 deg.C m.p. of the eutectic cream solder and below about 250 deg.C heat resisting temp. of the parts. The cream solder is sufficiently molten in this way and thereafter, the solder is solidified by using a cooling fan 1g in a cooling zone to form the solder joint part.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、たとえばプリント回路基板等を加熱する方法
にあたり、特に基板に電子部品を導電接合材料により装
着するための接合体の製造方法及びその装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of heating a printed circuit board, etc., and particularly relates to a method of manufacturing a bonded body for mounting an electronic component on a board using a conductive bonding material, and a method thereof. It is related to the device.

[従来の技術] プリント回路基板(以下単に「基板」という)などの電
子部品には、クリームはんだ、導電性接着剤、はんだメ
ッキ等の導電性接合材料による接続が広く使用されてい
る。
[Prior Art] Connections using conductive bonding materials such as cream solder, conductive adhesive, and solder plating are widely used for electronic components such as printed circuit boards (hereinafter simply referred to as "boards").

従来、基板にはんだ材料を塗布し、電子部品を装着した
後、加熱リフローする装置において、熱風による加熱方
法、近赤あるいは遠赤外線による加熱方法、蒸気潜熱を
利用した加熱方法などが使用されている。
Conventionally, in equipment that performs heating reflow after applying solder material to a board and mounting electronic components, heating methods using hot air, heating methods using near-infrared or far-infrared rays, and heating methods using latent heat of vapor have been used. .

近年、電子部品の小型化、多品種化、高密度実装化に伴
い、従来技術よりさらに基板温度の均一化が必要となり
、熱風と遠赤外線の併用による加熱方法が注目されてい
る。
In recent years, with the miniaturization, diversification, and high-density packaging of electronic components, it has become necessary to make the substrate temperature more uniform than conventional techniques, and a heating method using a combination of hot air and far infrared rays has been attracting attention.

以下図面を参照しながら、上述した従来の基板の加熱方
法について説明する。
The conventional substrate heating method described above will be described below with reference to the drawings.

第4図は本出願人がすでに提案した特願昭632911
49号に示された従来の加熱装置の概略図、第5図はそ
の温度プロファイルである。
Figure 4 shows the patent application No. 632911 already proposed by the present applicant.
A schematic diagram of the conventional heating device shown in No. 49, and FIG. 5 shows its temperature profile.

第4図において、4aは予熱部第1ゾーンパネル上ヒー
タ、4bは予熱部第1ゾーン熱風吹き出しノズル4Cは
予熱部第1ゾーンパネル上ヒータ、4dは予熱部第Iゾ
ーン熱風吹き出しノズル、4eはリフローゾーンパネル
ヒータ、4fはリフローゾーン熱風吹き出しノズルであ
る。4gは冷却ファン、4hは炉内雰囲気排気ファン、
41は基板搬送部、4jは落下基板搬送ベル1・、4k
は電子部品実装基板である。4lはそれぞれ加熱器であ
る。
In FIG. 4, 4a is a preheating section first zone panel heater, 4b is a preheating section first zone hot air blowing nozzle, 4C is a preheating section first zone panel top heater, 4d is a preheating section I zone hot air blowing nozzle, and 4e is a preheating section I zone hot air blowing nozzle. Reflow zone panel heater, 4f is a reflow zone hot air blowing nozzle. 4g is a cooling fan, 4h is a furnace atmosphere exhaust fan,
41 is a board transfer unit, 4j is a falling board transfer bell 1, 4k
is an electronic component mounting board. 4 liters are each a heater.

以上のように構威された加熱装置について、以3 下その動作について説明する。Regarding the heating device configured as described above, the following 3 The operation will be explained below.

電子部品が搭載された基板4lは入口側より基板搬送部
41によってリフロー装置内を搬送される。まず、予熱
部第1ゾーンにおいて室温状態にあった基板が予熱部第
1ゾーンパネル上ヒータ4aと予熱部第1,ゾーン熱風
吹き出しノズル4bより出る160°C前後の熱風によ
り加熱される。次に予熱部第2ゾーンにおいては、基板
全体の温度分布を均一にするため又はんだクリームの十
分な乾燥と活性化を引き起こさせるために、予熱部第2
ゾーンパネル上ヒータ4cと予熱部第2ゾーン熱風吹き
出しノズル4dより出る]−60℃前後の熱風により基
板内温度分布を150〜160℃の間に均一に安定させ
る。そして、リフローゾーンパネルヒータ4eとリフロ
ーゾーン熱風吹き出しノズル4fより出る240’C前
後の熱風により基板を加熱し、基板温度を共晶クリーム
はんだ融点183℃以上かつ部品耐熱温度約250℃以
下の温度、すなわち230℃前後まで昇温させる。これ
によって、クリームはんだを十分溶融させた後、4 最後に冷却ゾーンにおいて冷却ファン4gを用いはんだ
を凝固させ、半田継ぎ手部を形或する。
A board 4l on which electronic components are mounted is transported through the reflow apparatus by a board transport section 41 from the entrance side. First, the substrate, which is at room temperature in the first zone of the preheating section, is heated by hot air of about 160° C. coming out of the first zone panel heater 4a and the hot air blowing nozzle 4b of the first zone of the preheating section. Next, in the second zone of the preheating section, in order to make the temperature distribution uniform over the entire board or to cause sufficient drying and activation of the solder cream, the second zone of the preheating section
The temperature distribution inside the substrate is stabilized uniformly between 150 and 160°C by the hot air of about -60°C which comes out from the zone panel upper heater 4c and the preheating section second zone hot air blowing nozzle 4d. Then, the board is heated by hot air of around 240'C emitted from the reflow zone panel heater 4e and the reflow zone hot air blowing nozzle 4f, and the board temperature is set to a temperature above the eutectic cream solder melting point of 183°C and below the component heat resistance temperature of about 250°C. That is, the temperature is raised to around 230°C. After sufficiently melting the cream solder, the solder is finally solidified using a cooling fan 4g in the cooling zone to form a solder joint.

[発明が解決しようとする課題] しかしながら、上記のような加熱方法では、はんだクリ
ームの乾燥の為予熱部加熱を行っているので、基板上の
銅箔等の回路配線金属面やはんだの酸化がおこり、はん
だ濡れ性の低下により接触抵抗の増加および接合不良、
あるいは回路電気特性の信頼性を低減する。
[Problems to be Solved by the Invention] However, in the heating method described above, since the preheating section is heated to dry the solder cream, oxidation of the circuit wiring metal surface such as copper foil on the board and the solder may occur. This may lead to increased contact resistance and poor bonding due to decreased solder wettability.
Or reduce the reliability of circuit electrical characteristics.

また、QFP(4方向フラットパッケージIC)など、
樹脂モールドされた電子部品は吸湿している微量水分(
H20)により、加熱の際に、亀裂や破裂を生じるとい
う課題がある。
In addition, QFP (4-way flat package IC), etc.
Resin-molded electronic components absorb trace amounts of moisture (
H20), there is a problem that cracks and ruptures occur during heating.

更に、高密度実装化に伴い、基板内において部品が密に
実装されている部分でクリームはんだが十分に乾燥され
ない場合を生じるという課題を有していた。
Furthermore, with the trend towards higher density packaging, there has been a problem in that the cream solder may not be sufficiently dried in areas of the board where components are densely mounted.

本発明は上記課題を解決するため、信頼性の高い高品質
なりフローはんだづけを実現ずる製造方法およびその装
置を提供するものである。
In order to solve the above-mentioned problems, the present invention provides a manufacturing method and apparatus for realizing highly reliable and high quality flow soldering.

[課題を解決するための手段] 上記目的を達或するため、本発明は下記の構或からなる
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following structure.

「(1)導電性接合材料を用いて加熱処理により被処理
物を接合する方法において、まず導電性接合材料を塗布
または載置した被処理物を真空処理し、次いで加熱接合
処理することを特徴とする接合体の製造方法。
(1) A method of bonding workpieces by heat treatment using a conductive bonding material, characterized in that the workpiece coated with or placed on the conductive bonding material is first vacuum-treated, and then heated and bonded. A method for manufacturing a bonded body.

(2)導電性接合材料を用いて加熱処理により被処理物
を接合する装置において、導電性接合材料を塗布または
載置した被処理物を真空処理する手段と、加熱接合処理
する手段を接続又は分離して設けたことを特徴とする接
合体の製造装置。
(2) In an apparatus for bonding workpieces by heat treatment using a conductive bonding material, a means for vacuum-processing a workpiece coated with or placed on a conductive bonding material and a means for heat-bonding are connected or A manufacturing device for a bonded body, characterized in that it is provided separately.

(3)導電性接合材料を用いて加熱処理により被処理物
を接合する装置において、導電性接合材料を塗布または
載置した被処理物を真空処理する手段と、加熱接合処理
する手段を装置内に設けたことを特徴とする接合体の製
造装置。
(3) In an apparatus for bonding workpieces by heat treatment using a conductive bonding material, a means for vacuum processing the workpiece coated with or placed on the conductive bonding material and a means for heat bonding are provided within the apparatus. An apparatus for manufacturing a bonded body, characterized in that it is provided in a.

(4)被処理物が電子部品であり、導電性接合材料がク
リームはんだ、導電性接着剤、はんだメッキから選ばれ
る少なくとも一種の材料である前記1,2又は3項いず
れか記載の接合体の製造方法又はその装置。」 [作用] 上記した本発明の構或によれば、加熱処理に先立ってあ
らかじめ真空処理することにより電子部品の亀裂や破裂
およびクリームはんだ等の導電性部材の酸化を防止し、
結果として信頼性の高い高品質な電子部品の基板への接
合方法およびその装置を実現することができる。
(4) The bonded body according to any one of items 1, 2, or 3 above, wherein the object to be processed is an electronic component and the conductive bonding material is at least one material selected from cream solder, conductive adhesive, and solder plating. Manufacturing method or equipment. ” [Function] According to the above-described structure of the present invention, cracking and bursting of electronic components and oxidation of conductive members such as cream solder are prevented by vacuum treatment prior to heat treatment,
As a result, it is possible to realize a method and apparatus for bonding electronic components to a substrate with high reliability and high quality.

[実施例] 以下本発明の一実施例の加熱方法について図面を参照し
ながら説明する。
[Example] A heating method according to an example of the present invention will be described below with reference to the drawings.

第1−図は、本発明の第1の実施例における加熱装置の
概略、第2図はその温度プロファイルを示すものである
。第1図において、1aは真空ゾーン真空室、1bはり
フローゾーンパネルヒータ、ICはりフローゾーン熱風
吹き出しノズル、1dは基板搬送部、1eは落下基板搬
送ベルト、i fは電子部品実装基板、1gは冷却ゾー
ン冷却ファ7 ン、1hは炉内雰囲気排気ファンである。真空ゾーン真
空室↓aは、導入系11と排気系1jからなり、排気系
1jは真空ボンプ1hに接続している。
FIG. 1 shows an outline of a heating device according to a first embodiment of the present invention, and FIG. 2 shows its temperature profile. In Fig. 1, 1a is a vacuum zone vacuum chamber, 1b is a beam flow zone panel heater, IC beam is a flow zone hot air blowing nozzle, 1d is a board transport section, 1e is a falling board transport belt, if is an electronic component mounting board, and 1g is Cooling zone cooling fan 7 1h is a furnace atmosphere exhaust fan. The vacuum zone vacuum chamber ↓a consists of an introduction system 11 and an exhaust system 1j, and the exhaust system 1j is connected to a vacuum pump 1h.

以上のように構成された加熱装置について、以下その動
作について説明する。
The operation of the heating device configured as above will be described below.

電子部品が搭載された基板1fは人口側より基板搬送部
1dによって加熱装置内へ搬送される。
The board 1f on which the electronic components are mounted is transported from the artificial side into the heating device by the board transport section 1d.

まず、基板1fは真空ゾーン真空室1 aに搬送され、
はんだクリームの十分な乾燥と活性化を引き起こさせる
ために、真空ポンプ1hにより2〜10To r rで
2分間保持される。そして、リフローゾーンパネルヒー
タ1bとりフローゾーン熱風吹き出しノズル1Cより出
る240℃前後の熱風により基板を加熱し、基板温度を
共晶クリームはんだ融点183℃以上かつ部品耐熱温度
約250℃以下の温度、好ましくは230°C前後まで
昇温させる。これによって、クリームはんだを十分溶融
させた後、最後に冷却ゾーンにおいて冷却ファン1gを
用いはんだを凝固させ、半田継ぎ手部を8 形成する。
First, the substrate 1f is transported to the vacuum zone vacuum chamber 1a,
In order to cause sufficient drying and activation of the solder cream, it is held for 2 minutes at 2-10 Torr by vacuum pump 1h. Then, the board is heated by hot air of around 240°C emitted from the reflow zone panel heater 1b and the flow zone hot air blowing nozzle 1C, and the board temperature is adjusted to a temperature that is preferably above the eutectic cream solder melting point of 183°C and the component heat resistance temperature of about 250°C or below. Raise the temperature to around 230°C. After sufficiently melting the cream solder, the solder is finally solidified using a cooling fan 1g in the cooling zone to form a solder joint portion 8.

以上のように本実施例によれば、電子部品を搭載された
基板1dを真空ゾーン真空室],aにおいて加熱するこ
となくクリームはんだを均一に十分な乾燥をすることが
でき、従来の予熱部における基板上の回路配線金属(銅
箔等)面やはんだの酸化及び熱による電子部品の性能低
下を防止し、信頼性の高い高品質なりフローはんだづけ
を実現することができる。
As described above, according to this embodiment, cream solder can be dried uniformly and sufficiently without heating the board 1d on which electronic components are mounted in the vacuum zone vacuum chamber], It is possible to prevent performance deterioration of electronic components due to oxidation and heat of the circuit wiring metal (copper foil, etc.) surface and solder on the board, and achieve highly reliable and high quality flow soldering.

第3図は、本発明の第2の実施例における加熱装置の概
略を示すものである。
FIG. 3 schematically shows a heating device in a second embodiment of the present invention.

る。Ru.

第3図において、3aは真空ゾーン真空室、3bはリフ
ローゾーンパネルヒータ、3cはリフローゾーン熱風吹
き出しノズル、3dは基板搬送部、3eは落下基板搬送
ベルト、3fは電子部品実装基板、3gは冷却ゾーン冷
却ファン、3 hは炉内雰囲気排気ファンである。真空
ゾーン真空室3aは、基板ストッカー31,導入系31
と排気系3jからなり、排気系3jは真空ポンプ1kに
接続している。
In Fig. 3, 3a is a vacuum zone vacuum chamber, 3b is a reflow zone panel heater, 3c is a reflow zone hot air blowing nozzle, 3d is a board transfer section, 3e is a dropping board transfer belt, 3f is an electronic component mounting board, and 3g is a cooling unit. The zone cooling fan, 3h, is the furnace atmosphere exhaust fan. The vacuum zone vacuum chamber 3a includes a substrate stocker 31 and an introduction system 31.
and an exhaust system 3j, and the exhaust system 3j is connected to a vacuum pump 1k.

以上のように構成された加熱装置について、以下その動
作について説明する。
The operation of the heating device configured as above will be described below.

電子部品が搭載された基板3fは入口側より基板搬送部
3dによって加熱装置内へ搬送される。
The board 3f on which electronic components are mounted is transported into the heating device from the entrance side by the board transport section 3d.

まず、基板3fは真空ゾーン真空室3aに搬送され、基
板ストッカ−31に複数枚保持され、はんだクリームの
十分な乾燥と活性化を引き起こさせるために、真空ポン
プ3kにより2〜↓QTo rrで2分間保持される。
First, the board 3f is transported to the vacuum zone vacuum chamber 3a, a plurality of boards are held in the board stocker 31, and in order to sufficiently dry and activate the solder cream, the board 3f is transferred to the vacuum zone vacuum chamber 3a, and in order to sufficiently dry and activate the solder cream, the board 3f is pumped at 2 to ↓QTo rr by the vacuum pump 3k. held for minutes.

そして、リフローゾーンパネルヒータ3bとりフローゾ
ーン熱風吹き出しノズル3cより出る240℃前後の熱
風により基板を加熱し、基板温度を共晶クリームはんだ
融点183℃以上かつ部品耐熱温度約250℃以下の温
度、好ましくは230°C前後まで昇温させる。
Then, the board is heated by hot air of around 240°C emitted from the reflow zone panel heater 3b and the flow zone hot air blowing nozzle 3c, and the board temperature is adjusted to a temperature that is preferably at least 183°C, which is the melting point of the eutectic cream solder, and about 250°C, which is the component heat resistance temperature. Raise the temperature to around 230°C.

これによって、クリームはんだを十分溶融させた後、最
後に冷却ゾーンにおいて冷却ファン1gを用いはんだを
凝固させ、半田継ぎ手部を形成する。
After the cream solder is sufficiently melted, the solder is finally solidified using a cooling fan 1g in the cooling zone to form a solder joint.

以上のように本実施例によれば、電子部品を搭載された
基板1dを真空ゾーン真空室1aにおいて加熱すること
なくクリームはんだを均一に十分な乾燥をすることがで
き、従来の予熱部における基板上の回路配線金属(銅箔
等)面やはんだの酸化及びQFPなど樹脂モールドされ
た電子部品は吸湿しているH20により、加熱の際に生
じる亀裂や破裂を防止し、生産タクトの向上と信頼性の
高い高品質なりフローはんだづけを実現することができ
る。
As described above, according to this embodiment, cream solder can be dried uniformly and sufficiently without heating the board 1d on which electronic components are mounted in the vacuum zone vacuum chamber 1a, and the board 1d mounted with electronic components can be dried uniformly and sufficiently. The oxidation of the upper circuit wiring metal (copper foil, etc.) surface and solder, and the moisture absorption of H20 in resin-molded electronic components such as QFP, prevent cracks and ruptures that occur during heating, improving production tact and reliability. It is possible to achieve high-quality flow soldering with high performance.

なお、前述した実施例1及び2では第1工程として常温
での真空工程、第2工程として加熱工程としたがクリー
ムはんだの乾燥効率を良くするために第1工程にて真空
加熱しても良い。また、真空工程と加熱工程を行っても
良い。更に、接合はクリームはんだと記したが、導電性
接着剤や予め基板に設けられているはんだメッキ等でも
良《これらを称して導電性接合材料と称す。はんだメッ
キの場合真空工程と加熱工程は同時に行う方が良い。
In addition, in Examples 1 and 2 described above, the first step was a vacuum step at room temperature, and the second step was a heating step, but in order to improve the drying efficiency of the cream solder, vacuum heating may be performed in the first step. . Further, a vacuum process and a heating process may be performed. Furthermore, although cream solder is used for bonding, it is also possible to use a conductive adhesive or solder plating previously provided on the substrate (these are referred to as conductive bonding materials). In the case of solder plating, it is better to perform the vacuum process and heating process at the same time.

[発明の効果] 以上のように本発明によれば、電子部品が装着11 された基板などの被加熱物を真空にする真空工程と前記
被加熱部を加熱する工程を備えたことにより、クリーム
はんだを空気中で加熱することなく十分に均一に乾燥で
き、基板上の回路配線金属(銅箔等)面やはんだの酸化
によりはんだ濡れ性の低下により接触抵抗の増加及び接
合不良を生じるという問題や回路電気特性の信頼性を低
減するという問題を解決でき、さらにQFPなど樹脂モ
ールドされた電子部品は吸湿している微量水分(H20
)により加熱の際に生じる亀裂や破裂を生じるという問
題を除去し、信頼性の高い高品質なりフローはんだづけ
を実現できるという顕著な効果を達或することができる
[Effects of the Invention] As described above, according to the present invention, the cream is The problem is that the solder can be dried sufficiently uniformly without being heated in the air, and that oxidation of the circuit wiring metal (copper foil, etc.) surface on the board and the solder reduces solder wettability, resulting in increased contact resistance and poor bonding. In addition, resin-molded electronic components such as QFP can absorb trace amounts of moisture (H20
), it is possible to achieve the remarkable effect of eliminating the problem of cracking or bursting that occurs during heating, and realizing highly reliable and high quality flow soldering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1の実施例における加熱装置概略
図、第2図は第1の実施例における温度プロファイル、
第3は本発明の第2の実施例における加熱装置の概略図
、第4図は従来の加熱装置の概略図、第5図は第4図に
おける温度プロファイルである。 1−2 la, lb, lc, ld, 1 f, 1 j, lk, 3l 3a:真空ゾーン真空室 3b−リフローゾーンパネルヒーター 3C:リフローゾーン熱風吹き出しノズル3d:基板搬
送部 3f:電子部品実装基板 3j:排気バルブ 3k=真空ポンプ 二基板ストッカー p
FIG. 1 is a schematic diagram of a heating device in a first embodiment of the present invention, FIG. 2 is a temperature profile in the first embodiment,
3 is a schematic diagram of a heating device according to the second embodiment of the present invention, FIG. 4 is a schematic diagram of a conventional heating device, and FIG. 5 is a temperature profile in FIG. 4. 1-2 la, lb, lc, ld, 1 f, 1 j, lk, 3 l 3a: Vacuum zone vacuum chamber 3b-Reflow zone panel heater 3C: Reflow zone hot air blowing nozzle 3d: Board transport section 3f: Electronic component mounting board 3j: Exhaust valve 3k = vacuum pump two-board stocker p

Claims (4)

【特許請求の範囲】[Claims] (1)導電性接合材料を用いて加熱処理により被処理物
を接合する方法において、まず導電性接合材料を塗布ま
たは載置した被処理物を真空処理し、次いで加熱接合処
理することを特徴とする接合体の製造方法。
(1) A method of bonding workpieces by heat treatment using a conductive bonding material, characterized in that the workpiece coated with or placed on the conductive bonding material is first subjected to vacuum treatment, and then heated and bonded. A method for manufacturing a bonded body.
(2)導電性接合材料を用いて加熱処理により被処理物
を接合する装置において、導電性接合材料を塗布または
載置した被処理物を真空処理する手段と、加熱接合処理
する手段を接続又は分離して設けたことを特徴とする接
合体の製造装置。
(2) In an apparatus for bonding workpieces by heat treatment using a conductive bonding material, a means for vacuum-processing a workpiece coated with or placed on a conductive bonding material and a means for heat-bonding are connected or A manufacturing device for a bonded body, characterized in that it is provided separately.
(3)導電性接合材料を用いて加熱処理により被処理物
を接合する装置において、導電性接合材料を塗布または
載置した被処理物を真空処理する手段と、加熱接合処理
する手段を装置内に設けたことを特徴とする接合体の製
造装置。
(3) In an apparatus for bonding workpieces by heat treatment using a conductive bonding material, a means for vacuum processing the workpiece coated with or placed on the conductive bonding material and a means for heat bonding are provided within the apparatus. An apparatus for manufacturing a bonded body, characterized in that it is provided in a.
(4)被処理物が電子部品であり、導電性接合材料がク
リームはんだ、導電性接着剤、はんだメッキから選ばれ
る少なくとも一種の材料である請求項1,2又は3項い
ずれか記載の接合体の製造方法又はその装置。
(4) The joined body according to claim 1, 2 or 3, wherein the object to be processed is an electronic component and the conductive bonding material is at least one material selected from cream solder, conductive adhesive, and solder plating. manufacturing method or device.
JP203290A 1990-01-08 1990-01-08 Method and apparatus for producing joined body Pending JPH03207573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP203290A JPH03207573A (en) 1990-01-08 1990-01-08 Method and apparatus for producing joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP203290A JPH03207573A (en) 1990-01-08 1990-01-08 Method and apparatus for producing joined body

Publications (1)

Publication Number Publication Date
JPH03207573A true JPH03207573A (en) 1991-09-10

Family

ID=11517993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP203290A Pending JPH03207573A (en) 1990-01-08 1990-01-08 Method and apparatus for producing joined body

Country Status (1)

Country Link
JP (1) JPH03207573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284832A (en) * 1997-04-10 1998-10-23 Alps Electric Co Ltd Reflow soldering device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139170A (en) * 1979-04-17 1980-10-30 Ishikawajima Harima Heavy Ind Co Ltd Continuous vacuum furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139170A (en) * 1979-04-17 1980-10-30 Ishikawajima Harima Heavy Ind Co Ltd Continuous vacuum furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284832A (en) * 1997-04-10 1998-10-23 Alps Electric Co Ltd Reflow soldering device

Similar Documents

Publication Publication Date Title
US5770835A (en) Process and apparatus and panel heater for soldering electronic components to printed circuit board
EP1350588B1 (en) Method of manufacturing semiconductor device
US5222649A (en) Apparatus for soldering a semiconductor device to a circuitized substrate
US5207372A (en) Method for soldering a semiconductor device to a circuitized substrate
US20070170227A1 (en) Soldering method
JPH04504230A (en) Method for manufacturing soldered articles
US20060065431A1 (en) Self-reflowing printed circuit board and application methods
US20130175323A1 (en) Serial thermal linear processor arrangement
US20070246514A1 (en) Method for Reflow Soldering
US8274161B2 (en) Flux-free chip to substrate joint serial linear thermal processor arrangement
JPH03207573A (en) Method and apparatus for producing joined body
JPH01118369A (en) Soldering reflow furnace
JPH05245624A (en) Device and method for reflowing solder
JP3055511B2 (en) Method for manufacturing semiconductor device
JP3121464B2 (en) Bump forming method and bump manufacturing apparatus
JPH0749155B2 (en) Solder melting device with hot air
JPH03109797A (en) Reflow of double-sided mounting board
JP2002290027A (en) Manufacturing method and device for electronic circuit module and semiconductor module
JP3252737B2 (en) Reflow soldering method and work transfer jig
JP2018073902A (en) Reflow device
JP2001308511A (en) Method and device for reflow soldering
JPH0715120A (en) Reflow soldering method
JPH0377772A (en) Method and device for infrared heating type reflow soldering
JP3166752B2 (en) Bare chip mounting system
JPH02281684A (en) Mounting of component