JPH032037B2 - - Google Patents

Info

Publication number
JPH032037B2
JPH032037B2 JP60189606A JP18960685A JPH032037B2 JP H032037 B2 JPH032037 B2 JP H032037B2 JP 60189606 A JP60189606 A JP 60189606A JP 18960685 A JP18960685 A JP 18960685A JP H032037 B2 JPH032037 B2 JP H032037B2
Authority
JP
Japan
Prior art keywords
image
microorganisms
brightness level
histogram
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60189606A
Other languages
English (en)
Other versions
JPS6253792A (ja
Inventor
Masakatsu Hiraoka
Kazuyuki Tsumura
Kenji Baba
Shoji Watanabe
Mikio Yoda
Naoki Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60189606A priority Critical patent/JPS6253792A/ja
Priority to US06/900,420 priority patent/US4769776A/en
Priority to KR1019860007273A priority patent/KR910005632B1/ko
Publication of JPS6253792A publication Critical patent/JPS6253792A/ja
Publication of JPH032037B2 publication Critical patent/JPH032037B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Activated Sludge Processes (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は下水処理場などにおいて微生物の状態
から沈降性等の汚泥特性の良否を判定するのに用
いて好適な微生物相検出装置に関する。
〔発明の背景〕
下水処理において主要なプロセスである活性汚
泥法は曝気膜、沈殿池などを用いて行われる。こ
のうち、沈殿池には2つの機能がある。1つは濁
質の少ない清澄な処理水を提供することであり、
他方は高濃度の汚泥を形成させることである。こ
れらの機能は活性汚泥の性質に依存する部分が多
く、その特性を把握できれば沈殿池を良好に運転
することができる。活性汚泥の特性評価法には、
活性汚泥自身の沈降性あるいは活性汚泥に出現し
ている微生物相より判定する等がある。
従来、汚泥沈降性及び濃縮性の評価法としては
定溶積の円柱溶器に活性汚泥を含む混合液を採取
し、定時間後の汚泥界面高さなどの間接的指標に
基づく水質分析によつて行つている。また、微生
物相で評価する方法としては、例えば特開昭60−
31886号公報に示されるように、糸状性微生物と
フロツク性微生物を画像処理で識別するものが知
られている。この方法は、原画像を直接縮退処理
や輪郭抽出処理等を行つて2種類の微生物相を抽
出し、それぞれの画素数から微量線に基づいて微
生物量を求めるものである。しかし、実用に際し
ては微生物の形状、例えば糸状性微生物の太さな
どを考慮する必要がある。また、照明が一様でな
く原画像の背景の輝度レベルに差がある場合にも
糸状性微生物を抽出できるようにすることが要求
される。
〔発明の目的〕
本発明の目的は、照明にムラがあつても系状性
微生物とフロツク性微生物を正確に抽出して計測
する微生物相検出装置を提供することにある。
〔発明の概要〕
本発明の特徴は、撮像した微生物原画像から背
景との輝度差が大きい部分を選択的に抽出して強
調することにより糸状性微生物を鮮明にした後に
細線化処理を行い1画素対応を行い、さらに縮
退・膨張によりフロツク性微生物のみを抽出する
ようにしたことにある。
〔発明の実施例〕
以下、図面を用いて実施例を説明する。
第1図に改性汚泥プロセスに適用した本発明の
一実施例を示す。
第1図において、1は曝気槽で、有機性物質を
含む流入下水4と活性汚泥を含む返送汚泥5を導
入し、空気8を散気管3から供給する。2は沈殿
池で、曝気槽1の流出液の固液分離を行い、上澄
液を処理水6として放流し、沈降した活性汚泥の
大部分は返送汚泥5となり、一部は余剰汚泥7と
して系外に排出される。このような活性汚泥プロ
セスにおいて、処理能力が高く、かつ、良好な沈
降特性を示す活性汚泥を維持することが運転上の
課題である。ところで、活性汚泥は多種多様の純
生物が混在し、その出現微生物相から現状の運転
状態を推測できるとされている。運転状態を判断
するためには、時系列的に出現微生物の分類およ
び計数を行うことが必要である。11は撮像装置
で、曝気槽1内の活性汚泥を含む液の画像を逐次
認識し、電気信号に変換するもの例えば第2図に
示す拡大光学系を有する水中カメラを利用でき
る。第2図の水中カメラは直接液中に浸するもの
で、撮像装置11の前頭部にスリツト11Aを有
するスリツト11Aに曝気槽1の混合液が供給さ
れる。撮像装置11には拡大光学部11Bと撮像
部11C、及び照明部11Dが内蔵されている。
照明部11Dから発した光は拡大光学部11Bの
特定位置に入り、図示しないハーフミラー等を介
して進路変更され、セル窓11Eを通過して、窓
11Eと対向するミラー11Fで反射されてスリ
ツト11A内の混合液を照らし出す。拡大学光部
11Bは一般顕微鏡の拡大原理が応用でき、対物
レンズと接眼レンズを有する。拡大光学部11B
で拡大されたスリツト11A内の微生物像は撮像
部11Cで電気信号に変換される。撮像部11C
には一般に工業用テレビカメラが用いられ、撮像
画像の微小エリア(画素)毎に認識の明るさ(輝
度)の程度に応じて出力電圧の異なる電気信号を
出す。
撮像装置11から出た電気信号は微生物現検出
装置20に送信される。一方、撮像装置11は撮
像制御装置12から指令を受けて水平および垂直
同期、さらに、スリツト11A内のサンプル液交
換、およびセル窓11Eとミラー11Fの液接触
面が洗浄されるとともに撮像タイミングが制御さ
れる。
微生物相検出装置20は撮像装置11で得た画
像に基づいて微生物を検出する。具体的な検出手
段としては画像処理装置が用いられる。微生物相
検出装置20の詳細な構成と処理手順は後述す
る。40はシステムプロセツサでアドレスプロセ
ツサ42、並びに微生物相検出装置20内の画像
処理プログラムを管理制御する。アドレスプロセ
ツサ42は微生物相検出装置20内の画像メモリ
の読出しと書出し、撮像装置11からの画像取込
み、さらに、モニター44への画像表示制御を行
うものである。46はコンソールデイスプレイ
で、システムプロセツサ40の管理制御情報の入
力および表示を行い、キーボード48は必要情報
の入力を行う。また、50はフロツプイデイスク
で、画像情報や画像処理プログラムを記憶、保管
するものである。
60は特徴量演算装置で、微生物相検出装置2
0から時系列的に送信される微生物相検出信号を
統計処理し、検出微生物相の特徴量を演算・表示
するものである。
第3図に微生物相検出装置20の詳細構成の一
例を示し、その処理手順を説明する。微生物相検
出装置20は画像プロセツサ201と画像メモリ
202、および演算回路部203とから成る。こ
れらの画像プロセツサ201、画像メモリ20
2、および演算回路203はシステムプロセツサ
40とアドレスプロセツサ42に制御される。
撮像装置11から送信された画像は、微生物相
検出装置20の画像プロセツサ201に入力され
る。撮像装置11の撮像部11Cは、縦横に格子
状に配列された撮像素子を有し、撮像素子に対応
したi行j列の画素ごとに輝度(明るさの度合)
情報S(i、j)を出力する。この輝度情報は一
般に128あるいは256階調で表わされ、明るい部分
が高階調、暗い部分が低い階調で出力される。活
性汚泥を含む検液の拡大画像は、第4図の上図に
示すように、明るい背景である液相部Bの中に、
暗い部分が存在する。暗い部分はフロツク部Zと
系状部Fから成り、Zは凝集性微生物で、Fは系
状性微生物と称される。活性汚泥プロセスでは、
これら2種類の微生物相のバランスがとれ、フロ
ツク部Zが適度の大きさにあることが必要であ
る。
201Aはウインド設定回路で、撮像画像や画
像メモリにウインド(処理対象領域)を設定す
る。202Aは濃淡画像メモリで、撮像装置11
から送信された画像情報S(i、j)を原画像と
して格納する。第4図の上図は原画像の一例であ
る。この原画像から微生物部を抽出するには、任
意の輝度レベル(閾値)を選定し、2値化を行う
必要がある。第4図の下図は、上図の原画像を
AA′線で走査した場合のライン輝度分布である。
明るい液相部Bは高い値を示し、フロツク部Zは
低値となり、その中間に系状部Fが表示される。
一般に抽出対象物と背景を区別する2値化処理
は、対象物と背景の中間に閾値を設定すれば良
い。しかし、第4図下図のように、背断の輝度レ
ベルが一定でない場合には全画面に一様な閾値を
設定することが困難である。特に、輝度がかなり
高く、背断との輝度差が小さい系状部Fを検出す
るために閾値を高めに設定すると、背景の一部ま
でも検出してしまい、大きな測定誤差をともな
う。背景に輝度差を生ずる現象は、撮像装置11
の照明にムセラが有つたり、スリツト11Aの窓
面に粘着性物質が付着する原因による。このよう
な場合にも対象物が高精度で抽出されなければな
らない。
濃淡画像メモリ202Aに格納された原画像の
輝度情報S(i、j)はヒストグラム処理回路2
01Bで全画面に渡つて各輝度に対する画素数
(ヒストグラム)が求められる。一般に背景の画
素数は対象物の画素数より多く、処理回路201
Bで得られるヒストグラムには背景の輝度ピーク
RS1が表われる。201Cは2値化処理回路で、
原画像S(i、j)を2値化する。この場合の閾
値SH1はヒストグラム処理回路201Bで求めた
輝度ピーク値RS1より所定値aだけ低い値とす
る。所定値aは背景Bとフロツク部Zとの輝度差
より小さい値とするが、輝度情報が128階調で表
示される場合、10ないし30程度が良い。次式で表
わされる2値化画像G1(i、j)は S(i、j)>SH1:G1(i、j)=0 S(i、j)≦SH1:G1(i、j)=1 ……(1) 原画像中のかなり輝度の低い部分、すなわち、第
5図のように、フロツク部Zのみが原画像より小
さくなつて抽出され、2値画像メモリ202Bに
格納される。
一方、201Dは画像強調回路で、原画像S
(i、j)に対して次式に基づいて画像強調を行 S1(i、j)=ΣS(i、j)・W(i、j)/Ki
……(2) う。画像強調は、任意の1画素に注目し、その周
囲の8画素との線形演算を行うもので、原画像で
近傍画素間の輝度差が小さい背景には弱い応答
で、輝度差が大きい背景と対象物の境界には強く
応答させる。(2)式において、W(i、j)は強調
係数で、第6図に具体的な方法を示す。これらの
係数は3行3列で表わし、幅が1画素の12種類の
線を強調させるようにする。すなわち、図中の四
角枠にWがある領域に正値を代入し、その他の部
に負値を代入する。その際、各々の種類における
強調係数の総和が0になるように各係数を設定す
る。(2)式中のKiは補正係数で、強調画像S1(i、
j)が画像処理装置で表示可能な輝度範囲に調整
するもので、隣接画素間の輝度差と強調係数を考
慮して設定する。このような処理により強調画像
S1(i、j)は、原画像S(i、j)において9画
素近傍間の輝度差が少ない背景部Bにほぼ0の輝
度が表示され、輝度差が大きい抽出対象部Zおよ
びFは高い輝度値が表示される。最も強調される
部分は、強調係数が線を対象としているため、系
状部Fである。この強調画像S1(i、j)は濃淡
画像メモリ202Cに格納される。201Eは2
値化処理回路で、強調画像S1(i、j)を次式に
より2値化する。閾値SH2は S1(i、j)>SH2,S1(i、j)≦−SH2 :G2(i,j)=1−SH2<S1(i、j)≦SH2 :G2(i、j)=0 ……(3) 2ないし10に設定するのが良い。本発明者らの経
験によれば、輝度度化の少ない背景部Bの強調画
像S1(i、j)は、撮像装置11における拡大光
学部11Bのコンデンサ絞り、および照明部11
Dの光量に殆んど影響されず、0近傍に表示され
た。したがつて、閾値SH2は上記範囲に固定して
も得られる2値画像G2(i、j)に大きな変化は
ない。(3)式による2値画像G2(i、j)は、第7
図に示すように、対象物と接する背景も強調され
て原画像S(i、j)の対象物が膨張したように
検出されるとともに、フロツク部Zの内部に穴が
検出される。これは、原画像S(i、j)のフロ
ツク内部においても隣接画素間に輝度差のない部
分があり、その部分が画像強調回路201Dで0
近傍に出力されるためである。この2値画像G2
(i、j)は2値画像メモリ202Dに格納され
る。
201Fは画像修正回路で、2値画像G1(i、
j)とG2(i、j)を同一座標にある画素同士を
足し合せ、 G2′(i、j)=G1(i、j)+G2(i、j) G2′(i、j)≧1:G2′(i、j)=1 G2′(i、j)=0:G2′(i、j)=0 ……(4) 論理和画像G2′(i、j)が1以上なら1とし、そ
の他を0とすることにより、2値画像G2(i、
j)で穴であつた領域が1となり、対象物である
フロツク部と糸状部、および対象物と隣接する背
景の一部が抽出される。論理和画像G2′(i、j)
は2値画像メモリ202Eに格納する。
201Gは対象領域抽出回路で、論理和画像
G2′(i、j)から原画像S(i、j)においてフ
ロツク部Zと糸状部Fが存在する領域を抽出す
る。その方法は、論理和画像G2′(i、j)で0に
出力されている画素と同一座標にある原画像S
(i、j)の画素の輝度を0とし、G2′(i、j)
で1と出力されている画素と同一座標にある原画
像S(i、j)の画素輝度は変化させないで、原
画像そのまま輝度情報を出力する。この部分抽出
画像S2(i、j)は、 G2′(i、j)=1:S2′(i、j)=S(i、j) G2′(i、j)=0:S2′(i、j)=0 ……(5) 第8図に示すように、対象物が膨張した領域に原
画像の対象物が格納された状態となる。第4図と
同様の走査位置AA′線でライン輝度分布を求める
と、第8図の下図のようになる。この部分抽出画
像S2(i、j)は濃淡画像メモリ202Fに格納
される。
201Hはヒストグラム処理回路で、部分抽出
画像S2(i、j)のヒストグラムが求められる。
このヒストグラムでは、部分抽出画像S2(i、j)
で抽出された背景部が非常に少なくなつているた
め、同等の画素数をもつ2つの輝度ピークが表わ
れる。高輝度側は対象物に隣接した背景に相当
し、低輝度側は対象物に相当する。201Iは2
値化処理回路で、部分抽出画像S2(i、j)を2
値化する。この場合の閾値SH2はヒストグラム処
理回路201Hで得られた高輝度側の最大輝度
RS2より所定値bだけ低い値とする。所定値bの
設定は固定で良く、3ないし10の範囲にすればよ
い。次式により2値画像G3(i、j)を求める
が、部 G2(i、j)>SH2:G3(i、j)=0 G2(i、j)≦SH2:G3(i、j)=1 ……(6) 分抽出画像S2(i、j)で0出力されている領域
は自動的に0とする。このようにして得られた2
値画像G3(i、j)は、第9図のように対象物の
近傍背景が消えて、フロツク部Zと糸状部Fが高
精度で抽出できる。この画像は2値画像メモリ2
02Gに格納される。
このように原画像の対象物を正確に抽出できた
ことから、凝集性微生物と糸状性微生物の分類、
および計数が高精度で行うことができる。
201Jは輪郭抽出回路で、2値画像G3(i、
j)における抽出物体の輪郭1画素を抽出する。
この処理により、第10図に示すように、幅1な
いし2画素の線に抽出されている糸状性微生物と
凝集性微生物の輪郭が2値画像での抽出物体の形
を変えることなく抽出できる。この輪郭抽出画像
は2値画像メモリ202Hに記憶される。201
Kは画像差分回路で、2値画像G3(i、j)と輪
郭抽出画像との間で同一座標の画素毎に差分演算
される。この差分により、糸状性微生物の部分が
消え、フロツク部分である凝集性微生物の部分が
残る。この差分画像は2値画像メモリ202Iに
格納される。差分画像が得られたフロツク部は輪
郭の1画素分が消え、全体に1画素縮少した形と
なつている。201Lは膨張回路で、1画素縮少
した差分画像の輪郭部に1画素づつ付け足して、
2値画像G3(i、j)のフロツク部と同じ大きさ
に戻す。フロツク部である凝集性微生物のみが抽
出された膨張画像は2値画像メモリ202Jに格
納される。
201Nは画像差分回路で、2値画像G3(i、
j)から膨張画像を差分するものである。この差
分により、2値画像G3(i、j)のフロツク部の
みが消され、糸状部のみが残り、糸状性微生物が
抽出される。この差分画像は2値画像メモリ20
2Lに格納される。
以上の処理手順により、活性汚泥の2種類の微
生物を分類、抽出することが出来る。演算回路2
03は1画面に対する凝集性微生物と糸状性微生
物の特徴量を計算する。
203Aはラベリング回路で、2値画像メモリ
202Jに格納された凝集性微生物が抽出されて
いる膨張画像の各々のフロツクにナンバー付けを
行う。画素演算回路203Bでは、ナンバー付け
されたフロツクの1つ1つに対して面積、周囲長
を計算する。ここでの結果は全て画素数で表わさ
れるため、変換回路203Cで画素数に対する面
積、周囲長の実際値を演算する。203Dは形状
演算回路で、変換回路203Cで演算された面
積、および周囲長からフロツクの円状係数を求め
る。円状係数は例えば、次式で求める。
円柱係数=4π×面積/(周囲長)2 ……(7) 一方、203Eは画素演算回路で、2値画像メ
モリ202Lに格納さ胆た糸状性微生物が抽出さ
れている差分画像に基づいて、糸状部の画素数を
計算する。原画像S(i、j)で映し出される糸
状性微生物は殆んどが幅1画素であり、画素数と
糸状性微生物の長さはほぼ比例する。203Fは
変換回路で画素数に対する糸状性微生物の実際値
を演算する。
演算回路203の計算結果は特徴量演算装置6
0に出力され、凝集性微生物の平均面積と分散、
周囲長の平均と分散、円状係数の平均と分散、及
び凝集性微生物の総面積と糸状性微生物の総延
長、さらに両者の総面積と総延長の比率等を計算
する。
なお、微生物相検出装置20は取込んだ1画面
に対して微生物相の分類、計数を終了したら、新
たに撮像装置11から画面を取込み、同様の検出
手順を繰返し実施する。それらの指令はシステム
プロセツサ40で行う。特徴量演算装置60はそ
の都度情報を入力され、前記の特徴量を演算し、
画面ごとの時間列変化、あるいは数画面を纏めて
平均化した結果を表示する。
第11図は微生物相検出装置20の他の実施例
を説明する構成図で膨張回路201Lまでの検出
手順は第3図と同様である。201Mは細線化回
路で、2値画像メモリ202Gに格納された2値
画像G3(i、j)の幅2画素以上の線分を選択的
に幅1画素に置換える。この細線化処理により糸
状微生物の幅は、連結性を損うことなく1画素に
規格化される。これは、第3図の2値化処理回路
201Iにおいて、部分抽出画像S2(i、j)を
2値化しているが、このとき、閾値SH2の設定に
よつては糸状部と隣接する背景の一部を抽出して
しまい、糸状性微生物を幅2画素以上で検出する
可能性があるためである。細線化処理は、このよ
うな場合においても、糸状性微生物の長さを正確
に抽出することができる。細線化画像は2値画像
メモリ202Kに格納される。画像差分回路20
1Nは細線化画像から2値画像メモリ202Iに
格納されていた差分画像を差し引き糸状性微生物
のみを抽出する。2値画像メモリ202Iの差分
画像を対象としたのは、細線化回路201Mにお
いてフロツク部も収縮しているためである。この
検出手段により、糸状性微生物の線幅が1である
ため、画素数=実際長の関係が得られ測定精度の
向上に対する効果が大きい。
また、演算回路203の形状演算回路203D
における円状係数の演算は実際値によらず、画素
数演算回路203Bで抽出フロツクの長短辺の画
素数比としても良い。
本実施例では、拡大光学系を兼備した水中カメ
ラによる撮像装置を例として説明したが、本発明
はこれに限定するものではない。例えば、生物顕
微鏡に工業用テレビカメラを取付け、検鏡液をサ
ンプリングし、スライドガラスに塗布して原画像
を得ることもできる。
尚、本発明は活性汚泥プロセスの微生物検出を
対象にしたが、この他にも糸状性及び凝集性微生
物が混在する硝化・脱窒素、さらに脱リンプロセ
スにも適用できるものである。
第12図の実施例は、上述の微生物相の検出・
識別法を応用して活性汚泥プロセスを制御する方
法である。本制御法は実プラントでの運転状態と
微生物出現状態の関係が明確になれば、微生物出
現相の時系列変化からプラント状態を事前に予測
し適正な運転管理を安定して行うことが可能であ
る。
図において、70は評価装置で特徴量演算装置
60から出力される凝集性微生物の構造、および
凝集性微生物と糸状性微生物の出現比率に基づい
て、沈殿池2での微生物の沈降特性や活動環境の
状態を予測、評価するものである。沈降特性の評
価としては、沈殿池2の構造により相違するが、
微生物が自然沈降により沈降する方式では凝集性
微生物の面積及び周囲長が大きく、円状係数が小
さい場合には沈降性が悪化する傾向と評価する。
また、微生物を強制的に浮上させる方式では面積
及び周囲長が大きくなると濃縮性が悪化し、円状
係数が大きくなる濃縮性が良くなると評価する。
一方、活動環境の評価法は2種類の微生物の出現
比率が所定範囲内であれば良好を、糸状性微生物
あるいは凝集性微生物のどちらかが優先種となつ
ている場合は空気の過不足あるいは有機物負荷の
過大少の判定を行う。80は制御装置で評価装置
70の出力結果とプロセス内の水質計算値に基づ
いて操作すべき対象の選定と操作変量を設定す
る。水質計としては溶存酸素計9、汚泥濃度計
9′、有機物濃度計9″が挙げられるが、この他に
もPH、返送汚泥濃度、アンモニア性及び硝酸性窒
素濃度や酸化還元電位も重要な判定項目である。
操作量としては曝気空気8、返送汚泥5、および
余剰汚泥7で各々調節装置8′,5′,7′で操作
される。また、調節可能であれば流入下水4も操
作量とし挙げられる。
〔発明の効果〕
本発明によれば、撮像系に照明ムラや撮像窓面
に粘着物が付着し、背景輝度が一様でない原画像
においても対象物を正確に抽出し、その結果自動
的に2値化でき、処理時間を短縮でき測定精度を
大幅に向上できる。また、対象物のみを選択的に
抽出できるため、ノイズを自動的に排除できる。
さらに、活性汚泥の評価として重要な凝集性微
生物と系状性微生物の出現状態を自動的に検出で
き、プロセスの予測制御が可能となり、運転の長
期安定化を図ることができる。
【図面の簡単な説明】
第1図は実施例の全体構成図、第2図は撮像装
置の一例を示す構成図、第3図ないし第10図は
実施例の詳細を表わす図、第11図は他の実施例
を表わす構成図、第12図は実施例の応用を表わ
す全体構成図である。 1……曝気槽、2……沈殿池、11……撮像装
置、12……撮像制御装置、20……微生物相検
出装置。

Claims (1)

    【特許請求の範囲】
  1. 1 微生物を含む液を導入させる微小幅のスリツ
    トを持ち、該スリツト内微小領域の微生物拡大画
    像を電気信号に変換する撮像装置と、前記スリツ
    ト内の微生物含有液の入れ換えを行う液入れ換え
    装置と、前記撮像装置から入力される画像信号に
    基づき微生物の性状を判断する画像処理装置と、
    該画像処理装置と前記液入れ換え装置を制御する
    画像制御装置とを具備し、前記画像処理装置は前
    記撮像装置からの微生物原画像における隣接画素
    間の輝度レベル差に対応して該原画像の一部を選
    択強調する選択強調手段と、該選択強調手段で強
    調された強調画像を予め設定した輝度レベルで第
    1の2値化画像を求める第1の2値化手段と、前
    記微生物原画像のヒストグラムを求める第1のヒ
    ストグラム演算手段と、前記微生物原画像を前記
    第1のヒストグラム演算手段で求めたヒストグラ
    ムでピーク値を示す輝度レベルより所定値だけ低
    い輝度レベルで第2の2値化画像を求める第2の
    2値化手段と、前記第2の2値化画像と第1の2
    値化画像とを論理和をとつて得た論理和画像の抽
    出部に対応する前記微生物原画像の領域のみを抽
    出する部分画像抽出手段と、該部分画像抽出手段
    で抽出した部分抽出画像のヒストグラムを求める
    第2のヒストグラム演算手段と、前記部分抽出画
    像を前記第2のヒストグラム演算手段で求めたヒ
    ストグラムの最高輝度レベルより所定値だけ低い
    輝度レベルで第3の2値化画像を求める第3の2
    値化手段とを有することを特徴とする微生物相検
    出装置。
JP60189606A 1985-08-30 1985-08-30 微生物相検出装置 Granted JPS6253792A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60189606A JPS6253792A (ja) 1985-08-30 1985-08-30 微生物相検出装置
US06/900,420 US4769776A (en) 1985-08-30 1986-08-26 Apparatus for measuring the concentration of filamentous microorganisms in a mixture including microorganisms
KR1019860007273A KR910005632B1 (ko) 1985-08-30 1986-08-30 미생물을 포함한 혼합액중의 사상성 미생물의 농도 측정장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60189606A JPS6253792A (ja) 1985-08-30 1985-08-30 微生物相検出装置

Publications (2)

Publication Number Publication Date
JPS6253792A JPS6253792A (ja) 1987-03-09
JPH032037B2 true JPH032037B2 (ja) 1991-01-14

Family

ID=16244121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60189606A Granted JPS6253792A (ja) 1985-08-30 1985-08-30 微生物相検出装置

Country Status (1)

Country Link
JP (1) JPS6253792A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530866B2 (ja) * 1987-10-23 1996-09-04 株式会社日立製作所 活性汚泥プロセスの制御装置
JP2901642B2 (ja) * 1988-05-17 1999-06-07 三光純薬 株式会社 画像自動判定による抗原又は抗体の反応の有無の判定方法及び画像自動判定装置
JPH02229598A (ja) * 1989-03-03 1990-09-12 Ebara Infilco Co Ltd 活性汚泥の画像認識方法
JPH0471692A (ja) * 1990-07-12 1992-03-06 Hitachi Ltd 微生物撮像装置
JP7344066B2 (ja) * 2019-09-27 2023-09-13 オルガノ株式会社 測定装置および水処理システム
JP7339105B2 (ja) * 2019-09-27 2023-09-05 オルガノ株式会社 水処理システム、制御装置、水処理方法およびプログラム

Also Published As

Publication number Publication date
JPS6253792A (ja) 1987-03-09

Similar Documents

Publication Publication Date Title
Amaral et al. Activated sludge monitoring of a wastewater treatment plant using image analysis and partial least squares regression
DE69627183D1 (de) Verfahren zur automatischen bildanalyse biologischer proben
Jenné et al. Detection of filamentous bulking problems: developing an image analysis system for sludge composition monitoring
JPH0627014A (ja) 水質汚染監視装置及びその方法
Khan et al. Digital image processing and analysis for activated sludge wastewater treatment
US5270173A (en) Method of monitoring cell culture
Jenné et al. Towards on-line quantification of flocs and filaments by image analysis
Cenens et al. On the development of a novel image analysis technique to distinguish between flocs and filaments in activated sludge images
Benens et al. Evaluation of different shape parameters to distinguish between flocs and filaments in activated sludge images
JPH032037B2 (ja)
JPH05263411A (ja) 物体の観察方法および装置
JPH0790234B2 (ja) 活性汚泥による下水処理方法及び装置
JPH0636188B2 (ja) 画像計測装置
JPH0649195B2 (ja) 微生物検出装置
Yu et al. Simultaneously monitoring the particle size distribution, morphology and suspended solids concentration in wastewater applying digital image analysis (DIA)
JPH05146791A (ja) 微生物認識装置
Lee et al. Defect detection method for TFT-LCD panel based on saliency map model
CN112767362A (zh) 一种基于活性污泥相差显微图像污泥膨胀预测方法
JPH0636187B2 (ja) 画像処理装置
JPH0628453A (ja) 微生物認識装置及び該装置による監視方法
JP3901300B2 (ja) 汚泥粒径を計測する汚泥の画像処理装置
JPH0462798B2 (ja)
JPH0312232A (ja) プロセス運転支援システム
JPS6031887A (ja) 微生物相認識装置
JPH02135198A (ja) 徴生物の処理設備および廃水処理設備

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term