JPH04152685A - Superconducting element - Google Patents

Superconducting element

Info

Publication number
JPH04152685A
JPH04152685A JP2278498A JP27849890A JPH04152685A JP H04152685 A JPH04152685 A JP H04152685A JP 2278498 A JP2278498 A JP 2278498A JP 27849890 A JP27849890 A JP 27849890A JP H04152685 A JPH04152685 A JP H04152685A
Authority
JP
Japan
Prior art keywords
superconducting
layer
thin film
oxide
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2278498A
Other languages
Japanese (ja)
Inventor
Ryuki Nagaishi
竜起 永石
Saburo Tanaka
三郎 田中
Hideo Itozaki
糸崎 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2278498A priority Critical patent/JPH04152685A/en
Publication of JPH04152685A publication Critical patent/JPH04152685A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form the whole element integrally so as to enable it to be easily formed and stabilized in characteristic by a method wherein a layer of material which diffuses into an oxide superconductor to turn it into a non-superconductor is formed, and a non-superconducting layer is formed of an oxide superconductor which is turned non-superconductive by the diffusion of the material concerned. CONSTITUTION:A superconducting element is formed of an oxide superconducting thin film 10 provided onto a board 4 provided with an Si layer 40 on its surface. The oxide superconducting thin film 10 provided onto a part other than the Si layer 40 is formed into superconducting layers 1 and 2 made of crystal orientated in a C axis. Si atoms are diffused into the oxide superconducting thin film 10 adjacent to the Si layer 40 to partially turn the film 10 into a non-superconducting layer 3. The oxide superconducting thin film 10 is extremely small in thickness at a part 20 located on the side face of the Si layer 40, and the superconducting layers 1 and 2 are made to constitute a superconductive junction at the part 20 concerned. This superconducting element can be formed without laminating a non-superconducting thin film or the like on an oxide superconducting thin film. The superconducting element is formed of an oxide superconducting thin film originally formed in one piece, so that an interface between a superconducting layer and a non-superconducting layer can be formed very sharp.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導素子に関する。より詳細には、酸化物
超電導体による超電導層とこの超電導層に隣接する非超
電導層を具備する超電導素子の新規な構成に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to superconducting elements. More specifically, the present invention relates to a novel structure of a superconducting element comprising a superconducting layer made of an oxide superconductor and a non-superconducting layer adjacent to the superconducting layer.

従来の技術 酸化物超電導体を超電導素子に使用する場合、酸化物超
電導体層を非超電導体、半導体等の層と積層した構造と
することが必要となる。例えば、トンネル型ジョセフソ
ン接合と称される超電導接合を酸化物超電導体を使用し
て実現する場合、第1の酸化物超電導体層、非超電導体
層および第2の酸化物超電導体層が順に積層された構成
としなければならない。
BACKGROUND ART When using an oxide superconductor in a superconducting element, it is necessary to have a structure in which an oxide superconductor layer is laminated with a layer of a non-superconductor, a semiconductor, or the like. For example, when a superconducting junction called a tunnel Josephson junction is realized using an oxide superconductor, a first oxide superconductor layer, a non-superconductor layer, and a second oxide superconductor layer are sequentially formed. It shall be of laminated construction.

上記のトンネル型ジョセフソン接合において、非超電導
体層の厚さは、超電導体のコヒーレンス長によって決ま
る。酸化物超電導体は、コヒーレンス長が非常に短いた
め、酸化物超電導体を使用したトンネル型ジョセフソン
接合では、非超電導体層の厚さを数nrn程度にしなけ
ればならない。
In the tunnel Josephson junction described above, the thickness of the non-superconductor layer is determined by the coherence length of the superconductor. Since an oxide superconductor has a very short coherence length, in a tunnel-type Josephson junction using an oxide superconductor, the thickness of the non-superconductor layer must be approximately several nanometers.

一方、素子としての特性を考慮すると、上記の各層の結
晶性がよ(なければならない。即ち、全ての層が単結晶
で形成されていることが好ましく、多結晶またはアモル
ファスの層がある場合には、ジョセフソン素子の性能は
安定しない。
On the other hand, considering the characteristics of the device, each of the above layers must have good crystallinity. In other words, it is preferable that all the layers be formed of single crystal, and if there is a polycrystalline or amorphous layer, The performance of the Josephson element is not stable.

上記のトンネル型ジョセフソン素子だけでなく、酸化物
超電導体と半導体を組み合わせた超電導トランジスタ等
の素子でも同様に各層が単結晶で構成されていることが
要求される。
Not only the above-mentioned tunnel-type Josephson device, but also devices such as superconducting transistors that combine oxide superconductors and semiconductors are similarly required to have each layer composed of a single crystal.

発明が解決しようとする課題 従来の酸化物超電導体を用いたトンネル型ジョセフソン
素子は、適当な基板上に第1の酸化物超電導薄膜、非超
電導体薄膜、第2の酸化物超電導薄膜を順に積層するこ
とで実現されていた。従って、優れた特性の素子を作製
するには、酸化物超電導薄膜上に数nmの厚さの単結晶
の非超電導体薄膜を形成することが必要であった。
Problems to be Solved by the Invention A conventional tunnel-type Josephson device using an oxide superconductor is produced by sequentially depositing a first oxide superconducting thin film, a non-superconducting thin film, and a second oxide superconducting thin film on a suitable substrate. This was achieved by layering. Therefore, in order to produce a device with excellent characteristics, it is necessary to form a single crystal non-superconducting thin film several nanometers thick on an oxide superconducting thin film.

しかしながら、酸化物超電導薄膜上に結晶性のよい他の
材料の薄膜を作製することは困難であり、そのため、そ
の上に積層する第2の酸化物超電導薄膜の結晶性も悪か
った。
However, it is difficult to produce a thin film of another material with good crystallinity on the oxide superconducting thin film, and therefore the crystallinity of the second oxide superconducting thin film laminated thereon is also poor.

また、上記従来の方法で作製した従来の構成のトンネル
型ジョセフソン接合では、酸化物超電導薄膜と非超電導
体薄膜との界面の状態が良好でなく所望の特性が得られ
なかった。
Further, in the tunnel type Josephson junction of the conventional configuration produced by the above-mentioned conventional method, the interface between the oxide superconducting thin film and the non-superconducting thin film was not in good condition, and desired characteristics could not be obtained.

そこで、本発明の目的は、上記従来技術の問題点を解法
した、新規な構成の超電導素子を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a superconducting element with a novel configuration that solves the problems of the prior art described above.

課頭を解決するための手段 本発明に従うと、基板上に形成された酸化物超電導体で
構成された超電導層と該超電導層に隣接する非超電導層
とを有する超電導素子において、基板上の一部に前記酸
化物超電導体中に拡散して超電導性を失わせる物質の層
が形成され、前記非超電導層が前記物質が拡散して超電
導性を失った酸化物超電導体で構成されていることを特
徴とする超電導素子が提供される。
Means for Solving Problems According to the present invention, in a superconducting element having a superconducting layer made of an oxide superconductor formed on a substrate and a non-superconducting layer adjacent to the superconducting layer, one layer on the substrate is A layer of a substance that diffuses into the oxide superconductor and loses its superconductivity is formed in the oxide superconductor, and the non-superconducting layer is composed of an oxide superconductor in which the substance diffuses and loses its superconductivity. A superconducting element is provided.

作用 本発明の超電導素子は、酸化物超電導体による超電導層
および非超電導層が同一の基板上に隣接して配置されて
いる。本発明の超電導素子では、基板の一部に酸化物超
電導体中に拡散しやすく、酸化物超電導体の超電導性を
失わせる物質の層が形成されている。この層から酸化物
超電導薄膜中に拡散した物質により、酸化物超電導薄膜
の一部が非超電導層に変わっている。上記の物質は、成
膜中に酸化物超電導薄膜内に拡散してしまう程度に拡散
しやすいことが好ましい。このような物質としては、例
えば、Sl、Ge、 AI等が好ましい。
Function: In the superconducting element of the present invention, a superconducting layer made of an oxide superconductor and a non-superconducting layer are arranged adjacent to each other on the same substrate. In the superconducting element of the present invention, a layer of a substance that easily diffuses into the oxide superconductor and causes the oxide superconductor to lose its superconductivity is formed on a portion of the substrate. Due to the substances diffused into the oxide superconducting thin film from this layer, a part of the oxide superconducting thin film turns into a non-superconducting layer. It is preferable that the above-mentioned substance is easily diffused to the extent that it is diffused into the oxide superconducting thin film during film formation. As such a substance, for example, Sl, Ge, AI, etc. are preferable.

上記のような構成を有する本発明の超電導素子は、もと
もと一体に形成した酸化物超電導薄膜で構成されている
。また、超電導層と非超電導層との界面が非常にシャー
プに形成される。
The superconducting element of the present invention having the above-described configuration is originally composed of an oxide superconducting thin film formed integrally. Furthermore, the interface between the superconducting layer and the non-superconducting layer is formed to be very sharp.

上記の本発明の超電導素子を、例えばジョセフソン素子
とする場合には、上記の物質の層が幅1μm程度の線状
であることが好ましい。また、層の厚さは5Qnm程度
であることが好ましい。酸化物超電導体でジョセフソン
素子を作製する場合、必要なトンネル障壁の非超電導層
の厚さは5nm程度である。本発明の超電導素子では上
述のように非超電導層を拡散により形成するため、薄膜
が成長するに従い拡散物質の濃度が低くなる。従って、
本発明の方法ではトンネル障壁の非超電導部分を酸化物
超電導薄膜のエツジ部分20にすることになる。このた
め、2つのエツジにおける酸化物超電導薄膜の膜厚は、
異なっている必要がある。
When the superconducting element of the present invention described above is, for example, a Josephson element, it is preferable that the layer of the above-mentioned substance has a linear shape with a width of about 1 μm. Further, the thickness of the layer is preferably about 5Q nm. When manufacturing a Josephson device using an oxide superconductor, the thickness of the non-superconducting layer of the necessary tunnel barrier is about 5 nm. In the superconducting element of the present invention, since the non-superconducting layer is formed by diffusion as described above, the concentration of the diffusing substance decreases as the thin film grows. Therefore,
In the method of the present invention, the non-superconducting portion of the tunnel barrier is the edge portion 20 of the oxide superconducting thin film. Therefore, the thickness of the oxide superconducting thin film at the two edges is
It needs to be different.

本発明の超電導素子には、任意の酸化物超電導体が使用
できるが、Y 、Ba2Cu、、 07−8系酸化物超
電導体は安定的に高品質の結晶性のよい薄膜が得らレル
ノテ好ましい。また、Bi25r2Ca、(:u、 O
X系酸化物超電導体は、特にその超電導臨界温度Tcが
高いので好ましい。
Although any oxide superconductor can be used in the superconducting element of the present invention, Y2, Ba2Cu, and 07-8-based oxide superconductors are preferred because they can stably produce high-quality thin films with good crystallinity. Also, Bi25r2Ca, (:u, O
X-based oxide superconductors are particularly preferred because their superconducting critical temperature Tc is high.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 第1図に、本発明の超電導素子の一例の概略断面図を示
す。第1図の超電導素子は、ジョセフソン素子であり、
表面にSi層40を有する基板4上に形成された酸化物
超電導薄膜10で構成されている。
Embodiment FIG. 1 shows a schematic cross-sectional view of an example of a superconducting element of the present invention. The superconducting element in Figure 1 is a Josephson element,
It consists of an oxide superconducting thin film 10 formed on a substrate 4 having a Si layer 40 on its surface.

基板4の表面のS1層40近傍以外の部分の酸化物超電
導薄膜10は、C軸配向の結晶で構成された超電導層1
.2となっている。また、基板4の表面のS1層40近
傍の酸化物超電導薄膜10にはS1原子が拡散し、非超
電導層3になっている。酸化物超電導薄膜10は、Si
層40側面上の部分20の厚さが極めて薄く、超電導層
1.2はこの部分20で超電導接合されている。
The oxide superconducting thin film 10 on the surface of the substrate 4 other than the vicinity of the S1 layer 40 is a superconducting layer 1 composed of C-axis oriented crystals.
.. 2. Furthermore, S1 atoms diffuse into the oxide superconducting thin film 10 near the S1 layer 40 on the surface of the substrate 4, forming a non-superconducting layer 3. The oxide superconducting thin film 10 is made of Si
The thickness of the portion 20 on the side surface of the layer 40 is extremely thin, and the superconducting layer 1.2 is superconductingly bonded in this portion 20.

作製例1 本発明の超電導素子を作製した。基板にはMgO単結晶
基板を用い、酸化物超電導体にはY1Ba2CU3Ch
−xを使用した。第2図(a)〜(C)全参照して、作
製手順を説明する。
Production Example 1 A superconducting element of the present invention was produced. An MgO single crystal substrate is used for the substrate, and Y1Ba2CU3Ch is used for the oxide superconductor.
-x was used. The manufacturing procedure will be described with full reference to FIGS. 2(a) to 2(C).

まず、第2図(a)に示すようMg0(100)基板4
の表面に第2図ら)に示すよう素子の全幅にわたる長さ
で、幅1μm1厚さ0.2 μmのSi層40を真空蒸
着法で形成する。蒸着条件を以下に示す。
First, as shown in FIG. 2(a), a Mg0 (100) substrate 4
A Si layer 40 having a width of 1 μm and a thickness of 0.2 μm is formed by vacuum evaporation over the entire width of the device as shown in FIG. The vapor deposition conditions are shown below.

基板温度   600℃ 圧   力  I X1O−6Torr蒸着速度   
10人/秒 第2図(C)に示すよう、表面にSi層40を具備する
基板4上に酸化物超電導薄膜を形成した。Y、Baおよ
び[Uを原子比1:2:4.5で含む焼結体をターゲッ
トに用いて、オファクシススバッタリング法により、基
板4表面のSi層40以外の部分上にC軸配向の酸化物
超電導薄膜が100 r+mの厚さに成長するように成
膜を行った。オファクシススバッタリング法を使用した
のは、酸化物超電導薄膜の81層40上に形成される部
分のエツジが異なる膜厚となるようにするためである。
Substrate temperature 600℃ Pressure I X1O-6Torr Vapor deposition rate
As shown in FIG. 2(C), an oxide superconducting thin film was formed on a substrate 4 having a Si layer 40 on its surface. Using a sintered body containing Y, Ba, and [U in an atomic ratio of 1:2:4.5 as a target, C-axis orientation is formed on a portion of the surface of the substrate 4 other than the Si layer 40 by an oxidation sputtering method. The oxide superconducting thin film was grown to a thickness of 100 r+m. The reason why the off-axis sputtering method was used is to make the edges of the oxide superconducting thin film formed on the 81 layer 40 have different thicknesses.

本実施例では、酸化物超電導薄膜のS1層40の側面上
の部分20が極約で薄くなるように成膜を行った。以下
にスパッタリングの条件を示す。
In this example, the oxide superconducting thin film was formed so that the portion 20 on the side surface of the S1 layer 40 was extremely thin. The sputtering conditions are shown below.

基板温度 630℃ スパッタリングガス Ar  8SCCM024SCC
M 圧力   5 X 1O−2Torr 上記の条件で形成した酸化物超電導薄膜は、基板4表面
のSi層40の近傍以外の部分はC軸配向の結晶で構成
され、基板4のSi層40近傍には、Siが、2Qnm
程度の範囲に拡散していた。また、85Kに冷却し、周
波数10 G Hz、出力0.1mWのマイクロ波を印
加したところ、20.7μVの倍数の電圧点でシャピロ
ステップが観測され、ジョセフソン結合が実現している
ことが確認された。
Substrate temperature 630℃ Sputtering gas Ar 8SCCM024SCC
M Pressure 5 , Si is 2Qnm
It had spread to a certain extent. Furthermore, when it was cooled to 85K and microwaves with a frequency of 10 GHz and an output of 0.1 mW were applied, a Shapiro step was observed at a voltage point that is a multiple of 20.7 μV, confirming that Josephson coupling was realized. It was done.

作製例2 Bi2Sr2Ca2Cu308超電導体を使用し、作製
例1と同様の方法により第1図に示す本発明の超電導素
子を作製した。基板には、5rTiO3(100)基板
を使用した。作製例1同様に基板の表面に素子の全幅に
わたる長さで、幅1μm、厚さ0.2μmのSi層を真
空蒸着法で形成する。蒸着条件を以下に示す。
Preparation Example 2 A superconducting element of the present invention shown in FIG. 1 was prepared in the same manner as in Preparation Example 1 using a Bi2Sr2Ca2Cu308 superconductor. A 5rTiO3 (100) substrate was used as the substrate. As in Preparation Example 1, a Si layer having a width of 1 μm and a thickness of 0.2 μm is formed over the entire width of the device on the surface of the substrate by vacuum evaporation. The vapor deposition conditions are shown below.

基板温度   600℃ 圧   力  I XIO’Torr 蒸着速度   10人/秒 31層を形成した基板上に、Bi、 Sr、 Caおよ
びCuを原子比2:2:2:3で含む焼結体をターゲッ
トに用いたオファクシススバッタリング法で8+2Sr
2Ca2Cu3 ON酸化物超電導薄膜を形成した。
Substrate temperature: 600°C Pressure: I 8+2Sr by the ophaxis battering method used.
A 2Ca2Cu3ON oxide superconducting thin film was formed.

スパッタリング条件を以下に示す。The sputtering conditions are shown below.

基板温度 650℃ スパッタリングガス Ar  83CCM○24SCC
M 圧力   5 X 10−2Torr 上記の条件で形成した酸化物超電導薄膜は、基板表面の
S1層の近傍以外はC軸配向の結晶で構成され、基板の
Si層近傍には、slが20層m程度の範囲に拡散して
いた。また、90Kに冷却し、周波数15GHz、出力
0.1mWのマイクロ波を印加したところ、31μVの
倍数の電圧点でシャピロステップが観測され、ジョセフ
ソン結合が実現していることが確認された。
Substrate temperature 650℃ Sputtering gas Ar 83CCM○24SCC
M Pressure 5 X 10-2 Torr The oxide superconducting thin film formed under the above conditions is composed of C-axis oriented crystals except for the vicinity of the S1 layer on the substrate surface, and there are 20 layers of SL in the vicinity of the Si layer of the substrate. It had spread to a certain extent. Furthermore, when it was cooled to 90 K and microwaves with a frequency of 15 GHz and an output of 0.1 mW were applied, a Shapiro step was observed at a voltage point that is a multiple of 31 μV, confirming that Josephson coupling was realized.

発明の詳細 な説明したように、本発明の超電導素子は、酸化物超電
導薄膜の一部を非超電導層に変えた構成となっている。
As described in detail, the superconducting element of the present invention has a structure in which a part of the oxide superconducting thin film is replaced with a non-superconducting layer.

従って、従来のように酸化物超電導薄膜上に非超電導体
薄膜等を積層することなく作製可能である。本発明の方
法に従って、本発明の超電導素子を作製すると、全体を
一体に形成するので、作製が容易であるだけでなく、特
性も安定している。さらに、非超電導層は、酸化物超電
導体に近い酸化物で構成されているので、各種特°性に
悪影響を与えることもない。
Therefore, it can be manufactured without laminating a non-superconducting thin film or the like on an oxide superconducting thin film as in the conventional case. When the superconducting element of the present invention is manufactured according to the method of the present invention, the entire element is integrally formed, so that it is not only easy to manufacture, but also has stable characteristics. Furthermore, since the non-superconducting layer is made of an oxide similar to an oxide superconductor, it does not have any adverse effects on various properties.

本発明により、超電導技術の電子デバイスへの応用がさ
らに促進される。
The present invention further promotes the application of superconducting technology to electronic devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の超電導素子の概略断面図であり、 第2図は、本発明の超電導素子を作製する場合の工程の
一例を示す概略図である。 〔主な参照番号〕 1.2・・・超電導層、 3・・・非超電導層、 ・基板
FIG. 1 is a schematic cross-sectional view of a superconducting element of the present invention, and FIG. 2 is a schematic diagram showing an example of a process for producing a superconducting element of the present invention. [Main reference numbers] 1.2...Superconducting layer, 3...Non-superconducting layer, -Substrate

Claims (1)

【特許請求の範囲】[Claims]  基板上に形成された酸化物超電導体で構成された超電
導層と該超電導層に隣接する非超電導層とを有する超電
導素子において、基板上の一部に前記酸化物超電導体中
に拡散して超電導性を失わせる物質の層が形成され、前
記非超電導層が前記物質が拡散して超電導性を失った酸
化物超電導体で構成されていることを特徴とする超電導
素子。
In a superconducting element having a superconducting layer made of an oxide superconductor formed on a substrate and a non-superconducting layer adjacent to the superconducting layer, a portion of the substrate is diffused into the oxide superconductor and has superconductivity. 1. A superconducting element, characterized in that a layer of a substance that causes properties to be lost is formed, and the non-superconducting layer is composed of an oxide superconductor in which the substance has diffused and lost superconductivity.
JP2278498A 1990-10-17 1990-10-17 Superconducting element Pending JPH04152685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2278498A JPH04152685A (en) 1990-10-17 1990-10-17 Superconducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2278498A JPH04152685A (en) 1990-10-17 1990-10-17 Superconducting element

Publications (1)

Publication Number Publication Date
JPH04152685A true JPH04152685A (en) 1992-05-26

Family

ID=17598154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2278498A Pending JPH04152685A (en) 1990-10-17 1990-10-17 Superconducting element

Country Status (1)

Country Link
JP (1) JPH04152685A (en)

Similar Documents

Publication Publication Date Title
US5504058A (en) Oxide superconducting device
EP0446146B1 (en) Stacked Josephson junction device composed of oxide superconductor material
US5354734A (en) Method for manufacturing an artificial grain boundary type Josephson junction device
JPH05335638A (en) Josephson junction structure body and manufacture thereof
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
JPH05335637A (en) Josephson junction structure body
US5488030A (en) Superconductor junction structure including two oxide superconductor layers separated by a non-superconducting layer
JPH04152685A (en) Superconducting element
US5565415A (en) Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
EP0476617B1 (en) Superconductor junction structure and process for fabricating the same
JPH03166776A (en) Tunnel junction element and manufacture thereof
JPH04268774A (en) Josephson junction
JPH03296283A (en) Josephson junction
JPH04151883A (en) Superconducting device
JP2691065B2 (en) Superconducting element and fabrication method
JP2663856B2 (en) Superconducting circuit using edge-type Josephson junction and method of manufacturing the same
JPH04152683A (en) Superconducting element
JP2667289B2 (en) Superconducting element and fabrication method
JPH04152686A (en) Josephson junction and manufacture thereof
JPH05190926A (en) Forming method of superconducting device and superconducting device formed by the same
JPH04118978A (en) Superconducting element and manufacture thereof
JPH04132276A (en) Superconducting element and manufacture thereof
JPH03204983A (en) Superconductive junction
JPH05291632A (en) Superconductive junction structure
JPH04127484A (en) Superconducting junction