JPH0320456A - Formation of thin film of crystalline aluminum oxide - Google Patents

Formation of thin film of crystalline aluminum oxide

Info

Publication number
JPH0320456A
JPH0320456A JP7145589A JP7145589A JPH0320456A JP H0320456 A JPH0320456 A JP H0320456A JP 7145589 A JP7145589 A JP 7145589A JP 7145589 A JP7145589 A JP 7145589A JP H0320456 A JPH0320456 A JP H0320456A
Authority
JP
Japan
Prior art keywords
substrate
thin film
aluminum oxide
current density
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7145589A
Other languages
Japanese (ja)
Other versions
JPH06944B2 (en
Inventor
Naomi Matsumura
直巳 松村
Tokiaki Hayashi
林 常昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIMUZU KK
Original Assignee
RAIMUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIMUZU KK filed Critical RAIMUZU KK
Priority to JP7145589A priority Critical patent/JPH06944B2/en
Publication of JPH0320456A publication Critical patent/JPH0320456A/en
Publication of JPH06944B2 publication Critical patent/JPH06944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form the thin film of crystalline Al2O3 at a relatively low temp. by irradiating the surface of a substrate with an element of a specific atom number while the vapor deposition of AP on the substrate in an oxygen atmosphere in a vacuum vessel and selecting the acceleration voltage value and current density at the time of the irradiation in such a manner that the substrate attains a specific temp. CONSTITUTION:The Al substrate 13 is held on a substrate holder 6 in the vacuum chamber 1 and the inside of the vacuum vessel 1 is evacuated to about 1X106Torr. The Al is evaporated under about 3.5Angstrom /sec condition by an electron beam heating evaporator 3, simultaneously with which the substrate 13 surface under the formation of the Al film is irradiated with the oxygen ions from an oxygen ion source 8 under the conditions of about 1KV acceleration voltage and about 340muA/cm<2> current density. The Al ions from an ion source 9 under the conditions of about 180KV acceleration voltage and about 4.5muA/cm<2> current density, respectively and the temp. of the substrate 13 is controlled to >=100 deg.C. The thin film of the crystalline aluminum oxide is formed at the relatively low temp. at which the deterioration of the mechanical characteristics of the substrate does not arise in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、結晶質酸化アルミニウム薄膜の形成方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a crystalline aluminum oxide thin film.

【従来の技術及び課)JB] 一般に、スパッタリングやイオンブレーティング又は金
属を蒸着しながら酸素ガスイオンを照射する方法等、い
わゆるPVD法により形戊された酸化アルミニウムを薄
膜の結晶形は、アモルファス状態であることがしられて
いる。このアモルファス相の酸化アルミニウムは、比較
的低温で耐蝕性、耐磨耗性、耐酸化性等の用途には適す
るが、500℃付近でγの結晶形になることから、特性
が一定せず、しかもアモルファスからγに変態する際に
収縮を伴うことから、表面亀裂を生じることもある。そ
の結果、比較的高温雰囲気下に曝される状態での使用が
困難となる問題があった。
[Prior Art and Section] JB] In general, the crystal form of a thin film of aluminum oxide formed by a so-called PVD method, such as sputtering, ion blasting, or a method of irradiating oxygen gas ions while depositing metal, is in an amorphous state. It is known that This amorphous phase aluminum oxide is suitable for applications such as corrosion resistance, abrasion resistance, and oxidation resistance at relatively low temperatures, but since it becomes a γ crystal form at around 500°C, its properties are not constant. Furthermore, since the transformation from amorphous to γ is accompanied by shrinkage, surface cracks may occur. As a result, there has been a problem in that it is difficult to use it under conditions where it is exposed to a relatively high temperature atmosphere.

一方、熱CVD法によりα形の結晶質酸化アルミニウも
薄膜が得られることが知られている。しかしながら、か
かる方法では成膜時の温度が1000℃近辺に加熱され
、基板の機械的特性を損なう問題があった。
On the other hand, it is known that a thin film of α-type crystalline aluminum oxide can also be obtained by thermal CVD. However, in this method, the temperature during film formation is heated to around 1000° C., which has the problem of impairing the mechanical properties of the substrate.

本発明は、上記従来の課題を解決するためになされたも
ので、基板への機械的特性劣化を招かない比較的低温に
て結晶質酸化アルミニウム薄膜を形成し得る方法を提供
しようとするものである。
The present invention has been made in order to solve the above-mentioned conventional problems, and aims to provide a method that can form a crystalline aluminum oxide thin film at a relatively low temperature without causing deterioration of the mechanical properties of the substrate. be.

[課題を解決するための手段] 本発明は、真空容器中で酸素雰囲気にてアルミニウムを
基板上に蒸着するか、もしくはアルミニウムを基板上に
蒸着しながら低エネルギーの酸素イオンビームを該基板
に照射するかいずれかにより前記基板上に酸化アルミニ
ウム薄膜を形或する方法において、成膜中もしくは成膜
後に原子番号5〜30までの元素から選ばれるいずれか
一つをイオン照射すると共に、該イオン照射時の加速電
圧値及び電流密度を前記基板の温度が100℃以上とな
るように選定することを特徴とする結晶質酸化アルミニ
ウム薄膜の形或方法である。
[Means for Solving the Problems] The present invention involves depositing aluminum on a substrate in an oxygen atmosphere in a vacuum container, or irradiating the substrate with a low-energy oxygen ion beam while depositing aluminum on the substrate. In the method of forming an aluminum oxide thin film on the substrate by either ion irradiation with any one element selected from atomic numbers 5 to 30 during or after film formation, the ion irradiation A method of forming a crystalline aluminum oxide thin film is characterized in that the accelerating voltage value and current density are selected such that the temperature of the substrate is 100° C. or higher.

上記イオン照射時の加速電圧値及び電流密度を前記基板
の温度が100℃以上となるように選定した理由は、1
00℃未満にするとイオンビームヒーティング効果がな
く、相変態が容易に達成できないからである。なお、基
板温度の上限については結晶形の形態や基板の機械的性
質を考慮して決定すればよい。
The reason why the accelerating voltage value and current density during ion irradiation were selected so that the temperature of the substrate was 100°C or higher was as follows:
This is because if the temperature is lower than 00° C., there will be no ion beam heating effect and phase transformation will not be easily achieved. Note that the upper limit of the substrate temperature may be determined in consideration of the crystal form and mechanical properties of the substrate.

[作用] 真空容器中で酸素雰囲気にてアルミニウムを基板上に蒸
着するか、もしくはアルミニウムを基板上に蒸着しなが
ら低エネルギーの酸素イオンビームを該基板に照射する
かいずれかにより前記基板上にアモルファスの結晶形態
を有する酸化アルミニウム薄膜が形成される。かかるア
モルファス相を有する酸化アルミニウム薄膜の成膜中も
しくは或膜後に原子番号5〜30までの元素から選ばれ
るいずれか一つをイオン照射すると共に、該イオン照射
時の加速電圧値及び電流密度を前記基板の温度がlOO
℃以上となるように選定することによって、基板への機
械的特性劣化を招かない比較的低温にて結晶質酸化アル
ミニウム薄膜を形成することができる。
[Operation] An amorphous layer is formed on the substrate by either evaporating aluminum onto the substrate in an oxygen atmosphere in a vacuum container, or by irradiating the substrate with a low-energy oxygen ion beam while depositing aluminum on the substrate. An aluminum oxide thin film having a crystal morphology of . During or after the formation of such an aluminum oxide thin film having an amorphous phase, ions of any one element selected from atomic numbers 5 to 30 are irradiated, and the accelerating voltage value and current density at the time of ion irradiation are set as described above. The temperature of the substrate is lOO
By selecting the temperature to be at least .degree. C., a crystalline aluminum oxide thin film can be formed at a relatively low temperature that does not cause deterioration of the mechanical properties of the substrate.

即ち、原子番号5〜30までの元素から選ばれるいずれ
か一つを成膜中もしくは成膜後にイオン照射すると、そ
の入射粒子からアルミニウムと酸素とからなる標的原子
に移乗されるエネルギーが比較的大きいため、現象とし
てサーマルスパイク的な効果により前記アモルファスか
ら結晶質への相変態を促進する。この場合、原子番号が
30を越える元素のイオンでは照射損傷が大きくなり、
最終的にはアモルファス状態となり、また原子番号が5
未満の元素のイオンでは非弾性衝突現象が顕著となり、
前記標的原子核へのエネルギー付与が小さく相変態に対
する効果が不十分となる。しかも、かかるイオン照射に
際しての加速電圧値及び電流密度を基板の温度が100
℃以上となるように選定すると、イオンビームヒーティ
ング効果により前記アモルファスから結晶質への相変態
を促進する.従って、原子番号5〜35までの元素から
選ばれるいずれか一つのイオン照射によるサーマルスパ
イク的な効果とイオンビームヒーティング効果との相乗
作用によって既述したように基板への機械的特性劣化を
招かない比較的低温にて結晶質酸化アルミニウム薄膜を
形成することができる。
In other words, when one of the elements selected from the atomic numbers 5 to 30 is ion-irradiated during or after film formation, the energy transferred from the incident particles to the target atoms consisting of aluminum and oxygen is relatively large. Therefore, as a phenomenon, the phase transformation from amorphous to crystalline is promoted by a thermal spike-like effect. In this case, ions of elements with atomic numbers exceeding 30 will cause greater radiation damage.
Eventually it becomes an amorphous state, and the atomic number is 5.
The inelastic collision phenomenon becomes noticeable for ions of elements below
The energy imparted to the target atomic nucleus is small and the effect on phase transformation is insufficient. Moreover, when the substrate temperature is 100%, the acceleration voltage value and current density during ion irradiation are
If the temperature is selected to be above ℃, the phase transformation from amorphous to crystalline will be promoted by the ion beam heating effect. Therefore, the synergistic effect of the thermal spike-like effect due to ion irradiation with any one of the elements selected from atomic numbers 5 to 35 and the ion beam heating effect leads to deterioration of the mechanical properties of the substrate as described above. Crystalline aluminum oxide thin films can be formed at relatively low temperatures.

なお、上述したイオン照射の相変態に及ぼす効果は成膜
中でも或膜後でも同等であるが、アモルファス相から7
相、α相への変態は収縮を伴うので、成膜中に照射した
場合は成膜後に照射した場合に比べて薄膜内部の歪みを
小さくできる利点を有する。
Note that the effect of ion irradiation on the phase transformation described above is the same during and after film formation, but
Since the transformation into the α phase and the α phase is accompanied by contraction, irradiation during film formation has the advantage that the strain inside the thin film can be reduced compared to the case where irradiation is performed after film formation.

[実施例] 以下、本発明の実施例を第1図を参一照して詳細に説明
する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to FIG.

第1図は、本実施例に使用される真空蒸着とスパッタリ
ング蒸着の両方を行うことが可能な成膜装置を示す概略
図である。図中の1は、真空容器であり、この容器lに
は該容器l内を所定の真空度とするための真空ボンプ2
が連結されている。
FIG. 1 is a schematic diagram showing a film forming apparatus capable of performing both vacuum deposition and sputtering deposition used in this example. 1 in the figure is a vacuum container, and this container 1 has a vacuum pump 2 for making the inside of the container 1 a predetermined degree of vacuum.
are connected.

前記真空容器l内には、アルミニウムを蒸発させるため
の電子線加熱蒸発器3が設けられている。
An electron beam heating evaporator 3 for evaporating aluminum is provided inside the vacuum container 1.

前記真空容器l内には、該容器lに設けられたA『イオ
ン源4からのArイオンによりアルミニウムがスパッタ
リングされるAj7ターゲット 5が配置されている。
In the vacuum chamber 1, an Aj7 target 5 is arranged where aluminum is sputtered by Ar ions from an ion source 4 provided in the chamber 1.

前記真空容器1内には、基板ホルダ6が設けられている
。前記真空容器1には、前記ホルダ6に保持された基板
付近に酸素を供給するための酸素供給管7が設けられて
いる。また、前記真空容器1には前記ホルダ6に保持さ
れた基板に酸素イオンを照射するための酸素イオン源8
が設けられている。更に、図中の9は原子番号5〜30
までの元素から選ばれるいずれか一つのイオンを照射す
るためのイオン源である。このイオン源9は、質量分離
マグネッ}10及び加速管11を介して前記真空容器1
に連結されている。なお、前記加速管11には真空ボン
ブl2が連結されている。
A substrate holder 6 is provided within the vacuum container 1 . The vacuum container 1 is provided with an oxygen supply pipe 7 for supplying oxygen to the vicinity of the substrate held by the holder 6. The vacuum container 1 also includes an oxygen ion source 8 for irradiating the substrate held in the holder 6 with oxygen ions.
is provided. Furthermore, 9 in the figure has an atomic number of 5 to 30.
This is an ion source for irradiating with any one ion selected from the following elements. This ion source 9 is connected to the vacuum vessel 1 via a mass separation magnet 10 and an acceleration tube 11.
is connected to. Note that a vacuum bomb 12 is connected to the acceleration tube 11.

実施例1 まず、前述した成膜装置の真空容器lに配置された基板
ホルダ6にアルミニウム基板13を保持した後、真空ボ
ンプ2を作動して真空容器l内を例えばIX lO”t
orr程度まで排気した。つづいて、電子線蒸発器3に
よりアルミニウムを3.5入/Seeの条件で蒸発させ
、同時に酸素イオン源8から酸素イオンを加速電圧1k
V,電流密度340μA/c1の条件で、イオン源9か
らアルミニウムイオンを加速電圧180kV,電流密度
4.5μA/cm”の条件でそれぞれ前記アル.ミニウ
ムの成膜中の基板13表面に照射して酸化アルミニウム
薄膜を形成した。かかるイオン照射時の基板温度を熱電
対で測定したところ、120℃であった。
Example 1 First, an aluminum substrate 13 is held in the substrate holder 6 placed in the vacuum container l of the film forming apparatus described above, and then the vacuum pump 2 is operated to move the inside of the vacuum container l into, for example, IX lO"t.
It was exhausted to about orr. Subsequently, aluminum is evaporated using the electron beam evaporator 3 at a rate of 3.5/see, and at the same time, oxygen ions are evaporated from the oxygen ion source 8 at an acceleration voltage of 1k.
The surface of the substrate 13 on which the aluminum film was being formed was irradiated with aluminum ions from the ion source 9 under the conditions of an accelerating voltage of 180 kV and a current density of 4.5 μA/cm, respectively. An aluminum oxide thin film was formed.The substrate temperature during the ion irradiation was measured with a thermocouple and found to be 120°C.

比較例 まず、前述した戊膜装置を用い、イオン源9からアルミ
ニウムイオンを加速電圧180kV,電流密度3,8μ
A/cm2の条件で照射した以外、前記実施例1と同様
な方法によりアルミニウム基板上に酸化アルミニウム薄
膜を形成した。かかるイオン照射時の基板温度を熱電対
で測定したところ、95℃であった。
Comparative Example First, using the membrane device described above, aluminum ions were accelerated from the ion source 9 at an acceleration voltage of 180 kV and a current density of 3.8μ.
An aluminum oxide thin film was formed on an aluminum substrate by the same method as in Example 1, except that irradiation was performed under the conditions of A/cm2. The substrate temperature during the ion irradiation was measured with a thermocouple and found to be 95°C.

本実施例1及び比較例で形成された薄膜をそれぞれX線
回折により結晶性を測定した。その結果、実施例1の薄
膜はγ型結晶質の酸化アルミニウムであった。これに対
し、比較例の薄膜はアモルファス相の酸化アルミニウム
であった。
The crystallinity of the thin films formed in Example 1 and Comparative Example was measured by X-ray diffraction. As a result, the thin film of Example 1 was γ-type crystalline aluminum oxide. In contrast, the thin film of the comparative example was aluminum oxide in an amorphous phase.

実施例2 まず、前述した成膜装置の真空容器lに配置された基板
ホルダBにチタン基板l3を保持した後、真空ボンブ2
を作動して真空容器l内を例えばtX 10”torr
程度まで排気した。つづいて、A『イオン源4からAr
イオンをAlターゲット 5に照射してスパッタリング
を行ってアルミニウムを1入/seeの条件で蒸発させ
、同時に酸素ガス供給管7から酸素を1.4 X 10
−’torrの分圧で供給した。膜厚が8000λとな
った時点で、アルミニウムの蒸着を停止し、ひきつづき
イオン源9からアルミニウムイオンを加速電圧20Ok
VSfi流密度22μA / c−2の条件で照射して
酸化アルミニウム薄膜を形戊した。かかるイオン照射時
の基板温度を熱電対で測定したところ、5BO℃であっ
た。
Example 2 First, after holding the titanium substrate l3 in the substrate holder B placed in the vacuum container l of the film forming apparatus described above, the vacuum bomb 2
for example, tX 10”torr.
It was exhausted to a certain extent. Next, A “Ar from ion source 4.
Sputtering is performed by irradiating the Al target 5 with ions to evaporate aluminum at 1/see, and at the same time oxygen is supplied from the oxygen gas supply pipe 7 at 1.4 x 10
-'torr partial pressure was supplied. When the film thickness reaches 8000λ, aluminum evaporation is stopped, and aluminum ions are continuously accelerated from the ion source 9 at a voltage of 20K.
The aluminum oxide thin film was formed by irradiation at a VSfi flow density of 22 μA/c-2. The substrate temperature during the ion irradiation was measured with a thermocouple and was found to be 5BO°C.

本実施例2で形成された薄膜をX線回折により結晶性を
測定したところ、α型結晶質の酸化アルミニウムである
ことがわかった。
When the crystallinity of the thin film formed in Example 2 was measured by X-ray diffraction, it was found that it was α-type crystalline aluminum oxide.

[発明の効果] 以上詳述した如く、本発明によれば基板への機械的特性
劣化を招かない比較的低温にて結晶質酸化アルミニウム
薄膜を形成でき、ひいては比較的高温で耐蝕性、耐磨耗
性、耐酸化性等が要求される用途などに有効に適用でき
る等顕著な効果を有する。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to form a crystalline aluminum oxide thin film at a relatively low temperature without causing deterioration of the mechanical properties of the substrate, and it is also possible to form a crystalline aluminum oxide thin film at a relatively high temperature. It has remarkable effects, such as being able to be effectively applied to applications that require wear resistance, oxidation resistance, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例で使用した成膜装置の一形態
を示す概略図である。 1・・・真空容器、3・・・電子線加熱蒸発器、4・・
・A『イオン源、5・・・lターゲット、6・・・基板
ホルダ、7・・・酸素供給管、8・・・酸素イオン源、
9・・・原子番号5〜30までの元素のイオン源、l3
・・・基板。
FIG. 1 is a schematic diagram showing one form of a film forming apparatus used in an example of the present invention. 1... Vacuum container, 3... Electron beam heating evaporator, 4...
・A "Ion source, 5...L target, 6...Substrate holder, 7...Oxygen supply pipe, 8...Oxygen ion source,
9...Ion source of elements with atomic numbers 5 to 30, l3
···substrate.

Claims (1)

【特許請求の範囲】[Claims]  真空容器中で酸素雰囲気にてアルミニウムを基板上に
蒸着するか、もしくはアルミニウムを基板上に蒸着しな
がら低エネルギーの酸素イオンビームを該基板に照射す
るかいずれかにより前記基板上に酸化アルミニウム薄膜
を形成する方法において、成膜中もしくは成膜後に原子
番号5〜30までの元素から選ばれるいずれか一つをイ
オン照射すると共に、該イオン照射時の加速電圧値及び
電流密度を前記基板の温度が100℃以上となるように
選定することを特徴とする結晶質酸化アルミニウム薄膜
の形成方法。
An aluminum oxide thin film is formed on the substrate by either evaporating aluminum onto the substrate in an oxygen atmosphere in a vacuum container, or by irradiating the substrate with a low-energy oxygen ion beam while depositing aluminum on the substrate. In the forming method, ions of any one element selected from atomic numbers 5 to 30 are irradiated during or after film formation, and the accelerating voltage value and current density at the time of ion irradiation are adjusted as the temperature of the substrate increases. A method for forming a crystalline aluminum oxide thin film, characterized in that the temperature is selected to be 100°C or higher.
JP7145589A 1989-03-13 1989-03-23 Method for forming crystalline aluminum oxide thin film Expired - Lifetime JPH06944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7145589A JPH06944B2 (en) 1989-03-13 1989-03-23 Method for forming crystalline aluminum oxide thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-60292 1989-03-13
JP6029289 1989-03-13
JP7145589A JPH06944B2 (en) 1989-03-13 1989-03-23 Method for forming crystalline aluminum oxide thin film

Publications (2)

Publication Number Publication Date
JPH0320456A true JPH0320456A (en) 1991-01-29
JPH06944B2 JPH06944B2 (en) 1994-01-05

Family

ID=26401360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7145589A Expired - Lifetime JPH06944B2 (en) 1989-03-13 1989-03-23 Method for forming crystalline aluminum oxide thin film

Country Status (1)

Country Link
JP (1) JPH06944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285915B1 (en) 1996-10-08 2001-09-04 Fanuc Ltd. Numerical control device, and screen display and data input and output method for numerical control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285915B1 (en) 1996-10-08 2001-09-04 Fanuc Ltd. Numerical control device, and screen display and data input and output method for numerical control device

Also Published As

Publication number Publication date
JPH06944B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
JPS582022A (en) Thin film formation
JPS63137159A (en) Formation of thin crystalline metallic film
JPH0320456A (en) Formation of thin film of crystalline aluminum oxide
JPS6326349A (en) Formation of cubic boron nitride film
Kiuchi et al. Film formation of dititanium nitride by the dynamic mixing method
JPH04285154A (en) Formation of carbon thin film
JP2636577B2 (en) Method of forming titanium nitride film
JPS62232180A (en) Superconducting material
US5523166A (en) Process for forming thin film having excellent insulating property and metallic substrate coated with insulating material formed by said process
JPH01168857A (en) Formation of titanium nitride film
JPS6293366A (en) Manufacture of boron nitride film
JPH04318162A (en) Formation of cubic boron nitride film and forming device therefor
JPS61201772A (en) Method and device for forming thin film
JPS6176662A (en) Method and device for forming thin film
JPS61190064A (en) Formation of thin titanium nitride film
JPS58100672A (en) Method and device for formation of thin film
JPH03202468A (en) Film formation
JPH048506B2 (en)
JP3389639B2 (en) Control method of internal stress of film
JPH11199377A (en) Formation of crystalline thin membrane
JPH01172563A (en) Formation of high-purity film
JPH04333561A (en) Formation of nitride film
JPS63254726A (en) X-ray exposure mask and manufacture thereof
JPH0739628B2 (en) Oxidation resistant composite oxide coating material and method for producing the same
JPS6260857A (en) Formation of boride film of high-melting point, high-boiling point and high-hardness substance