JPH03204983A - Superconductive junction - Google Patents

Superconductive junction

Info

Publication number
JPH03204983A
JPH03204983A JP2000310A JP31090A JPH03204983A JP H03204983 A JPH03204983 A JP H03204983A JP 2000310 A JP2000310 A JP 2000310A JP 31090 A JP31090 A JP 31090A JP H03204983 A JPH03204983 A JP H03204983A
Authority
JP
Japan
Prior art keywords
oxide
superconductor
elements
superconducting
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000310A
Other languages
Japanese (ja)
Inventor
Saburo Tanaka
三郎 田中
Hideo Itozaki
糸崎 秀夫
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000310A priority Critical patent/JPH03204983A/en
Publication of JPH03204983A publication Critical patent/JPH03204983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a superconductive junction which is formed of an oxide superconductor, operable at a high temperature, and excellent in performance by a method wherein a non-superconductor is formed of the oxide of an element selected from Ia elements, IIa elements, lanthanoid elements, and Y. CONSTITUTION:A non-superconductor 3 is formed of the oxide of a Ia element such as Li, Rb, Cs, or the like, or a IIa elements such as Mg, Ca, Sr, Ba, or the like, or a lanthanoid element such as La, Ce, Pr, Nd, or the like, or Y. The above elements are basic, so that the elements concerned are a little reac tive to oxide superconductors 1 and 2 which are also basic and hardly deterio rate the oxide superconductors 1 and 2 at an interface between them. In a tunnel type junction, a non-superconductive layer can be epitaxially grown at a temperature close to a board temperature that an oxide superconductive thin film is formed, so that a first and a second oxide superconductive thin films can be excellent in characteristic and the interface between the oxide superconductive thin film and a non-conductor layer can be excellent in perfor mance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導接合に関する。より詳細には、酸化物
超電導体を用いた新規な構成の超電導接合に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to superconducting junctions. More specifically, the present invention relates to a superconducting junction with a novel configuration using an oxide superconductor.

従来の技術 ジョセフソン接合と称される超電導接合を実現する構成
は各種あるが、最も好ましい構造は、対の超電導体で薄
い非超電導体をはさんだトンネル型の接合である。一般
にこのような超電導接合は素子の形態で実現され、上記
の一対の超電導体および非超電導体は、いわゆる薄膜と
なっている。
Although there are various configurations for realizing a superconducting junction called a Josephson junction, the most preferred structure is a tunnel-type junction in which a thin non-superconductor is sandwiched between a pair of superconductors. Generally, such a superconducting junction is realized in the form of an element, and the above pair of superconductor and non-superconductor is a so-called thin film.

例えば、超電導体に酸化物超電導体を使用してトンネル
型超電導接合を実現する場合には、基板上に第1の酸化
物超電導薄膜、非超電導体薄膜および第2の酸化物超電
導薄膜を順に積層する。
For example, when realizing a tunnel-type superconducting junction using an oxide superconductor as a superconductor, a first oxide superconducting thin film, a non-superconducting thin film, and a second oxide superconducting thin film are laminated in order on a substrate. do.

トンネル型超電導接合における非超電導体の厚さは、超
電導体のコヒーレンス長によって決まる。
The thickness of the non-superconductor in a tunnel-type superconducting junction is determined by the coherence length of the superconductor.

酸化物超電導体は、コヒーレンス長が非常に短いため、
酸化物超電導体を使用したトンネル型超電導接合におい
ては、非超電導体の厚さは数nm程度にしなければなら
ない。
Oxide superconductors have very short coherence lengths, so
In a tunnel-type superconducting junction using an oxide superconductor, the thickness of the non-superconductor must be on the order of several nanometers.

発明が解決しようとする課題 上記のような、非超電導体の薄膜をむらなく形成するの
は困難であるため、酸化物超電導体を使用したトンネル
型超電導接合の作製例は少ない。
Problems to be Solved by the Invention Since it is difficult to uniformly form a thin film of a non-superconductor as described above, there are few examples of producing a tunnel-type superconducting junction using an oxide superconductor.

また、従来のトンネル型超電導接合では、酸化物超電導
体と非超電導体膜との界面の状態が良好でなく所望の特
性が得られなかった。
Furthermore, in conventional tunnel-type superconducting junctions, the interface between the oxide superconductor and the non-superconductor film was not in good condition, and desired characteristics could not be obtained.

そこで、本発明の目的は、上記従来技術の問題点を解決
して、酸化物超電導体を用いた高温で動作し、しかも性
能の優れた超電導接合を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above and provide a superconducting junction using an oxide superconductor that operates at high temperatures and has excellent performance.

課題を解決するための手段 本発明に従うと、一対の酸化物超電導体の間に非超電導
体を挟んだ構造の超電導接合において、前記非超電導体
が周期律表Ia族元素、fJa族元素、ランタノイド元
素およびYのうちから選択されたいずれかの元素の酸化
物であることを特徴とする超電導接合が提供される。
Means for Solving the Problems According to the present invention, in a superconducting junction having a structure in which a non-superconductor is sandwiched between a pair of oxide superconductors, the non-superconductor is an element of group Ia of the periodic table, an element of group fJa, or a lanthanoid. A superconducting junction characterized by being an oxide of any element selected from the elements and Y is provided.

作用 本発明の超電導接合は、酸化物超電導体を用いたいわゆ
るトンネル型の構成であり、非超電導体が、塩基性の元
素である周期律表Ia族元素、■a族元素、ランタノイ
ド元素およびYのうちから選択されたいずれかの元素元
素の酸化物であることをその主要な特徴とする。具体的
には、非超電導体には、い、Rb、 Cs等のIa族元
素の酸化物、Mg、 Ca、 Sr、 Ba等のfla
Ia族元素化物、La、 Ce、Pr、 Nd等のラン
タノイド元素の酸化物、Yの酸化物が用いられる。
Function The superconducting junction of the present invention has a so-called tunnel type structure using an oxide superconductor, and the non-superconductor is a group Ia element of the periodic table, which is a basic element, an a group element, a lanthanide element, and Y. Its main characteristic is that it is an oxide of any element selected from among the following. Specifically, non-superconductors include oxides of Group Ia elements such as I, Rb, and Cs, and fla such as Mg, Ca, Sr, and Ba.
Group Ia element compounds, oxides of lanthanoid elements such as La, Ce, Pr, and Nd, and oxides of Y are used.

上記の元素は、塩基性であり、やはり塩基性である酸化
物超電導体との間で反応性が小さく、特に界面において
酸化物超電導体を劣化させることがない。また、上記の
元素の酸化物の結晶の格子定数は、3.5〜4.4人と
酸化物超電導体結晶の格子定数に近いため、上記の元素
の酸化物で形成した非超電導体層上に酸化物超電導体結
晶をエピタキシャル成長させることも容易である。
The above elements are basic and have low reactivity with the oxide superconductor, which is also basic, and do not deteriorate the oxide superconductor, especially at the interface. In addition, the lattice constants of oxide crystals of the above elements are 3.5 to 4.4, which is close to that of oxide superconductor crystals, so that the non-superconductor layer formed of the oxides of the above elements It is also easy to epitaxially grow oxide superconductor crystals.

さらに、上記の元素の酸化物は、さらに酸素を取り込む
性質が弱いので、隣接する酸化物超電導体から酸素を奪
うことがほとんどない。また、本発明のトンネル型接合
では、非超電導体層を酸化物超電導体薄膜を形成する際
の基板温度に近い温度で、エピタキシャルに成長させる
ことができる。
Furthermore, since the oxides of the above elements have weaker oxygen-taking properties, they hardly take oxygen from the adjacent oxide superconductor. Further, in the tunnel junction of the present invention, the non-superconductor layer can be epitaxially grown at a temperature close to the substrate temperature when forming the oxide superconductor thin film.

本発明の超電導接合では、上記のような非超電導体層の
特性により、第1および第2の酸化物超電導薄膜の特性
、酸化物超電導薄膜と非超電導体層との界面状態が優れ
た高性能なものになる。
In the superconducting junction of the present invention, due to the characteristics of the non-superconducting layer as described above, the characteristics of the first and second oxide superconducting thin films and the interface state between the oxide superconducting thin film and the non-superconducting layer are excellent. Become something.

上言己の酸化物超電導体および非超電導体を用いた場合
、非超電導体層の厚さは1〜4Qnrn程度が好ましく
、2〜5nmがさらに好ましい。このような、本発明の
超電導接合は、スパッタリング法、MBE法等の物理的
蒸着法またはMO−CVD法等の化学的蒸着法を使用し
て作製することができる。
When the above-mentioned oxide superconductor and non-superconductor are used, the thickness of the non-superconductor layer is preferably about 1 to 4 Qnrn, more preferably 2 to 5 nm. Such a superconducting junction of the present invention can be produced using a sputtering method, a physical vapor deposition method such as an MBE method, or a chemical vapor deposition method such as an MO-CVD method.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 本発明の超電導接合の一例の断面図を第1図に示す。第
1図は、超電導接合による素子となっており、MgO単
結晶基板4上に形成された第1の酸化物超電導薄膜1と
、第1の酸化物超電導薄膜1上の右端を除いた部分に形
成された非超電導体薄膜3と、非超電導体薄膜3上に形
成された第2の酸化物超電導薄膜2と、それぞれ第1お
よび第2の酸化物超電導薄膜に接続された端子5および
6とを具備する。
EXAMPLE A cross-sectional view of an example of a superconducting junction according to the present invention is shown in FIG. FIG. 1 shows an element using superconducting bonding, which includes a first oxide superconducting thin film 1 formed on an MgO single crystal substrate 4 and a portion of the first oxide superconducting thin film 1 excluding the right end. The formed non-superconducting thin film 3, the second oxide superconducting thin film 2 formed on the non-superconducting thin film 3, and the terminals 5 and 6 connected to the first and second oxide superconducting thin films, respectively. Equipped with.

上記の超電導接合素子を以下の第1表に示した超電導体
および非超電導体を用いて、MBE法で作製した。いず
れの超電導接合素子も酸化物超電導薄膜1および2の厚
さを400nmとし、非超電導体薄膜3の厚さを5nm
とした。
The above superconducting junction device was fabricated by the MBE method using the superconductors and non-superconductors shown in Table 1 below. In both superconducting junction elements, the thickness of oxide superconducting thin films 1 and 2 is 400 nm, and the thickness of non-superconducting thin film 3 is 5 nm.
And so.

第1表■ 第1表■ さらに、作製したそれぞれの超電導接合素子の元素のプ
ロファイルをマイクロオージェ電子分光測定器(AES
)で測定した。その結果、上記のいずれの超電導接合素
子においても、シャープなプロファイルを示し、非超電
導層の拡散は10nm以内であった。また、RHEED
で結晶性を調べたところ、優れたエピタキンヤル薄膜で
あった。
Table 1■ Table 1■ In addition, the element profiles of each of the fabricated superconducting junction devices were measured using a micro Auger electron spectrometer (AES).
) was measured. As a result, all of the above superconducting junction devices exhibited a sharp profile, and the diffusion of the non-superconducting layer was within 10 nm. Also, RHEED
When the crystallinity was examined, it was found to be an excellent epitaxial thin film.

発明の詳細 な説明したように、本発明の超電導接合は、非超電導体
層を超電導体と結晶構造、格子定数が近い物質で形成し
たトンネル型の構成である。従って、酸化物超電導体を
用いた場合でも適正な厚さの非超電導体層を良好に形成
できる。
As described in detail, the superconducting junction of the present invention has a tunnel type structure in which the non-superconducting layer is formed of a material having a crystal structure and lattice constant similar to those of the superconductor. Therefore, even when an oxide superconductor is used, a non-superconductor layer having an appropriate thickness can be formed satisfactorily.

本発明により、高性能な超電導接合素子が提供され、超
電導技術の電子デバイスへの応用がさらに促進される。
The present invention provides a high-performance superconducting junction element and further promotes the application of superconducting technology to electronic devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の超電導接合の一例を利用した超電導
接合素子の概略断面図である。 〔主な参照番号〕 1.2・・・酸化物超電導体、 3・・・非超電導体、 4・・・基板、 5.6・・・端子
FIG. 1 is a schematic cross-sectional view of a superconducting junction element using an example of the superconducting junction of the present invention. [Main reference numbers] 1.2... Oxide superconductor, 3... Non-superconductor, 4... Substrate, 5.6... Terminal

Claims (1)

【特許請求の範囲】[Claims] 一対の酸化物超電導体の間に非超電導体を挟んだ構造の
超電導接合において、前記非超電導体が周期律表 I a
族元素、IIa族元素、ランタノイド元素およびYのうち
から選択されたいずれかの元素の酸化物であることを特
徴とする超電導接合。
In a superconducting junction having a structure in which a non-superconductor is sandwiched between a pair of oxide superconductors, the non-superconductor is a member of the periodic table Ia.
A superconducting junction characterized in that it is an oxide of any element selected from Group elements, Group IIa elements, lanthanide elements, and Y.
JP2000310A 1990-01-05 1990-01-05 Superconductive junction Pending JPH03204983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310A JPH03204983A (en) 1990-01-05 1990-01-05 Superconductive junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310A JPH03204983A (en) 1990-01-05 1990-01-05 Superconductive junction

Publications (1)

Publication Number Publication Date
JPH03204983A true JPH03204983A (en) 1991-09-06

Family

ID=11470337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310A Pending JPH03204983A (en) 1990-01-05 1990-01-05 Superconductive junction

Country Status (1)

Country Link
JP (1) JPH03204983A (en)

Similar Documents

Publication Publication Date Title
CA2037949C (en) Stacked josephson junction device composed of oxide superconductor material
US5354734A (en) Method for manufacturing an artificial grain boundary type Josephson junction device
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
JPH08264845A (en) Superconducting oxide thin film device
JPH05335637A (en) Josephson junction structure body
JPH03204983A (en) Superconductive junction
US5488030A (en) Superconductor junction structure including two oxide superconductor layers separated by a non-superconducting layer
EP0476617B1 (en) Superconductor junction structure and process for fabricating the same
JPH01101677A (en) Electronic device
JPH01144688A (en) Oxide superconductor thin-film
JP2819871B2 (en) Manufacturing method of superconducting device
JPH04332180A (en) Josephson element
JP2691065B2 (en) Superconducting element and fabrication method
JPH04151883A (en) Superconducting device
JPH03201583A (en) Superconducting bond and manufacture thereof
JPH04152685A (en) Superconducting element
JPH05267736A (en) Element having superconductive junction and manufacturing method thereof
JPH05291632A (en) Superconductive junction structure
JPH0336771A (en) Weak coupling type josephson junction element
JPH05267735A (en) Superconductive junction and element and manufacturing method thereof
JPH0824200B2 (en) Tunnel junction device
JPH0529669A (en) Josephson element
JPH04130678A (en) Superconducting junction
JPH03296283A (en) Josephson junction
JPH04127484A (en) Superconducting junction