JPH03201583A - Superconducting bond and manufacture thereof - Google Patents

Superconducting bond and manufacture thereof

Info

Publication number
JPH03201583A
JPH03201583A JP1341246A JP34124689A JPH03201583A JP H03201583 A JPH03201583 A JP H03201583A JP 1341246 A JP1341246 A JP 1341246A JP 34124689 A JP34124689 A JP 34124689A JP H03201583 A JPH03201583 A JP H03201583A
Authority
JP
Japan
Prior art keywords
oxide
superconductor
superconducting
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1341246A
Other languages
Japanese (ja)
Inventor
Saburo Tanaka
三郎 田中
Hideo Itozaki
糸崎 秀夫
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1341246A priority Critical patent/JPH03201583A/en
Publication of JPH03201583A publication Critical patent/JPH03201583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To operate at a high temperature using oxide superconductor and to provide a superconducting bond having excellent performance by forming a nonsuperconducting layer of oxide of an element selected from Ti, Nb, Mn, Fe and Al and a part of the superconductor in contact with the oxide of the element from which superconducting properties are deprived. CONSTITUTION:A first oxide superconducting thin film 1 formed on an MgO single crystalline substrate 4, a nonsuperconductor layer 3 formed on a part except the right end on the film 1, a second oxide superconducting thin film 2 formed on the layer 3, and terminals 5, 6 connected to the first and second thin films are provided. Metals Ti, Nb, Mn, Fe or Al deposited on the first superconductor in a oxygen atmosphere to form a nonsuperconducting layer. Accordingly, the metal element reduces the part of the boundary of the superconductor to be deposited for the purpose of obtaining nonsuperconductor. The element layer may be extremely thin, and may not be completely continuously formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導接合および作製方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to superconducting junctions and manufacturing methods.

より詳細には、酸化物超電導体を用いた新規な横絞の超
電導接合および作製方法に関する。
More specifically, the present invention relates to a novel horizontally drawn superconducting junction using an oxide superconductor and a manufacturing method.

従来の技術 ジョセフソン接合と称される超電導接合を実現する構成
は各種あるが、最も好ましい構造は、対の超電導体で薄
い非超電導体をはさんだトンネル型の接合である。一般
にこのような超電導接合は素子の形態で実現され、上記
の一対の超電導体および非超電導体は、いわゆる薄膜と
なっている。
Although there are various configurations for realizing a superconducting junction called a Josephson junction, the most preferred structure is a tunnel-type junction in which a thin non-superconductor is sandwiched between a pair of superconductors. Generally, such a superconducting junction is realized in the form of an element, and the above pair of superconductor and non-superconductor is a so-called thin film.

例えば、超電導体に酸化物超電導体を使用してトンネル
型超電導接合を実現する場合には、基板上に第1の酸化
物超電導薄膜、非超電導体薄膜および第2の酸化物超電
導薄膜を順に積層する。
For example, when realizing a tunnel-type superconducting junction using an oxide superconductor as a superconductor, a first oxide superconducting thin film, a non-superconducting thin film, and a second oxide superconducting thin film are laminated in order on a substrate. do.

トンネル型超電導接合における非超電導体の厚さは、超
電導体のコヒーレンス長によって決まる。
The thickness of the non-superconductor in a tunnel-type superconducting junction is determined by the coherence length of the superconductor.

酸化物超電導体は、コヒーレンス長が非常に短いため、
酸化物超電導体を使用したトンネル型超電導接合におい
ては、非超電導体の厚さは数nm程度にしなければなら
ない。
Oxide superconductors have very short coherence lengths, so
In a tunnel-type superconducting junction using an oxide superconductor, the thickness of the non-superconductor must be on the order of several nanometers.

発明が解決しようとする課題 上記のような、非超電導体の薄膜をむらなく形成するの
は困難であるため、酸化物超電導体を使用したトンネル
型超電導接合の作製例は少ない。
Problems to be Solved by the Invention Since it is difficult to uniformly form a thin film of a non-superconductor as described above, there are few examples of producing a tunnel-type superconducting junction using an oxide superconductor.

また、従来のトンネル型超電導接合では、酸化物超電導
体と非超電導体膜との界面の状態が良好でなく所望の特
性が得られなかった。
Furthermore, in conventional tunnel-type superconducting junctions, the interface between the oxide superconductor and the non-superconductor film was not in good condition, and desired characteristics could not be obtained.

そこで、本発明の目的は、上記従来技術の問題点を解決
して、酸化物超電導体を用いた高温で動作し、しかも性
能の優れた超電導接合を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above and provide a superconducting junction using an oxide superconductor that operates at high temperatures and has excellent performance.

課題を解決するための手段 本発明に従うと、第1および第2の酸化物超電導体の間
に挟まれた非超電導体層を具備する超電導接合において
、前記非超電導体層が、Ti、 Nb、Mn5Feおよ
びAlのうちから選択されたいずれかの元素の酸化物と
、該元素の酸化物に接する前記酸化物超電導体の超電導
性を失った部分で形成されていることを特徴とする超電
導接合が提供される。
Means for Solving the Problems According to the present invention, in a superconducting junction comprising a non-superconducting layer sandwiched between first and second oxide superconductors, the non-superconducting layer comprises Ti, Nb, A superconducting junction characterized in that it is formed of an oxide of any element selected from Mn5Fe and Al and a portion of the oxide superconductor that is in contact with the oxide of the element and has lost superconductivity. provided.

また、本発明では、上記超電導接合を形成する方法とし
て金属Ti、金属Nb、金属Mn、金属Feまたは金属
Alを酸素雰囲気下で前記第1の酸化物超電導体上に蒸
着させ、前記非超電導体層を形成することを特徴とする
超電導接合の作製方法が提供される。
Further, in the present invention, as a method for forming the superconducting junction, metal Ti, metal Nb, metal Mn, metal Fe, or metal Al is deposited on the first oxide superconductor in an oxygen atmosphere, and the non-superconductor A method for producing a superconducting junction is provided, the method comprising forming a layer.

作用 本発明の超電導接合は、酸化物超電導体を用いたいわゆ
るトンネル型の構成であり、非超電導体層が、被酸化性
の強い元素であるTi、 Nb、 Mn、 Feおよび
Alのうちから選択されたいずれかの元素の酸化物およ
びこの元素の酸化物に接する酸化物超電導体の超電導性
を失った部分で形成されていることをその主要な特徴と
する。
Function The superconducting junction of the present invention has a so-called tunnel type structure using an oxide superconductor, and the non-superconducting layer is made of highly oxidizable elements selected from among Ti, Nb, Mn, Fe, and Al. Its main feature is that it is formed of an oxide of any element that has been added to the oxide layer, and a portion of an oxide superconductor that is in contact with the oxide of this element and has lost its superconductivity.

また、本発明の方法では、金属Ti、金属Nb、金属M
n、金属Feまたは金属Alを酸素雰囲気下で前記第1
の酸化物超電導体上に蒸着させて、非超電導体層を形成
する。本発明の方法では、上記の各金属元素が、第1の
酸化物超電導体上に堆積する時点では1.完全に酸化さ
れていない状態とする。上記の金属元素は、被酸化性が
強いので、酸化物超電導体と接すると、安定な酸化状態
になるまで酸化物超電導体から酸素を取り込む(酸素ゲ
ッター効果)。従って、酸化物超電導体の界面の部分は
還元され、超電導性を失い、非超電導体層となる。
Further, in the method of the present invention, metal Ti, metal Nb, metal M
n, the first metal Fe or metal Al in an oxygen atmosphere
oxide superconductor to form a non-superconductor layer. In the method of the present invention, each of the above metal elements is deposited on the first oxide superconductor at a time of 1. It should be completely unoxidized. The above metal elements have strong oxidizability, so when they come into contact with an oxide superconductor, they take in oxygen from the oxide superconductor until a stable oxidation state is reached (oxygen getter effect). Therefore, the interface portion of the oxide superconductor is reduced, loses superconductivity, and becomes a non-superconductor layer.

本発明の超電導接合では、非超電導体層を、主に上記の
酸化物超電導体の超電導性を失った部分で構成している
。すなわち、上記の金属元素は、酸化物超電導体の界面
の部分を還元し、非超電導体とする目的で蒸着させる。
In the superconducting junction of the present invention, the non-superconductor layer is mainly composed of the portion of the oxide superconductor that has lost its superconductivity. That is, the above metal element is deposited for the purpose of reducing the interface portion of the oxide superconductor and making it a non-superconductor.

従って、上記金属元素の層は極めて薄くてよく、また完
全に連続に形成されていなくてもよい。
Therefore, the layer of the metal element may be extremely thin and may not be completely continuous.

本発明の方法では、上記の金属元素の堆積時の酸化状態
を調整することにより、酸化物超電導体の超電導性を失
った部分の厚さを制御する。この方法によれば、正確に
非超電導体層の厚さを制御できる。上記の金属元素の堆
積時の酸化状態を調整する具体的な方法としては、例え
ば高周波スパッタリング法で上記の金属元素を蒸着する
ときは、高周波出力を調整する。
In the method of the present invention, the thickness of the portion of the oxide superconductor that has lost its superconductivity is controlled by adjusting the oxidation state of the metal element during deposition. According to this method, the thickness of the non-superconductor layer can be accurately controlled. As a specific method for adjusting the oxidation state of the metal element during deposition, for example, when depositing the metal element by high frequency sputtering, the high frequency output is adjusted.

本発明の超電導接合では、上記のように主に酸化物超電
導体の一部で非超電導体層を形成するので、第1および
第2の酸化物超電導体の特性、酸化物超電導体と非超電
導体層との界面状態が優れた高性能なものになる。
In the superconducting junction of the present invention, as described above, the non-superconductor layer is mainly formed from a part of the oxide superconductor, so the characteristics of the first and second oxide superconductors, the oxide superconductor and the non-superconductor layer are The result is a high-performance product with excellent interface conditions with the body layer.

本発明の超電導接合には、任意の酸化物超電導体が使用
可能であるが、特に臨界温度、臨界電流密度が高いこと
から、Y+BazCu+ 07−x系酸化物超電導体、
Bi、5r2Ca、Cu、OX系酸化物超電導体または
T12Ba2Ca2Cu30x系酸化物超電導体等が好
ましい。
Any oxide superconductor can be used for the superconducting junction of the present invention, but Y+BazCu+ 07-x-based oxide superconductors, especially Y+BazCu+ 07-x-based oxide superconductors, have a high critical temperature and high critical current density.
Bi, 5r2Ca, Cu, OX-based oxide superconductors or T12Ba2Ca2Cu30x-based oxide superconductors are preferred.

上記の酸化物超電導体および非超電導体を用いた場合、
非超電導体層の厚さは1〜40nm程度が好ましく、2
〜5nmがさらに好ましい。このような、本発明の超電
導接合は、スパッタリング法、MBE法等の物理的蒸着
法またはMO−CVD法等の化学的蒸着法を使用して作
製することができる。
When using the above oxide superconductor and non-superconductor,
The thickness of the non-superconductor layer is preferably about 1 to 40 nm, and 2
~5 nm is more preferred. Such a superconducting junction of the present invention can be produced using a sputtering method, a physical vapor deposition method such as an MBE method, or a chemical vapor deposition method such as an MO-CVD method.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技1ホテ的範囲をなんら制限するものではない。
Hereinafter, the present invention will be explained in more detail with reference to examples, but the following disclosure is merely an example of the present invention, and does not limit the technical scope of the present invention in any way.

実施例 本発明の超電導接合の一例の断面図を第1図に示す。第
1図は、超電導接合による素子となっており、Mg○単
結晶基板4上に形成された第1の酸化物超電導薄膜lと
、第1の酸化物超電導薄膜1上の右端を除いた部分に形
成された非超電導体層3と、非超電導体層3上に形成さ
れた第2の酸化物超電導薄膜2と、それぞれ第1および
第2の酸化物超電導薄膜に接続された端子5および6と
を具備する。
EXAMPLE A cross-sectional view of an example of a superconducting junction according to the present invention is shown in FIG. FIG. 1 shows an element using superconducting bonding, and shows a first oxide superconducting thin film l formed on an Mg○ single crystal substrate 4 and a portion of the first oxide superconducting thin film 1 excluding the right end. a non-superconductor layer 3 formed on the non-superconductor layer 3, a second oxide superconductor thin film 2 formed on the non-superconductor layer 3, and terminals 5 and 6 connected to the first and second oxide superconductor thin films, respectively. and.

上記の超電導接合素子の以下の第1〜3表に示した超電
導体および金属元素を用いて、MBE法で作製した。い
ずれの超電導接合素子も酸化物超電導薄膜1および2の
厚さを400nmとした。また、非超電導体層3は、第
1の超電導薄膜lの超電導性を失った部分11、金属酸
化物層31および第2の超電導薄膜2の超電導性を失っ
た部分21からなり、その厚さは、3nmとした。
The above-mentioned superconducting junction device was fabricated by the MBE method using the superconductors and metal elements shown in Tables 1 to 3 below. In each superconducting junction element, the thickness of the oxide superconducting thin films 1 and 2 was 400 nm. The non-superconducting layer 3 is composed of a portion 11 of the first superconducting thin film l that has lost superconductivity, a metal oxide layer 31, and a portion 21 of the second superconducting thin film 2 that has lost its superconductivity, and its thickness is was set to 3 nm.

第1表 第2表 第3表 さらに、作製したそれぞれの超電導接合素子の元素のプ
ロファイルをマイクロオージェ電子分光分析装置(AE
S>で測定した。その結果、T1、Nb、 Mn、 F
e5Alいずれの場合も金属膜の前後5nmにわたり酸
化物超電導薄膜中の酸素が欠損しており、金属膜が酸化
されていることがわかった。
Table 1 Table 2 Table 3 Furthermore, the element profiles of each of the fabricated superconducting junction devices were measured using a micro Auger electron spectrometer (AE).
Measured at S>. As a result, T1, Nb, Mn, F
In both cases of e5Al, oxygen was deficient in the oxide superconducting thin film over 5 nm before and after the metal film, indicating that the metal film was oxidized.

発明の詳細 な説明したように、本発明の超電導接合は、非超電導体
層を主に酸化物超電導体の超電導性を失った部分で構成
している。従って、酸化物超電導体を用いた場合でも適
正な厚さの非超電導体層を良好に形成できる。
As described in detail, in the superconducting junction of the present invention, the non-superconductor layer is mainly composed of a portion of an oxide superconductor that has lost its superconductivity. Therefore, even when an oxide superconductor is used, a non-superconductor layer having an appropriate thickness can be formed satisfactorily.

本発明により、高性能な超電導接合素子が提供され、超
電導技術の電子デバイスへの応用がさらに促進される。
The present invention provides a high-performance superconducting junction element and further promotes the application of superconducting technology to electronic devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の超電導接合の一例を利用した超電導
接合素子の概略断面図である。 〔主な参照番号〕 1.2・・・酸化物超電導体、 3・・・非超電導体層、 4・・・基板、 5.6・・・端子
FIG. 1 is a schematic cross-sectional view of a superconducting junction element using an example of the superconducting junction of the present invention. [Main reference numbers] 1.2... Oxide superconductor, 3... Non-superconductor layer, 4... Substrate, 5.6... Terminal

Claims (2)

【特許請求の範囲】[Claims] (1)第1および第2の酸化物超電導体の間に挟まれた
非超電導体層を具備する超電導接合において、前記非超
電導体層が、Ti、Nb、Mn、FeおよびAlのうち
から選択されたいずれかの元素の酸化物と、該元素の酸
化物に接する前記酸化物超電導体の超電導性を失った部
分で形成されていることを特徴とする超電導接合。
(1) In a superconducting junction comprising a non-superconducting layer sandwiched between first and second oxide superconductors, the non-superconducting layer is selected from Ti, Nb, Mn, Fe, and Al. A superconducting junction characterized in that it is formed of an oxide of any of the elements and a portion of the oxide superconductor that is in contact with the oxide of the element and has lost superconductivity.
(2)請求項1に記載の超電導接合を作製する方法にお
いて、金属Ti、金属Nb、金属Mn、金属Feまたは
金属Alを酸素雰囲気下で前記第1の酸化物超電導体上
に蒸着させ、前記非超電導体層を形成することを特徴と
する超電導接合の作製方法。
(2) In the method for producing a superconducting junction according to claim 1, metal Ti, metal Nb, metal Mn, metal Fe, or metal Al is deposited on the first oxide superconductor in an oxygen atmosphere, and the A method for producing a superconducting junction characterized by forming a non-superconducting layer.
JP1341246A 1989-12-28 1989-12-28 Superconducting bond and manufacture thereof Pending JPH03201583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1341246A JPH03201583A (en) 1989-12-28 1989-12-28 Superconducting bond and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1341246A JPH03201583A (en) 1989-12-28 1989-12-28 Superconducting bond and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03201583A true JPH03201583A (en) 1991-09-03

Family

ID=18344538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1341246A Pending JPH03201583A (en) 1989-12-28 1989-12-28 Superconducting bond and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03201583A (en)

Similar Documents

Publication Publication Date Title
EP0276746B1 (en) Superconducting device
JPH05335638A (en) Josephson junction structure body and manufacture thereof
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
JPH03201583A (en) Superconducting bond and manufacture thereof
JPH0472777A (en) Substrate for superconducting device
EP0494830B1 (en) Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
JP2644284B2 (en) Superconducting element
JP2680949B2 (en) Method for manufacturing superconducting field effect device
JPH02391A (en) Superconductive field-effect transistor
JP2647251B2 (en) Superconducting element and fabrication method
JP2691065B2 (en) Superconducting element and fabrication method
JP2667289B2 (en) Superconducting element and fabrication method
JPH06291374A (en) Josephson junction element
JP2599500B2 (en) Superconducting element and fabrication method
JP2599498B2 (en) Superconducting element and fabrication method
JPH03204983A (en) Superconductive junction
JPH05190926A (en) Forming method of superconducting device and superconducting device formed by the same
JPH05267736A (en) Element having superconductive junction and manufacturing method thereof
JPH05267735A (en) Superconductive junction and element and manufacturing method thereof
JPH05114755A (en) Josephson junction device and manufacture thereof
JPH02264486A (en) Superconductive film weakly coupled element
JPH0529669A (en) Josephson element
JPH04118978A (en) Superconducting element and manufacture thereof
JPH04130678A (en) Superconducting junction
JPH0249481A (en) Oxide josephson junction device